首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two lineages of Salmonella enterica serovar Typhimurium (S. Typhimurium) of multi-locus sequence type ST313 have been linked with the emergence of invasive Salmonella disease across sub-Saharan Africa. The expansion of these lineages has a temporal association with the HIV pandemic and antibiotic usage. We analysed the whole genome sequence of 129 ST313 isolates representative of the two lineages and found evidence of lineage-specific genome degradation, with some similarities to that observed in S. Typhi. Individual ST313 S. Typhimurium isolates exhibit a distinct metabolic signature and modified enteropathogenesis in both a murine and cattle model of colitis, compared to S. Typhimurium outside of the ST313 lineages. These data define phenotypes that distinguish ST313 isolates from other S. Typhimurium and may represent adaptation to a distinct pathogenesis and lifestyle linked to an-immuno-compromised human population.  相似文献   

2.
Invasive non-typhoidal Salmonella (iNTS) are an important cause of septicemia in children under the age of five years in sub-Saharan Africa. A novel genotype of Salmonella enterica subsp. enterica serovar Typhimurium (multi-locus sequence type [ST] 313) circulating in this geographic region is genetically different to from S. Typhimurium ST19 strains that are common throughout the rest of the world. S. Typhimurium ST313 strains have acquired pseudogenes and genetic deletions and appear to be evolving to become more like the typhoidal serovars S. Typhi and S. Paratyphi A. Epidemiological and clinical data show that S. Typhimurium ST313 strains are clinically associated with invasive systemic disease (bacteremia, septicemia, meningitis) rather than with gastroenteritis. The current work summarizes investigations of the broad hypothesis that S. Typhimurium ST313 isolates from Mali, West Africa, will behave differently from ST19 isolates in various in vitro assays. Here, we show that strains of the ST313 genotype are phagocytosed more efficiently and are highly resistant to killing by macrophage cell lines and primary mouse and human macrophages compared to ST19 strains. S. Typhimurium ST313 strains survived and replicated within different macrophages. Infection of macrophages with S. Typhimurium ST19 strains resulted in increased apoptosis and higher production of proinflammatory cytokines, as measured by gene expression and protein production, compared to S. Typhimurium ST313 strains. This difference in proinflammatory cytokine production and cell death between S. Typhimurium ST19 and ST313 strains could be explained, in part, by an increased production of flagellin by ST19 strains. These observations provide further evidence that S. Typhimurium ST313 strains are phenotypically different to ST19 strains and instead share similar pathogenic characteristics with typhoidal Salmonella serovars.  相似文献   

3.
4.
Multidrug-resistant Salmonella enterica serovar Typhimurium ST313 has emerged in sub-Saharan Africa causing severe infections in humans. Therefore, it has been speculated that this specific sequence type, ST313, carries factors associated with increased pathogenicity. We assessed the role in virulence of a gene with a yet unknown function, st313-td, detected in ST313 through comparative genomics. Additionally, the structure of the genomic island ST313-GI, harbouring the gene was determined. The gene st313-td was cloned into wild type S. Typhimurium 4/74 (4/74-C) as well as knocked out in S. Typhimurium ST313 02–03/002 (Δst313-td) followed by complementation (02-03/002-C). Δst313-td was less virulent in mice following i.p. challenge than the wild type and this phenotype could be partly complemented in trans, indicating that st313-td plays a role during systemic infection. The gene st313-td was shown not to affect invasion of cultured epithelial cells, while the absence of the gene significantly affects uptake and intracellular survival within macrophages. The gene st313-td was proven to be strongly associated to invasiveness, harboured by 92.5% of S. Typhimurium blood isolates (n = 82) and 100% of S. Dublin strains (n = 50) analysed. On the contrary, S. Typhimurium isolates of animal and food origin (n = 82) did not carry st313-td. Six human, non-blood isolates of S. Typhimurium from Belarus, China and Nepal harboured the gene and belonged to sequence types ST398 and ST19. Our data showed a global presence of the st313-td gene and in other sequence types than ST313. The gene st313-td was shown to be expressed during logarithmic phase of growth in 14 selected Salmonella strains carrying the gene. This study reveals that st313-td plays a role in S. Typhimurium ST313 pathogenesis and adds another chapter to understanding of the virulence of S. Typhimurium and in particular of the emerging sequence type ST313.  相似文献   

5.
6.
BackgroundNon-typhoidal Salmonella enterica serovars, associated with different foods including poultry products, are important causes of bacterial gastroenteritis worldwide. The colonization of the chicken gut by S. enterica could result in the contamination of the environment and food chain. The aim of this study was to compare the genomes of 25 S. enterica serovars isolated from broiler chicken farms to assess their intra- and inter-genetic variability, with a focus on virulence and antibiotic resistance characteristics.Conclusions/SignificanceThis study showed that the predominant Salmonella serovars in broiler chickens harbor genes encoding adhesins, flagellar proteins, T3SS, iron acquisition systems, and antibiotic and metal resistance genes that may explain their pathogenicity, colonization ability and persistence in chicken. The existence of mobile genetic elements indicates that isolates from a given serovar could acquire and transfer genetic material. Conserved genes in the T3SS and T4SS that we have identified are promising candidates for identification of diagnostic, antimicrobial or vaccine targets for the control of Salmonella in broiler chickens.  相似文献   

7.
8.
9.
10.
Human infection with non-typhoidal Salmonella serovars (NTS) infrequently causes invasive systemic disease and bacteremia. To understand better the nature of invasive NTS (iNTS), we studied the gene content and the pathogenicity of bacteremic strains from twelve serovars (Typhimurium, Enteritidis, Choleraesuis, Dublin, Virchow, Newport, Bredeney, Heidelberg, Montevideo, Schwarzengrund, 9,12:l,v:- and Hadar). Comparative genomic hybridization using a Salmonella enterica microarray revealed a core of 3233 genes present in all of the iNTS strains, which include the Salmonella pathogenicity islands 1–5, 9, 13, 14; five fimbrial operons (bcf, csg, stb, sth, sti); three colonization factors (misL, bapA, sinH); and the invasion gene, pagN. In the iNTS variable genome, we identified 16 novel genomic islets; various NTS virulence factors; and six typhoid-associated virulence genes (tcfA, cdtB, hlyE, taiA, STY1413, STY1360), displaying a wider distribution among NTS than was previously known. Characterization of the bacteremic strains in C3H/HeN mice showed clear differences in disease manifestation. Previously unreported characterization of serovars Schwarzengrund, 9,12:l,v:-, Bredeney and Virchow in the mouse model showed low ability to elicit systemic disease, but a profound and elongated shedding of serovars Schwarzengrund and 9,12:l,v:- (as well as Enteritidis and Heidelberg) due to chronic infection of the mouse. Phenotypic comparison in macrophages and epithelial cell lines demonstrated a remarkable intra-serovar variation, but also showed that S. Typhimurium bacteremic strains tend to present lower intracellular growth than gastroenteritis isolates. Collectively, our data demonstrated a common core of virulence genes, which might be required for invasive salmonellosis, but also an impressive degree of genetic and phenotypic heterogeneity, highlighting that bacteremia is a complex phenotype, which cannot be attributed merely to an enhanced invasion or intracellular growth of a particular strain.  相似文献   

11.
This study was conducted to determine the distribution patterns and duration of stay of Toxocara cati larvae in organs of chickens and to investigate chronic phase and potential zoonotic risk of toxocariasis in chickens. Chickens were orally infected with 1,000 embryonated T. cati eggs and necropsied 240 days post-infection. Organs of the chickens were examined at gross and microscopic levels; tissues were digested to recover larvae. Peribronchiolitis with infiltration of lymphocytes, and hyperplasia of bronchiolar associated lymphatic tissues (BALT) and goblet cells, were evident in the lungs of infected chickens. There were mild hemorrhages and infiltration of lymphocytes and a few eosinophils in the meninges. Larvae were recovered from 30% of the exposed chickens. Larvae recovery indicated that T. cati larvae stay alive for at least 240 days in the chicken brain. Therefore, chickens may potentially act as a paratenic host in nature and transfer T. cati larvae to other hosts.  相似文献   

12.
Infectious laryngotracheitis (ILT) is an acute, highly contagious upper-respiratory infectious disease of chickens. In this study, a real-time PCR method was developed for fast and accurate detection and quantitation of ILTV DNA of chickens experimentally infected with ILTV strain LJS09 and naturally infected chickens. The detection lower limit of the assay was 10 copies of DNA. There were no cross reactions with the DNA and RNA of infectious bursal disease virus, chicken anemia virus, reticuloendotheliosis virus, avian reovirus, Newcastle disease virus, and Marek''s disease virus. The real-time PCR was reproducible as the coefficients of variation of reproducibility of the intra-assay and the inter-assay were less than 2%. The real-time PCR was used to detect the levels of the ILTV DNA in the tissues of specific pathogen free (SPF) chickens infected with ILTV at different times post infection. ILTV DNA was detected by real-time PCR in the heart, liver, spleen, lung, kidney, larynx, tongue, thymus, glandular stomach, duodenum, pancreatic gland, small intestine, large intestine, cecum, cecal tonsil, bursa of Fabricius, and brain of chickens in the infection group and the contact-exposure group. The sensitivity, specificity, and reproducibility of the ILTV real-time PCR assay revealed its suitability for detection and quantitation of ILTV in the samples from clinically and experimentally ILTV infected chickens.  相似文献   

13.
14.
Salmonella species are zoonotic pathogens and leading causes of food borne illnesses in humans and livestock1. Understanding the mechanisms underlying Salmonella-host interactions are important to elucidate the molecular pathogenesis of Salmonella infection. The Gentamicin protection assay to phenotype Salmonella association, invasion and replication in phagocytic cells was adapted to allow high-throughput screening to define the roles of deletion mutants of Salmonella enterica serotype Typhimurium in host interactions using RAW 264.7 murine macrophages. Under this protocol, the variance in measurements is significantly reduced compared to the standard protocol, because wild-type and multiple mutant strains can be tested in the same culture dish and at the same time. The use of multichannel pipettes increases the throughput and enhances precision. Furthermore, concerns related to using less host cells per well in 96-well culture dish were addressed. Here, the protocol of the modified in vitro Salmonella invasion assay using phagocytic cells was successfully employed to phenotype 38 individual Salmonella deletion mutants for association, invasion and intracellular replication. The in vitro phenotypes are presented, some of which were subsequently confirmed to have in vivo phenotypes in an animal model. Thus, the modified, standardized assay to phenotype Salmonella association, invasion and replication in macrophages with high-throughput capacity could be utilized more broadly to study bacterial-host interactions.  相似文献   

15.
Sialyl-Lewis X (SLex) is a sialylated glycan antigen expressed on the cell surface during malignant cell transformation and is associated with cancer progression and poor prognosis. The increased expression of sialylated glycans is associated with alterations in the expression of sialyltransferases (STs). In this study we determined the capacity of ST3GAL3 and ST3GAL4 sialyltransferases to synthesize the SLex antigen in MKN45 gastric carcinoma cells and evaluated the effect of SLex overexpression in cancer cell behavior both in vitro and in vivo using the chicken chorioallantoic membrane (CAM) model. The activation of tyrosine kinase receptors and their downstream molecular targets was also addressed. Our results showed that the expression of ST3GAL4 in MKN45 gastric cancer cells leads to the synthesis of SLex antigens and to an increased invasive phenotype both in vitro and in the in vivo CAM model. Analysis of phosphorylation of tyrosine kinase receptors showed a specific increase in c-Met activation. The characterization of downstream molecular targets of c-Met activation, involved in the invasive phenotype, revealed increased phosphorylation of FAK and Src proteins and activation of Cdc42, Rac1 and RhoA GTPases. Inhibition of c-Met and Src activation abolished the observed increased cell invasive phenotype. In conclusion, the expression of ST3GAL4 leads to SLex antigen expression in gastric cancer cells which in turn induces an increased invasive phenotype through the activation of c-Met, in association with Src, FAK and Cdc42, Rac1 and RhoA GTPases activation.  相似文献   

16.
Sulfatases of enteric bacteria can provide access to heavily sulfated mucosal glycans. In this study, we show that aslA (STM0084) of Salmonella enterica serovar Typhimurium LT2 encodes a sulfatase that requires mildly acidic pH for its expression and activity. AslA is not regulated by sulfur compounds or tyramine but requires the EnvZ-OmpR and PhoPQ regulatory systems, which play an important role in pathogenesis.  相似文献   

17.
In this study we adapted a Mud-based delivery system to construct a random yfp reporter gene (encoding the yellow fluorescent protein) insertion library in the genome of Salmonella Typhimurium LT2, and used fluorescence activated cell sorting and fluorescence microscopy to screen for translational fusions that were able to clearly and specifically label the bacterial nucleoid. Two such fusions were obtained, corresponding to a translational yfp insertion in iscR and iolR, respectively. Both fusions were further validated, and the IscR::YFP fluorescent nucleoid reporter together with time-lapse fluorescence microscopy was subsequently used to monitor nucleoid dynamics in response to the filamentation imposed by growth of LT2 at high hydrostatic pressure (40–45 MPa). As such, we were able to reveal that upon decompression the apparently entangled LT2 chromosomes in filamentous cells rapidly and efficiently segregate, after which septation of the filament occurs. In the course of the latter process, however, cells with a “trilobed” nucleoid were regularly observed, indicative for an imbalance between septum formation and chromosome segregation.  相似文献   

18.
Although Campylobacter is the leading cause of bacterial foodborne gastroenteritis in the world and the importance of poultry as a source of infection is well understood we know relatively little about its infection biology in the broiler chicken. Much of what we know about the biology of Campylobacter jejuni is based on infection of inbred or SPF laboratory lines of chickens with a small number of isolates used in most laboratory studies. Recently we have shown that both the host response and microbial ecology of C. jejuni in the broiler chicken varies with both the host-type and significantly between C. jejuni isolates. Here we describe heterogeneity in infection within a panel of C. jejuni isolates in two broiler chicken breeds, human intestinal epithelial cells and the Galleria insect model of virulence. All C. jejuni isolates colonised the chicken caeca, though colonisation of other parts of the gastrointestinal tract varied between isolates. Extra-intestinal spread to the liver varied between isolates and bird breed but a poultry isolate 13126 (sequence type 21) showed the greatest levels of extra-intestinal spread to the liver in both broiler breeds with over 70% of birds of the fast growing breed and 50% of the slower growing breed having C. jejuni in their livers. Crucially 13126 is significantly more invasive than other isolates in human intestinal epithelial cells and gave the highest mortality in the Galleria infection model. Taken together our findings suggest that not only is there considerable heterogeneity in the infection biology of C. jejuni in avian, mammalian and alternative models, but that some isolates have an invasive and virulent phenotype. Isolates with an invasive phenotype would pose a significant risk and increased difficulty in control in chicken production and coupled with the virulent phenotype seen in 13126 could be an increased risk to public health.  相似文献   

19.
Wistar rats were administered daily with Lactobacillus plantarum 423 and Enterococcus mundtii ST4SA through intragastric gavage (1 × 108 cfu of each strain and a combination of the two strains). Sterile saline was used as placebo. After 7 days, the animals were challenged by infection with 2 × 108 CFU Salmonella enterica serovar Typhimurium. After 1 day of treatment with L. plantarum 423 and E. mundtii ST4SA, the feed and water intake, and body weight of the rats increased. The faecal moisture content and β-glucuronidase activity remained more-or-less constant after 2 days of treatment with E. mundtii ST4SA, L. plantarum 423 and a combination of the two strains. Reduced levels of endotoxin were recorded in blood samples taken from rats that received L. plantarum 423 and E. mundtii ST4SA. Although both strains alleviated symptoms of S. enterica serovar Typhimurium infection, L. plantarum 423 administered as a single culture proved more effective than E. mundtii ST4SA. Less promising results were recorded when L. plantarum 423 was administered in combination with E. mundtii ST4SA. This suggests that L. plantarum 423 is more effective than E. mundtii and should be the preferred probiotic to alleviate symptoms of S. enterica serovar Typhimurium infection.  相似文献   

20.
Understanding immune responses elicited by vaccines, together with immune responses required for protection, is fundamental to designing effective vaccines and immunisation programs. This study examines the effects of the route of administration of a live attenuated vaccine on its interactions with, and stimulation of, the murine immune system as well as its ability to increase survival and provide protection from colonisation by a virulent challenge strain. We assess the effect of administration method using the murine model for typhoid, where animals are infected with S. Typhimurium. Mice were vaccinated either intravenously or orally with the same live attenuated S. Typhimurium strain and data were collected on vaccine strain growth, shedding and stimulation of antibodies and cytokines. Following vaccination, mice were challenged with a virulent strain of S. Typhimurium and the protection conferred by the different vaccination routes was measured in terms of challenge suppression and animal survival. The main difference in immune stimulation found in this study was the development of a secretory IgA response in orally-vaccinated mice, which was absent in IV vaccinated mice. While both strains showed similar protection in terms of challenge suppression in systemic organs (spleen and liver) as well as survival, they differed in terms of challenge suppression of virulent pathogens in gut-associated organs. This difference in gut colonisation presents important questions around the ability of vaccines to prevent shedding and transmission. These findings demonstrate that while protection conferred by two vaccines can appear to be the same, the mechanisms controlling the protection can differ and have important implications for infection dynamics within a population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号