首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A discrete-time host-parasitoid model including host-density dependence and a generalized Thompson escape function is analyzed. This model assumes that parasitoids are egg-limited but not search-limited, and is proven to exhibit five types of dynamics: host failure in which the host goes extinct in the parasitoid's presence or absence, unconditional parasitoid failure in which the parasitoid always goes extinct while the host persists, conditional parasitoid failure in the host and the parasitoid go extinct or coexist depending on the initial host-parasitoid ratio, parasitoid driven extinction in which the parasitoid invariably drives the host to extinction, and coexistence in which the host and parasitoid coexist about a global attractor. The latter two dynamics only occur when the parasitoid's maximal rate of growth exceeds the host's maximal rate of growth. Moreover, coexistence requires parasitism events to be sufficiently aggregated. Small additive noise is proven to alter the dynamical outcomes in two ways. The addition of noise to parasitoid driven extinction results in random outbreaks of the host and parasitoid with varying intensity. Additive noise converts conditional parasitoid failure to unconditional parasitoid failure. Implications for classical biological control are discussed.  相似文献   

2.
Dangerously few liaisons: a review of mate-finding Allee effects   总被引:1,自引:0,他引:1  
In this paper, we review mate-finding Allee effects from ecological and evolutionary points of view. We define ‘mate-finding’ as mate searching in mobile animals, and also as the meeting of gametes for sessile animals and plants (pollination). We consider related issues such as mate quality and choice, sperm limitation and physiological stimulation of reproduction by conspecifics, as well as discussing the role of demographic stochasticity in generating mate-finding Allee effects. We consider the role of component Allee effects due to mate-finding in generating demographic Allee effects (at the population level). Compelling evidence for demographic Allee effects due to mate-finding (as well as via other mechanisms) is still limited, due to difficulties in censusing rare populations or a failure to identify underlying mechanisms, but also because of fitness trade-offs, population spatial structure and metapopulation dynamics, and because the strength of component Allee effects may vary in time and space. Mate-finding Allee effects act on individual fitness and are thus susceptible to change via natural selection. We believe it is useful to distinguish two routes by which evolution can act to mitigate mate-finding Allee effects. The first is evolution of characteristics such as calls, pheromones, hermaphroditism, etc. which make mate-finding more efficient at low density, thus eliminating the Allee effect. Such adaptations are very abundant in the natural world, and may have arisen to avoid Allee effects, although other hypotheses are also possible. The second route is to avoid low density via adaptations such as permanent or periodic aggregation. In this case, the Allee effect is still present, but its effects are avoided. These two strategies may have different consequences in a world where many populations are being artificially reduced to low density: in the first case, population growth rate can be maintained, while in the second case, the mechanism to avoid Allee effects has been destroyed. It is therefore in these latter populations that we predict the greatest evidence for mate-finding Allee effects and associated demographic consequences. This idea is supported by the existing empirical evidence for demographic Allee effects. Given a strong effect that mate-finding appears to have on individual fitness, we support the continuing quest to find connections between component mate-finding Allee effects (individual reproductive fitness) and the demographic consequences. There are many reasons why such studies are difficult, but it is important, particularly given the increasing number of populations and species of conservation concern, that the ecological community understands more about how widespread demographic Allee effects really are, and why.  相似文献   

3.
We introduce a discrete-time host–parasitoid model with a strong Allee effect on the host. We adapt the Nicholson–Bailey model to have a positive density dependent factor due to the presence of an Allee effect, and a negative density dependence factor due to intraspecific competition. It is shown that there are two scenarios, the first with no interior fixed points and the second with one interior fixed point. In the first scenario, we show that either both host and parasitoid will go to extinction or there are two regions, an extinction region where both species go to extinction and an exclusion region in which the host survives and tends to its carrying capacity. In the second scenario, we show that either both host and parasitoid will go to extinction or there are two regions, an extinction region where both species go to extinction and a coexistence region where both species survive.  相似文献   

4.
Mate-finding difficulties in small populations are often postulated to create strong demographic Allee effects that increase the probability of extinction of native species or, similarly, decrease the probability that non-native species will successfully invade. Many species make use of a restricted number of mating locations, detectable from long-distance, that are not selected for habitat reasons (e.g., hilltopping in butterflies). This ‘landmarking’ strategy may specifically address the problem of overcoming mate-finding difficulties. Using a variant of the birthday problem, we demonstrate that populations which locate a restricted number of mate-finding sites using landmark features may have high probability of successful mating even at very low population densities. Therefore, a strong Allee threshold, if it exists, may be very small, and non-native species that make use of this strategy may have a very good chance of population establishment at low density.  相似文献   

5.
Many demographic and other factors are sex-specific. To assess their impacts on population dynamics, we need sex-structured models. Such models have been shown to produce results different from those predicted by asexual models, yet need to explicitly consider mating dynamics. Modeling mating is challenging and no generally accepted formulation exists. Mating is often impaired at low densities due to difficulties of individuals in locating mates, a phenomenon termed a mate-finding Allee effect. Widely applied models of this Allee effect assume either that only male density determines the rate at which females mate or that male and female densities are equal. Contrarily, when detailed models of mating dynamics are sometimes developed, the female mating rate is rarely reported, making quantification of the mate-finding Allee effect difficult. Here, we develop an individual-based model of mating dynamics that accounts for spatial search of one sex for another, and quantify the rate at which females mate, depending on male and female densities and under a number of reasonable mating scenarios. We find that this rate increases with male and female densities (hence observing a mate-finding Allee effect), in a decelerating or sigmoid way, that mating can be most efficient at either low or high female densities, and that the mate search rate may undergo density-dependent selection. We also show that mate search trajectories evolve to be as straight as possible when targets are sedentary, yet that when targets move the search can be less straight without seriously affecting the female mating rate. Some recommendations for modeling two-sex population dynamics are also provided.  相似文献   

6.
The parasitoid wasp Cotesia melitaearum lives in extremely small extinction-prone populations in the Åland islands of southwest Finland. Intensive observational data from two generations, a laboratory competition experiment, and 8 years of survey data were used to measure the causes, extent and consequences of small population size for this parasitoid. In the spring generations of 1999 and of 2000 we observed 21 out of 23 and 26 populations respectively, ranging in size from 2 to 103 parasitoid cocoons. Within these populations the fraction of individuals surviving to adulthood decreased with increasing parasitoid population size. The largest source of mortality was predation (44%) followed by parasitism (20%) and unknown causes (10%). In the field about 30% of the host butterfly larvae are parasitized by a competing parasitoid, Hyposoter horticola. A laboratory competition experiment showed that C. melitaearum eggs died when laid in post-diapause host larvae occupied by H. horticola. Consequently one-third of the progeny of the over-wintering generation of C. melitaearum from the field die as a result of larval competition. The survey of host and parasitoid population dynamics over 8 years showed that extinction of local host butterfly populations occupied by the parasitoid was not associated with current parasitoid population size. Over the same period small parasitoid populations were more likely to become extinct than large populations. However, parasitoid population size was not related to parasitoid extinction when the host also became extinct. These data suggest that the parasitoid populations are kept small through the action of natural enemies and competitors, some of which are density dependent. Local populations are so small that they become extinct frequently and rarely measurably affect the population dynamics of their host. It is likely that this parasitoid persists in Åland because of the spatial asynchrony of local population dynamics.  相似文献   

7.
Recovering populations of carnivores suffering Allee effects risk extinction because positive population growth requires a minimum number of cooperating individuals. Conservationists seldom consider these issues in planning for carnivore recovery because of data limitations, but ignoring Allee effects could lead to overly optimistic predictions for growth and underestimates of extinction risk. We used Bayesian splines to document a demographic Allee effect in the time series of gray wolf (Canis lupus) population counts (1980–2011) in the southern Lake Superior region (SLS, Wisconsin and the upper peninsula of Michigan, USA) in each of four measures of population growth. We estimated that the population crossed the Allee threshold at roughly 20 wolves in four to five packs. Maximum per-capita population growth occurred in the mid-1990s when there were approximately 135 wolves in the SLS population. To infer mechanisms behind the demographic Allee effect, we evaluated a potential component Allee effect using an individual-based spatially explicit model for gray wolves in the SLS region. Our simulations varied the perception neighborhoods for mate-finding and the mean dispersal distances of wolves. Simulation of wolves with long-distance dispersals and reduced perception neighborhoods were most likely to go extinct or experience Allee effects. These phenomena likely restricted population growth in early years of SLS wolf population recovery.  相似文献   

8.
The classical Nicholson-Bailey model for a two species host-parasitoid system with discrete generations assumes random distributions of both hosts and parasitoids, randomly searching parasitoids, and random encounters between the individuals of the two species. Although unstable, this model induced many investigations into more complex host-parasitoid systems. Local linearized stability analysis shows that equilibria of host parasitoid systems within the framework of a generalized Nicholson-Bailey model are generally unstable. Stability is only possible if host fertility does not exceede 4=54.5982 and if superparasitism is unsuccessful. This special situation has already been discovered by Hassell et al. (1983) in their study of the effects of variable sex ratios on host parasitoid dynamics. We discuss global behaviour of the Hassell-Waage-May model using KAM-theory and illustrate its sensitivity to small perturbations, which can give rise to radically different patterns of the population dynamics of interacting hosts and parasitoids.  相似文献   

9.
There is an emerging consensus that parasitoids are limited by the number of eggs which they can lay as well as the amount of time they can search for their hosts. Since egg limitation tends to destabilize host-parasitoid dynamics, successful control of insect pests by parasitoids requires additional stabilizing mechanisms such as heterogeneity in the distribution of parasitoid attacks and host density-dependence. To better understand how egg limitation, search limitation, heterogeneity in parasitoid attacks, and host density-dependence influence host-parasitoid dynamics, discrete time models accounting for these factors are analyzed. When parasitoids are purely egg-limited, a complete anaylsis of the host-parasitoid dynamics are possible. The analysis implies that the parasitoid can invade the host system only if the parasitoid's intrinsic fitness exceeds the host's intrinsic fitness. When the parasitoid can invade, there is a critical threshold, CV*>1, of the coefficient of variation (CV) of the distribution of parasitoid attacks that determines that outcome of the invasion. If parasitoid attacks sufficiently aggregated (i.e., CV>CV*), then the host and parasitoid coexist. Typically (in a topological sense), this coexistence is shown to occur about a periodic attractor or a stable equilibrium. If the parasitoid attacks are sufficiently random (i.e. CV1. When CV<1, the parasitoid exhibits highly oscillatory dynamics. Alternatively, when parasitoid attacks are sufficiently aggregated but not overly aggregated (i.e. CV>1 but close to 1), the host and parasitoid coexist about a stable equilibrium with low host densities. The implications of these results for classical biological control are discussed.  相似文献   

10.
A model host-parasitoid system of Ephestia kuehniella and Venturia canescens was used to examine the influence of host and parasitoid density on host and parasitoid life-history parameters via a two-way factorial experimental design (5 initial host densities×3 parasitoid densities). In the absence of parasitoids, E. kuehniella experienced scramble-type competition with reduced growth, diminished adult size and a subsequent fecundity trade-off for mortality. The mortality that did occur was confined to the late larval and pupal stages. In the presence of parasitoids attacking the late larval stage, competition changed from scramble for food to contest for enemy-free space, with hosts escaping parasitism being small with low fecundity and reduced egg size, and with parasitoid adult size inversely dependent on host density. Total insect emergence (host+parasitoid), a measure of the influence of host resource competition on survivorship, exhibited a threshold effect as a function of initial host density; the threshold value was increased to a higher initial host density in the presence of parasitoids. Models of host self-limitation were fitted to the data, with the generalized Beverton-Holt model that incorporates a threshold effect providing the best fit, and the Ricker model with no threshold providing a very poor fit to the data.  相似文献   

11.
Allee effects in stochastic populations   总被引:3,自引:0,他引:3  
Brian Dennis 《Oikos》2002,96(3):389-401
The Allee effect, or inverse density dependence at low population sizes, could seriously impact preservation and management of biological populations. The mounting evidence for widespread Allee effects has lately inspired theoretical studies of how Allee effects alter population dynamics. However, the recent mathematical models of Allee effects have been missing another important force prevalent at low population sizes: stochasticity. In this paper, the combination of Allee effects and stochasticity is studied using diffusion processes, a type of general stochastic population model that accommodates both demographic and environmental stochastic fluctuations. Including an Allee effect in a conventional deterministic population model typically produces an unstable equilibrium at a low population size, a critical population level below which extinction is certain. In a stochastic version of such a model, the probability of reaching a lower size a before reaching an upper size b , when considered as a function of initial population size, has an inflection point at the underlying deterministic unstable equilibrium. The inflection point represents a threshold in the probabilistic prospects for the population and is independent of the type of stochastic fluctuations in the model. In particular, models containing demographic noise alone (absent Allee effects) do not display this threshold behavior, even though demographic noise is considered an "extinction vortex". The results in this paper provide a new understanding of the interplay of stochastic and deterministic forces in ecological populations.  相似文献   

12.
Somers MJ  Graf JA  Szykman M  Slotow R  Gusset M 《Oecologia》2008,158(2):239-247
We analysed 25 years (1980–2004) of demographic data on a small re-introduced population of endangered African wild dogs (Lycaon pictus) in Hluhluwe-iMfolozi Park (HiP), South Africa, to describe population and pack dynamics. As small populations of cooperative breeders may be particularly prone to Allee effects, this extensive data set was used to test the prediction that, if Allee effects occur, aspects of reproductive success, individual survival and population growth should increase with pack and population size. The results suggest that behavioural aspects of wild dogs rather than ecological factors (i.e. competitors, prey and rainfall) primarily have been limiting the HiP wild dog population, particularly a low probability of finding suitable mates upon dispersal at low pack number (i.e. a mate-finding Allee effect). Wild dogs in HiP were not subject to component Allee effects at the pack level, most likely due to low interspecific competition and high prey availability. This suggests that aspects of the environment can mediate the strength of Allee effects. There was also no demographic Allee effect in the HiP wild dog population, as the population growth rate was significantly negatively related to population size, despite no apparent ecological resource limitation. Such negative density dependence at low numbers indicates that behavioural studies of the causal mechanisms potentially generating Allee effects in small populations can provide a key to understanding their dynamics. This study demonstrates how aspects of a species’ social behaviour can influence the vulnerability of small populations to extinction and illustrates the profound implications of sociality for endangered species’ recovery. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Host–parasitoid metapopulation models have typically been deterministic models formulated with population numbers as a continuous variable. Spatial heterogeneity in local population abundance is a typical (and often essential) feature of these models and means that, even when average population density is high, some patches have small population sizes. In addition, large temporal population fluctuations are characteristic of many of these models, and this also results in periodically small local population sizes. Whenever population abundances are small, demographic stochasticity can become important in several ways. To investigate this problem, we have reformulated a deterministic, host–parasitoid metapopulation as an integer-based model in which encounters between hosts and parasitoids, and the fecundity of individuals are modelled as stochastic processes. This has a number of important consequences: (1) stochastic fluctuations at small population sizes tend to be amplified by the dynamics to cause massive population variability, i.e. the demographic stochasticity has a destabilizing effect; (2) the spatial patterns of local abundance observed in the deterministic counterpart are largely maintained (although the area of ''spatial chaos'' is extended); (3) at small population sizes, dispersal by discrete individuals leads to a smaller fraction of new patches being colonized, so that parasitoids with small dispersal rates have a greater tendency for extinction and higher dispersal rates have a larger competitive advantage; and (4) competing parasitoids that could coexist in the deterministic model due to spatial segregation cannot now coexist for any combination of parameters.  相似文献   

14.
局域种群的Allee效应和集合种群的同步性   总被引:3,自引:0,他引:3  
从包含Allee效应的局域种群出发,建立了耦合映像格子模型,即集合种群模型.通过分析和计算机模拟表明:(1)当局域种群受到Allee效应强度较大时,集合种群同步灭绝;(2)而当Allee效应强度相对较弱时,通过稳定局域种群动态(减少混沌)使得集合种群发生同步波动,而这种同步波动能够增加集合种群的灭绝风险;(3)斑块间的连接程度对集合种群同步波动的发生有很大的影响,适当的破碎化有利于集合种群的续存.全局迁移和Allee效应结合起来增加了集合种群同步波动的可能,从而增加集合种群的灭绝风险.这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义.  相似文献   

15.
We critically review and classify models of single-species population dynamics subject to the demographic Allee effect with emphasis on non-spatial, deterministic approach. Inclusion of spatial movement and stochastic phenomena does not substantially change the behaviour; stochasticity only "blurs" step-like character of the Allee effect into a sigmoidal form. The outcome of all non-spatial, deterministic models is either unconditional extinction, extinction-survival scenario (ES), or unconditional survival. Three major model classes are recognized: (1) one-dimensional heuristic models, (2) one-dimensional models with mating probability and fixed sex ratio, and (3) two-sex models with variable adult sex ratio. Each class is characterized by the shape of extinction boundary which separates extinction from survival in the ES scenario. The latter two classes may give better predictions of extinction thresholds than heuristic models but require specific information and are data intensive. In one-dimensional models with fixed sex ratio, population cannot survive if density/number of males decreases below some threshold while there is no such restriction on females. Individual-based models seem to be most capable of explaining mechanisms leading to the Allee effect.  相似文献   

16.
The main objective of this work is to determine the conditions for coexistence and competitive exclusion in a discrete model for a community of three species: a stage-structured host and two competing parasitoids sharing the same host developmental stage. Coexistence of the community of the species is found to depend on the host life history parameters in the first place, and on competitive ability and parasitoid efficiency in the second place. In particular, parasitoids equilibrium densities are defined by the size of the refuge. Extinction is expected with low growth rate and with low adult survival. Host life histories are also associated with oscillations in population density, and depending on the combination of host adult survival from one generation to the next and host growth rate, the minimum of fluctuations approaches zero, implying a higher potential risk of extinction because of stochastic factors. Our results suggest that equally reduced survival of parasitoids in hosts parasitized by both species determines extinction of the parasitoid with lower population density, in contrast to the case when both parasitoids benefit with 50% of all doubly parasitized hosts, leading to the hypothesis that a community where competitors in multiparasitized hosts die, easily becomes extinct. Competitive exclusion is expected for highly asymmetric competitive interactions, independent of population densities, allowing us to hypothesize that coexistence of competitors in systems with limited resources and refuges is associated with a clearly defined competitive hierarchy.  相似文献   

17.
Many flowering plants rely on pollinators, self-fertilization, or both for reproduction. We model the consequences of these features for plant population dynamics and mating system evolution. Our mating systems-based population dynamics model includes an Allee effect. This often leads to an extinction threshold, defined as a density below which population densities decrease. Reliance on generalist pollinators who primarily visit higher density plant species increases the extinction threshold, whereas autonomous modes of selfing decrease and can eliminate the threshold. Generalist pollinators visiting higher density plant species coupled with autonomous selfing may introduce an effect where populations decreasing in density below the extinction threshold may nonetheless persist through selfing. The extinction threshold and selfing at low density result in populations where individuals adopting a single reproductive strategy exhibit mating systems that depend on population density. The ecological and evolutionary analyses provide a mechanism where prior selfing evolves even though inbreeding depression is greater than one-half. Simultaneous consideration of ecological and evolutionary dynamics confirms unusual features (e.g., evolution into extinction or abrupt increases in population density) implicit in our separate consideration of ecological and evolutionary scenarios. Our analysis has consequences for understanding pollen limitation, reproductive assurance, and the evolution of mating systems.  相似文献   

18.
Discrete time single species models with overcompensating density dependence and an Allee effect due to predator satiation and mating limitation are investigated. The models exhibit four behaviors: persistence for all initial population densities, bistability in which a population persists for intermediate initial densities and otherwise goes extinct, extinction for all initial densities, and essential extinction in which "almost every" initial density leads to extinction. For fast-growing populations, these models show populations can persist at high levels of predation even though lower levels of predation lead to essential extinction. Alternatively, increasing the predator's handling time, the population's carrying capacity, or the likelihood of mating success may lead to essential extinction. In each of these cases, the mechanism behind these disappearances are chaotic dynamics driving populations below a critical threshold determined by the Allee effect. These disappearances are proceeded by chaotic transients that are proven to be approximately exponentially distributed in length and highly sensitive to initial population densities.  相似文献   

19.
If a healthy stable host population at the disease-free equilibrium is subject to the Allee effect, can a small number of infected individuals with a fatal disease cause the host population to go extinct? That is, does the Allee effect matter at high densities? To answer this question, we use a susceptible-infected epidemic model to obtain model parameters that lead to host population persistence (with or without infected individuals) and to host extinction. We prove that the presence of an Allee effect in host demographics matters even at large population densities. We show that a small perturbation to the disease-free equilibrium can eventually lead to host population extinction. In addition, we prove that additional deaths due to a fatal infectious disease effectively increase the Allee threshold of the host population demographics.  相似文献   

20.
Reproductive activities are often associated with conspicuous morphology or behaviour that could be exploited by predators. Individuals can therefore face a trade-off between reproduction and predation risk. Here we use simple models to explore population-dynamical consequences of such a trade-off for populations subject to a mate-finding Allee effect and an Allee effect due to predation. We present our results in the light of populations that belong to endangered species or pests and study their viability and resilience. We distinguish several qualitative scenarios characterized by the shape and strength of the trade-off and, in particular, identify conditions for which the populations survive or go extinct. Reproduction can be so costly that the population always goes extinct. In other cases, the population goes extinct only over a certain range of low, intermediate or high levels of reproductive activities. Moreover, we show that predator removal (e.g. in an attempt to save an endangered prey species) has the least effect on populations with low cost of reproduction in terms of predation and, conversely, predator addition (e.g. to eradicate a pest) is most effective for populations with high predation cost of reproduction. Our results indicate that a detailed knowledge of the trade-off can be crucial in applications: for some trade-off shapes, only intermediate levels of reproductive activities might guarantee population survival, while they can lead to extinction for others. We therefore suggest that the fate of populations subject to the two antagonistic Allee effects should be evaluated on a case-by-case basis. Although the literature offers no quantitative data on possible trade-off shapes in any taxa, indirect evidence suggests that the trade-off and both Allee effects can occur simultaneously, e.g. in the golden egg bug Phyllomorpha laciniata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号