首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 探讨肥胖对大鼠生精小管结构及自噬和凋亡相关蛋白质的影响,并探讨运动对睾丸自噬和凋亡的影响及其调控机制。方法 将50只6周龄雄性SD大鼠随机分为标准饲养组(SD组,n=20)和高脂饲养组(HFD组,n=30)。HFD组喂养8周建立肥胖大鼠模型,并随机筛选出20只肥胖大鼠进行运动干预。SD组和HFD组分别随机分为标准对照组(CC组)、标准运动组(CE组)、肥胖对照组(OC组)、肥胖运动组(OE组),每组10只。其中CE组和OE组进行8周中等强度跑台运动干预,60 min/d,5 d/周,其他两组维持原饲养条件。在最后一次运动结束48 h后,将大鼠腹腔麻醉,称重,取大鼠左右两侧睾丸、称量睾丸重量并计算睾丸指数。制作睾丸石蜡切片,利用HE染色法观察睾丸组织结构。采用蛋白质印迹法(Western blot)检测睾丸组织中p62、LC3II、LC3I、BCL-2、Bax和AMPK蛋白表达量并计算LC3II/LC3I比值,采用免疫荧光检测睾丸中LC3和BCL-2蛋白表达位置。结果 与CC组相比,OC组大鼠睾丸指数降低,生精小管直径显著降低(P<0.01),精子细胞减少,睾丸组织中有脂滴沉...  相似文献   

2.
The effect of exercise on the protein metabolism in skeletal muscles (gastrocnemius and soleus), liver and small intestine was investigated in rats. Treadmill treatment for 7 d resulted in atrophy of the liver and small intestine, which was associated with a reduction in protein content. The rates of protein synthesis in the liver and small intestine were significantly suppressed in rats subjected to exercise. The change in protein synthesis in the visceral organs was mediated by the change in RNA activity (protein synthesis per unit RNA) but not by the change in RNA concentration. The tissue weight and the rate of protein synthesis in the gastrocnemius and soleus muscles were not affected by exercise. The results suggest that these changes in protein synthesis in the liver and small intestine may explain, at least partly, the atrophy of these organs which was observed after 7 d of exercise.  相似文献   

3.
Exhaustive exercise can cause a transient depression of immune function. Data indicate significant effects of immune activation cascades on the biochemistry of monoamines and amino acids such as tryptophan. Tryptophan can be metabolized through different pathways, a major route being the kynurenine pathway, which is often systemically up-regulated when the immune response is activated. The present study was undertaken to examine the effect of exhaustive aerobic exercise on biomarkers of immune activation and tryptophan metabolism in trained athletes. After a standardized breakfast 2 h prior to exercise, 33 trained athletes (17 women, 16 men) performed an incremental cycle ergometer exercise test at 60 rpm until exhaustion. After a 20 min rest phase, the participants performed a 20 min maximal time-trial on a cycle ergometer (RBM Cyclus 2, Germany). During the test, cyclists were strongly encouraged to choose a maximal pedalling rate that could be maintained for the respective test duration. Serum concentrations of amino acids tryptophan, kynurenine, phenylalanine, and tyrosine were determined by HPLC and immune system biomarker neopterin by ELISA at rest and immediately post exercise. Intense exercise was associated with a strong increase in neopterin concentrations (p<0.001), indicating increased immune activation following intense exercise. Exhaustive exercise significantly reduced tryptophan concentrations by 12% (p<0.001) and increased kynurenine levels by 6% (p = 0.022). Also phenylalanine to tyrosine ratios were lower after exercise as compared with baseline (p<0.001). The kynurenine to tryptophan ratio correlated with neopterin (r = 0.560, p<0.01). Thus, increased tryptophan catabolism by indoleamine 2,3-dioxygenase appears likely. Peak oxygen uptake correlated with baseline tryptophan and kynurenine concentrations (r = 0.562 and r = 0.511, respectively, both p<0.01). Findings demonstrate that exhaustive aerobic exercise is associated with increased immune activation and alterations in monoamine metabolism in trained athletes which may play a role in the regulation of mood and cognitive processes.  相似文献   

4.
A preliminary study was conducted to evaluate the change in nocturnal concentrations of testosterone, luteinizing hormone, growth hormone, prolactin, thyroxine, and Cortisol following a control day (no exercise) and on a day in which exercise was performed. Exercise consisted of 90 min of cycling at 70% of each subject's maximal oxygen uptake. The exercise occurred from 1630 to 1800 hr on the exercise day while a comparable period of rest took place on the control day. Hormonal concentrations were evaluated at 2-hr intervals for a 12-hr period each night (2000-0800 hr). The subjects slept from 2255 (± 20 min [x ± S.E.M.]) until 0715 (± 15) during each night. All hormone responses were plotted and integrated for the 12-hr period. Analysis indicated that a significant augmentation of the prolactin and thyroxine responses occurred, while concurrently an attenuation of the growth hormone and Cortisol responses were observed. Contrastingly, no significant effects were found for the testosterone and luteinizing hormones responses. The physiological significance of these findings remained to be determined, but the results do suggest that further research is warranted in the area.  相似文献   

5.
Ferulic acid was orally administered to mice in order to investigate its effects on exercise endurance capacity. When a single administration of ferulic acid was given to the mice in an adjustable-current water pool, the duration of exhaustive swimming was longer than that exhibited by the mice in the control group. Also, when the mice were exhaustively exercised for 3 consecutive days, no change in swimming time was found in the ferulic acid-administered group on the final day, and a large decrease in the untreated mice. Administration of ferulic acid efficiently activated the hepatic antioxidative defense system during exercise. The mice that received ferulic acid showed significant increases in the activity of hepatic antioxidant enzymes such as superoxide dismutase, catalase, and glutathione-S-transferase. Furthermore, an increased glutathione level was observed, while the malondialdehyde content was reduced. These results suggest that ferulic acid possesses stimulatory effects that can enhance exercise endurance capacity and reduce fatigue by elevating antioxidative potentials.  相似文献   

6.
Exercise training offers cardioprotection against ischemia and reperfusion (I/R) injury. However, few essential signals have been identified to underscore the protection from injury. In the present study, we hypothesized that exercise-induced acceleration of myocardial tissue oxygenation recovery contributes to this protection. C57BL/6 mice (4 weeks old) were trained on treadmills for 45 min/day at a treading rate of 15 m/min for 8 weeks. At the end of 8-week exercise training, mice underwent 30-min left anterior descending coronary artery occlusion followed by 60-min or 24-h reperfusion. Electron paramagnetic resonance oximetry was performed to measure myocardial tissue oxygenation. Western immunoblotting analyses, gene transfection, and myography were examined. The oximetry study demonstrated that exercise markedly shortened myocardial tissue oxygenation recovery time following reperfusion. Exercise training up-regulated Kir6.1 protein expression (a subunit of ATP-sensitive K+ channel on vascular smooth muscle cells, VSMC sarc-KATP) and protected the heart from I/R injury. In vivo gene transfer of dominant negative Kir6.1AAA prolonged the recovery time and enlarged infarct size. In addition, transfection of Kir6.1AAA increased the stiffness and reduced the relaxation capacity in the vasculature. Together, our study demonstrated that exercise training up-regulated Kir6.1, improved tissue oxygenation recovery, and protected the heart against I/R injury. This exercise-induced cardioprotective mechanism may provide a potential therapeutic intervention targeting VSMC sarc-KATP channels and reperfusion recovery.  相似文献   

7.
8.
为探讨运动对肥胖患者自噬活性和内脏脂肪组织炎症反应的影响,本研究将60只肥胖小鼠随机分为高脂饮食组(B)、正常饮食组(C)、正常饮食加耐力运动干预组(D)、正常饮食加耐力运动干预组(E)。D组和E组分别进行10周的耐力和抗阻运动,然后用RT-PCR检测自噬、炎症的基因和蛋白表达。结果显示,三个干预组的Lee指数和BFI均显著降低,2个运动组的Lee指数和BFI均显著降低,但差异无显著性;D组和E组Beclin 1表达较C组显著降低,p62表达明显升高;与C组相比,D组p62显著升高,E组无明显升高;与D组相比,E组Beclin 1基因表达增加,p62蛋白表达降低;与C组相比,D组和E组IL-6和IL-0蛋白表达均显著升高;10周不同运动干预对大鼠减脂效果无差异。运动后内脏脂肪组织的自噬活性受到抑制,尤其是无氧运动;肥胖患者运动干预前后内脏脂肪组织自噬和炎症的变化趋势一致,其中IL-10的变化最为明显。  相似文献   

9.
Nrf2可调节多种抗氧化酶的表达,Nrf2的缺失可能影响机体的运动能力,而低氧可提高机体的抗氧化能力并改善运动能力。为了考察低氧运动对Nrf2基因敲除大鼠运动能力和氧化应激的影响,本研究分别在常氧和低氧环境(12%氧浓度)中对野生型大鼠和Nrf2敲除大鼠进行4周的跑台运动。研究显示,低氧运动可提高野生型大鼠的跑台运动力竭时间,Nrf2敲除可缩短大鼠的力竭时间;低氧运动可上调大鼠的Nrf2 m RNA表达量;Nrf2敲除明显抑制HIF-1α蛋白表达,而低氧运动可上调野生型和Nrf2敲除大鼠的HIF-1α蛋白表达;Nrf2敲除大鼠的骨骼肌ROS水平明显升高,并且低氧均可降低野生型和Nrf2敲除大鼠骨骼肌ROS水平。低氧运动可上调Nrf2敲除大鼠的CAT和GSH-PX蛋白表达。苏木精和伊红(HE)染色显示,Nrf2敲除大鼠在力竭跑台运动完成后出现更严重的骨骼肌病理改变,而低氧运动可减轻骨骼肌损伤。本研究认为,Nrf2敲除导致了大鼠骨骼肌中抗氧化酶的抑制及ROS的过量累积,从而造成了骨骼肌损伤并降低了运动能力。此外,低氧可通过上调Nrf2的表达,进而激活HIF-1α及抗氧化酶活性,从而提高运动能力,并防止骨骼肌损伤。  相似文献   

10.

Purpose

To compare the effects of endurance exercise performed in the morning and evening on inflammatory cytokine responses in young men.

Methods

Fourteen healthy male participants aged 24.3 ± 0.8 years (mean ± standard error) performed endurance exercise in the morning (0900–1000 h) on one day and then in the evening (1700–1800 h) on another day with an interval of at least 1 week between each trial. In both the morning and evening trials, the participants walked for 60 minutes at approximately 60% of the maximal oxygen uptake (V·O2max) on a treadmill. Blood samples were collected to determine hormones and inflammatory cytokines at pre-exercise, immediately post exercise, and 2 h post exercise.

Results

Plasma interleukin (IL)-6 and adrenaline concentrations were significantly higher immediately after exercise in the evening trial than in the morning trial (P < 0.01, both). Serum free fatty acids concentrations were significantly higher in the evening trial than in the morning trial at 2 h after exercise (P < 0.05). Furthermore, a significant correlation was observed between the levels of IL-6 immediately post-exercise and free fatty acids 2 h post-exercise in the evening (r = 0.68, P < 0.01).

Conclusions

These findings suggest that the effect of acute endurance exercise in the evening enhances the plasma IL-6 and adrenaline concentrations compared to that in the morning. In addition, IL-6 was involved in increasing free fatty acids, suggesting that the evening is more effective for exercise-induced lipolysis compared with the morning.  相似文献   

11.
肝脏是一个多方面高度调节的防御性器官,能够抵御多种化学/ 氧化应激,而在这个防御系统的最前线是一群被称作转录因子的特殊蛋白,这些蛋白能识别并结合于特异性基因启动子区域中特异的DNA 元件,从而调节多种细胞保护性基因的基础型和诱导型表达,发挥细胞保护作用。而转录因子NF-E2 相关因子2(Nrf2)是细胞防御化学/ 氧化应激的重要调节因子之一。综述Nrf2 信号通路中主要调控因子的相互作用、Nrf2 的激活与失活机制以及Nrf2 信号通路在肝组织中的作用。  相似文献   

12.
The objective of the present study is to explore the effects of acute swimming exercise on plasma levels of some elements in rats, immediately after the exercise, and 24 and 48 h later. The study included 40 adult male rats of Spraque Dawley species, which were equally allocated to four groups. Group 1: General Control Group; Group 2: Swimming Group, the group that was decapitated immediately after 30-min acute swimming exercise; Group 3: Swimming Group, the group that was decapitated 24 h after 30-min acute swimming exercise; Group 4: Swimming Group, the group that was decapitated 48 h after 30-min acute swimming exercise. Plasma copper (Cu), iron (Fe), magnesium (Mg), phosphorus (P), selenium (Se), zinc (Zn) levels were determined according to atomic emission method in the blood samples collected from the animals by decapitation method. Measurements conducted immediately after acute swimming exercise (group 2) showed a significant decrease in Se and Zn levels (p < 0,01) and a significant increase in P levels (p < 0,01), when compared to group 1. Measurements carried out 24 h after the exercise (group 3) demonstrated a significant increase in all parameters except for Mg, in comparison to groups 1 and 2 (p < 0,01). It was seen in the measurements made 48 h after the exercise (group 4) that all parameters were restored to control values. The results of our study show that acute swimming exercise significantly changes plasma Cu, Fe, P, Se, and Zn levels.  相似文献   

13.
Regular physical activity positively influences whole body energy metabolism and substrate handling in exercising muscle. While it is recognized that the effects of exercise extend beyond exercising muscle, it is unclear to what extent exercise impacts non-exercising muscles. Here we investigated the effects of an acute endurance exercise bouts on gene expression in exercising and non-exercising human muscle. To that end, 12 male subjects aged 44–56 performed one hour of one-legged cycling at 50% Wmax. Muscle biopsies were taken from the exercising and non-exercising leg before and immediately after exercise and analyzed by microarray. One-legged cycling raised plasma lactate, free fatty acids, cortisol, noradrenalin, and adrenalin levels. Surprisingly, acute endurance exercise not only caused pronounced gene expression changes in exercising muscle but also in non-exercising muscle. In the exercising leg the three most highly induced genes were all part of the NR4A family. Remarkably, many genes induced in non-exercising muscle were PPAR targets or related to PPAR signalling, including PDK4, ANGPTL4 and SLC22A5. Pathway analysis confirmed this finding. In conclusion, our data indicate that acute endurance exercise elicits pronounced changes in gene expression in non-exercising muscle, which are likely mediated by changes in circulating factors such as free fatty acids. The study points to a major influence of exercise beyond the contracting muscle.  相似文献   

14.
目的:研究脉冲电流经皮刺激肝区对运动性疲劳大鼠大脑纹状体5-羟色胺(5-HT)及其代谢的影响。方法:8周龄Wistar雄性大鼠80只随机分为安静对照组(CG组)、疲劳训练组(FG组)、运动后刺激组(SAF组)、运动前刺激组(SBF组),除CG组外各组均进行游泳训练,建立运动疲劳模型,于第1、3、5周训练的最后1d,断头处死,取外周血测游离色氨酸(F-Trp)、支链氨基酸(BCAA)、F-Trp/BCAA含量,取纹状体测F-Trp、5-HT、5-羟吲哚乙酸(5-HIAA)含量。结果:与CG组相比,各组大鼠血清BCAA含量呈下降趋势,其余各指标均呈升高趋势;与FG组相比,SAF组、SBF组第3周末纹状体5-HT明显下降(P0.01);与SBF组相比,SAF组第5周末纹状体5-HT明显下降(P0.05)。结论:经皮脉冲电流刺激具有降低疲劳大鼠5-HT及代谢产物的含量,有助于疲劳的消除,对长时间运动时中枢机能的改善具有积极作用。  相似文献   

15.
The objective of the present study was to determine the effects of exercise and zinc deficiency on some elements in rats. Forty adult male Sprague–Dawley species male rats were allocated to four groups as follows: Group 1: control, Group 2: zinc-deficient, Group 3: exercise in which exercise group fed with a normal diet, Group 4: zinc-deficient exercise, exercise group fed by a zinc-deficient diet for 15 days. After the procedure ended, rats in groups 3 and 4 were exercised on the treadmill for 60 min at a speed of 6 m/min until the exhaustion. The rats were decapitated 48 h after exercise together with their controls, and blood samples were collected to determine copper (Cu), iron (Fe), magnesium (Mg), calcium (Ca), and phosphorus (P) levels. The highest Cu and Fe values in the serum were obtained in group 2 (p < 0.01). The levels of these elements in group 4 were lower than those in group 2 and higher than the levels in groups 1 and 3 (p < 0.01). Serum Mg levels did not differ significantly between groups. Group 4 had the lowest serum Ca and P levels (p < 0.01). These same parameters in Group 2 were higher than those in group 4 but significantly lower than those in groups 1 and 3 (p < 0.01). There was no significant difference between Ca and P levels of groups 1 and 3. The results of the study indicate that zinc deficiency adversely affects copper, iron, calcium, and phosphorus mechanisms and that these adverse effects much more marked after an effort exercise.  相似文献   

16.
We have previously reported that resistance exercise improved the iron status in iron-deficient rats. The current study investigated the mechanisms underlying this exercise-related effect. Male 4-week-old rats were divided into a group sacrificed at the start (week 0) (n?=?7), a group maintained sedentary for 6 weeks (S) or a group that performed exercise for 6 weeks (E), and all rats in the latter groups were fed an iron-deficient diet (12 mg iron/kg) for 6 weeks. The rats in the E group performed climbing exercise (5 min?×?6 sets/day, 3 days/week). Compared to the week 0 rats, the rats in the S and E groups showed lower tissue iron content, and the hematocrit, hemoglobin, plasma iron, and transferrin saturation values were all low. However, the tissue iron content and blood iron status parameters, and the whole body iron content measured using the whole body homogenates of the rats, did not differ between the S group and the E group. The messenger RNA (mRNA) expression levels of hepcidin, duodenal cytochrome b, divalent metal transporter 1, and ferroportin 1 did not differ between the S group and the E group. The apparent absorption of iron was significantly lower in the E group than in the S group. Therefore, it was concluded that resistance exercise decreases iron absorption, whereas the whole body iron content is not affected, and an increase in iron recycling in the body seems to be responsible for this effect.  相似文献   

17.
There is consistent evidence supporting the ergogenic effects of caffeine for endurance based exercise. However, whether caffeine ingested through coffee has the same effects is still subject to debate. The primary aim of the study was to investigate the performance enhancing effects of caffeine and coffee using a time trial performance test, while also investigating the metabolic effects of caffeine and coffee. In a single-blind, crossover, randomised counter-balanced study design, eight trained male cyclists/triathletes (Mean±SD: Age 41±7y, Height 1.80±0.04 m, Weight 78.9±4.1 kg, VO2 max 58±3 ml•kg−1•min−1) completed 30 min of steady-state (SS) cycling at approximately 55% VO2max followed by a 45 min energy based target time trial (TT). One hour prior to exercise each athlete consumed drinks consisting of caffeine (5 mg CAF/kg BW), instant coffee (5 mg CAF/kg BW), instant decaffeinated coffee or placebo. The set workloads produced similar relative exercise intensities during the SS for all drinks, with no observed difference in carbohydrate or fat oxidation. Performance times during the TT were significantly faster (∼5.0%) for both caffeine and coffee when compared to placebo and decaf (38.35±1.53, 38.27±1.80, 40.23±1.98, 40.31±1.22 min respectively, p<0.05). The significantly faster performance times were similar for both caffeine and coffee. Average power for caffeine and coffee during the TT was significantly greater when compared to placebo and decaf (294±21 W, 291±22 W, 277±14 W, 276±23 W respectively, p<0.05). No significant differences were observed between placebo and decaf during the TT. The present study illustrates that both caffeine (5 mg/kg/BW) and coffee (5 mg/kg/BW) consumed 1 h prior to exercise can improve endurance exercise performance.  相似文献   

18.
目的观察油橄榄叶提取物(OLE)对酒精性肝损伤的保护作用及机制。方法用递增法灌胃乙醇24周建立大鼠肝损伤模型,造模同时用OLE(250 mg·kg~(-1)、500 mg·kg~(-1)、1 000 mg·kg~(-1))进行灌胃治疗。利用生物显微技术观察肝脏组织结构的变化,检测血清谷丙转氨酶(ALT)、谷草转氨酶(AST)、甘油三酯(TG)和总胆固醇(TC)水平,用放射免疫法检测肝脏肿瘤坏死因子α(TNF-α)、白细胞介素1(IL-1β)的含量,用比色法检测肝脏超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽还原酶(GR)活性及丙二醛(MDA)含量,用免疫组织化学法检测固醇调节元件结合蛋白-1c(SREBP-1c)的表达情况。结果与模型组比较,OLE治疗后,血清ALT、AST、TG、TC水平降低;肝脏TNF-α、IL-1β、MDA含量及SREBP-1c表达呈降低趋势;SOD、CAT、GR水平均显著升高;肝脏损伤程度明显减轻。结论 OLE对酒精性肝损伤有一定的保护作用,可能与其减少自由基损伤、减轻炎症反应、抑制SREBP-1c表达有关。  相似文献   

19.
20.
目的观察中等强度跑台运动对去卵巢大鼠骨质疏松的预防作用。方法将30只3月龄未经产雌性SD大鼠随机分为假手术、去卵巢静止和去卵巢运动三个组。去卵巢运动组每周进行4次时间45min、速度18m/min、坡度5°的跑台训练。实验结束时,检测血清雌二醇(E2)、碱性磷酸酶(ALP)、抗酒石酸酸性磷酸酶(TRAP)和骨钙素(BGP)水平以及右侧游离股骨和胫骨的骨密度(BMD)和骨矿物含量(BMC);同时观察左侧股骨远端和胫骨近端组织形态学变化。结果与假手术组比较,去卵巢静止组大鼠血清ALP活性和BGP含量显著升高,血清TRAP活性和E2含量显著下降,股骨近段和远端以及胫骨近端BMD和BMC显著下降,股骨远端和胫骨近端骨小梁断裂增加、数目减少;与去卵巢静止组比较,去卵巢运动组大鼠血清E2和BGP含量显著上升,股骨三个部位以及胫骨近端BMD和BMC显著增加,股骨远端和胫骨近端骨小梁断裂减少、数目增加。结论中等强度跑台运动能增加去卵巢大鼠血清E2和BGP含量,改善去卵巢大鼠骨组织学结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号