首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The Brucella cell envelope contains the zwitterionic phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Synthesis of PC occurs exclusively via the PC synthase pathway, implying that the pathogen depends on the choline synthesized by the host cell to form PC. Notably, PC is necessary to sustain a chronic infection process, which suggests that the membrane lipid content is relevant for Brucella virulence. In this study we investigated the first step of PE biosynthesis in B. abortus, which is catalyzed by phosphatidylserine synthase (PssA). Disruption of pssA abrogated the synthesis of PE without affecting the growth in rich complex medium. In minimal medium, however, the mutant required choline supplementation for growth, suggesting that at least PE or PC is necessary for Brucella viability. The absence of PE altered cell surface properties, but most importantly, it impaired several virulence traits of B. abortus, such as intracellular survival in both macrophages and HeLa cells, the maturation of the replicative Brucella-containing vacuole, and mouse colonization. These results suggest that membrane phospholipid composition is critical for the interaction of B. abortus with the host cell.  相似文献   

2.
Francisella tularensis is a pathogen optimally adapted to efficiently invade its respective host cell and to proliferate intracellularly. We investigated the role of host cell membrane microdomains in the entry of F. tularensis subspecies holarctica vaccine strain (F. tularensis live vaccine strain) into murine macrophages. F. tularensis live vaccine strain recruits cholesterol-rich lipid domains ("lipid rafts") with caveolin-1 for successful entry into macrophages. Interference with lipid rafts through the depletion of plasma membrane cholesterol, through induction of raft internalization with choleratoxin, or through removal of raft-associated GPI-anchored proteins by treatment with phosphatidylinositol phospholipase C significantly inhibited entry of Francisella and its intracellular proliferation. Lipid raft-associated components such as cholesterol and caveolin-1 were incorporated into Francisella-containing vesicles during entry and the initial phase of intracellular trafficking inside the host cell. These findings demonstrate that Francisella requires cholesterol-rich membrane domains for entry into and proliferation inside macrophages.  相似文献   

3.
The intracellular pathogen Brucella abortus survives and replicates inside host cells within an endoplasmic reticulum (ER)-derived replicative organelle named the “Brucella-containing vacuole” (BCV). Here, we developed a subcellular fractionation method to isolate BCVs and characterize for the first time the protein composition of its replicative niche. After identification of BCV membrane proteins by 2 dimensional (2D) gel electrophoresis and mass spectrometry, we focused on two eukaryotic proteins: the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the small GTPase Rab 2 recruited to the vacuolar membrane of Brucella. These proteins were previously described to localize on vesicular and tubular clusters (VTC) and to regulate the VTC membrane traffic between the endoplasmic reticulum (ER) and the Golgi. Inhibition of either GAPDH or Rab 2 expression by small interfering RNA strongly inhibited B. abortus replication. Consistent with this result, inhibition of other partners of GAPDH and Rab 2, such as COPI and PKC ι, reduced B. abortus replication. Furthermore, blockage of Rab 2 GTPase in a GDP-locked form also inhibited B. abortus replication. Bacteria did not fuse with the ER and instead remained in lysosomal-associated membrane vacuoles. These results reveal an essential role for GAPDH and the small GTPase Rab 2 in B. abortus virulence within host cells.  相似文献   

4.
Phosphatidylcholine (PC), a common phospholipid of the eukaryotic cell membrane, is present in the cell envelope of the intracellular pathogen Brucella abortus, the etiological agent of bovine brucellosis. In this pathogen, the biosynthesis of PC proceeds mainly through the phosphatidylcholine synthase pathway; hence, it relies on the presence of choline in the milieu. These observations imply that B. abortus encodes an as-yet-unknown choline uptake system. Taking advantage of the requirement of choline uptake for PC synthesis, we devised a method that allowed us to identify a homologue of ChoX, the high-affinity periplasmic binding protein of the ABC transporter ChoXWV. Disruption of the choX gene completely abrogated PC synthesis at low choline concentrations in the medium, thus indicating that it is a high-affinity transporter needed for PC synthesis via the PC synthase (PCS) pathway. However, the synthesis of PC was restored when the mutant was incubated in media with higher choline concentrations, suggesting the presence of an alternative low-affinity choline uptake activity. By means of a fluorescence-based equilibrium-binding assay and using the kinetics of radiolabeled choline uptake, we show that ChoX binds choline with an extremely high affinity, and we also demonstrate that its activity is inhibited by increasing choline concentrations. Cell infection assays indicate that ChoX activity is required during the first phase of B. abortus intracellular traffic, suggesting that choline concentrations in the early and intermediate Brucella-containing vacuoles are limited. Altogether, these results suggest that choline transport and PC synthesis are strictly regulated in B. abortus.  相似文献   

5.
Vaccinia virus has a broad range of infectivity in many cell lines and animals. Although it is known that the vaccinia mature virus binds to cell surface glycosaminoglycans and extracellular matrix proteins, whether additional cellular receptors are required for virus entry remains unclear. Our previous studies showed that the vaccinia mature virus enters through lipid rafts, suggesting the involvement of raft-associated cellular proteins. Here we demonstrate that one lipid raft-associated protein, integrin β1, is important for vaccinia mature virus entry into HeLa cells. Vaccinia virus associates with integrin β1 in lipid rafts on the cell surface, and the knockdown of integrin β1 in HeLa cells reduces vaccinia mature virus entry. Additionally, vaccinia mature virus infection is reduced in a mouse cell line, GD25, that is deficient in integrin β1 expression. Vaccinia mature virus infection triggers the activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling, and the treatment of cells with inhibitors to block P13K activation reduces virus entry in an integrin β1-dependent manner, suggesting that integrin β1-mediates PI3K/Akt activation induced by vaccinia virus and that this signaling pathway is essential for virus endocytosis. The inhibition of integrin β1-mediated cell adhesion results in a reduction of vaccinia virus entry and the disruption of focal adhesion and PI3K/Akt activation. In summary, our results show that the binding of vaccinia mature virus to cells mimics the outside-in activation process of integrin functions to facilitate vaccinia virus entry into HeLa cells.  相似文献   

6.
Clathrin‐mediated endocytosis is a fundamental transport pathway that depends on numerous protein‐protein interactions. Testing the importance of the adaptor protein‐clathrin interaction for coat formation and progression of endocytosis in vivo has been difficult due to experimental constrains. Here, we addressed this question using the yeast clathrin adaptor Sla1, which is unique in showing a cargo endocytosis defect upon substitution of 3 amino acids in its clathrin‐binding motif (sla1AAA) that disrupt clathrin binding. Live‐cell imaging showed an impaired Sla1‐clathrin interaction causes reduced clathrin levels but increased Sla1 levels at endocytic sites. Moreover, the rate of Sla1 recruitment was reduced indicating proper dynamics of both clathrin and Sla1 depend on their interaction. sla1AAA cells showed a delay in progression through the various stages of endocytosis. The Arp2/3‐dependent actin polymerization machinery was present for significantly longer time before actin polymerization ensued, revealing a link between coat formation and activation of actin polymerization. Ultimately, in sla1AAA cells a larger than normal actin network was formed, dramatically higher levels of various machinery proteins other than clathrin were recruited, and the membrane profile of endocytic invaginations was longer. Thus, the Sla1‐clathrin interaction is important for coat formation, regulation of endocytic progression and membrane bending.   相似文献   

7.
Poxviruses, including vaccinia virus (VV) and canarypox virus (ALVAC), do not indiscriminately infect all cell types of the primary human leukocytes (PHLs) that they encounter but instead demonstrate an extremely strong bias toward infection of monocytes and monocyte lineage cells. We studied the specific molecular events that determine the VV tropism for major PHL subsets including monocytes, B cells, neutrophils, NK cells, and T cells. We found that VV exhibited an extremely strong bias of cell surface protein-dependent binding to monocytes, B cells, and activated T cells to a similar degree and to neutrophils to a much lesser extent. Resting T cells and resting NK cells exhibited only trace amounts of VV binding. Activated T cells, however, became permissive to VV binding, infection, and replication, while activated NK cells still resisted VV binding. VV binding strongly colocalized with lipid rafts on the surfaces of all VV binding-susceptible PHL subsets, even when lipid rafts were relocated to cell uropods upon cell polarization. Immunosera raised against detergent-resistant membranes (DRMs) from monocytes or activated T cells, but not resting T cells, effectively cross-blocked VV binding to and infection of PHL subsets. CD29 and CD98, two lipid raft-associated membrane proteins that had been found to be important for VV entry into HeLa cells, had no effect on VV binding to and infection of primary activated T cells. Our data indicate that PHL subsets express VV protein receptors enriched in lipid rafts and that receptors are cross-presented on all susceptible PHLs.  相似文献   

8.
Membrane lipid raft domains are thought to be sites of assembly for many enveloped viruses. The roles of both classical lipid rafts and lipid rafts associated with the membrane cytoskeleton in the assembly of Newcastle disease virus (NDV) were investigated. The lipid raft-associated proteins caveolin-1, flotillin-2, and actin were incorporated into virions, while the non-lipid raft-associated transferrin receptor was excluded. Kinetic analyses of the distribution of viral proteins in lipid rafts, as defined by detergent-resistant membranes (DRMs), in non-lipid raft membranes, and in virions showed an accumulation of HN, F, and NP viral proteins in lipid rafts early after synthesis. Subsequently, these proteins exited the DRMs and were recovered quantitatively in purified virions, while levels of these proteins in detergent-soluble cell fractions remained relatively constant. Cholesterol depletion of infected cells drastically altered the association of viral proteins with DRMs and resulted in an enhanced release of virus particles with reduced infectivity. Decreased infectivity was not due to effects on subsequent virus entry, since the extraction of cholesterol from intact virus did not significantly reduce infectivity. Particles released from cholesterol-depleted cells had very heterogeneous densities and altered ratios of NP and glycoproteins, demonstrating structural abnormalities which potentially contributed to their lowered infectivity. Taken together, these results indicate that lipid rafts, including cytoskeleton-associated lipid rafts, are sites of NDV assembly and that these domains are important for ordered assembly and release of infectious Newcastle disease virus particles.  相似文献   

9.
Brucella species replicate within host cells in the form of endoplasmic reticulum (ER)-derived vacuoles. The mechanisms by which the bacteria are sequestered into such vacuoles and obtain a continuous membrane supply for their replication remain to be elucidated. In the present study, we provided several lines of evidence that demonstrate the mechanism by which B. abortus acquires the ER-derived membrane. First, during Brucella infection, the IRE1 pathway, but not the PERK and ATF6 pathways, of the unfolded protein response (UPR) was activated in a time-dependent manner, and the COPII vesicle components Sar1, Sec23, and Sec24D were upregulated. Second, a marked accretion of ER-derived vacuoles was observed around replicating bacteria using fluorescent microscopy and electron microscopy. Third, we identified a novel host factor, Yip1A, for the activation of the IRE1 pathway in response to both tunicamycin treatment and infection with B. abortus. We found that Yip1A is responsible for the phosphorylation of IRE1 through high-order assembly of Ire1 molecules at ER exit sites (ERES) under the UPR conditions. In Yip1A-knockdown cells, B. abortus failed to generate the ER-derived vacuoles, and remained in endosomal/lysosomal compartments. These results indicate that the activation of the IRE1 pathway and the subsequent formation of ER-derived vacuoles are critical for B. abortus to establish a safe replication niche, and that Yip1A is indispensable for these processes. Furthermore, we showed that the autophagy-related proteins Atg9 and WIPI1, but not DFCP1, were required for the biogenesis of the ER-derived membrane compartments.  On the basis of our findings, we propose a model for intracellular Brucella replication that exploits the host UPR and ER-derived vacuole formation machineries, both of which depend on Yip1A-mediated IRE1 activation.  相似文献   

10.
11.
Mature vaccinia virus (vaccinia MV) infects a broad range of animals in vivo and cell cultures in vitro; however, the cellular receptors that determine vaccinia MV tropism and entry pathways are poorly characterized. Here, we performed quantitative proteomic analyses of lipid raft-associated proteins upon vaccinia MV entry into HeLa cells. We found that a type II membrane glycoprotein, CD98, is enriched in lipid rafts upon vaccinia MV infection compared to mock-infected HeLa cells. The knockdown of CD98 expression in HeLa cells significantly reduced vaccinia MV entry. Furthermore, CD98 knockout (KO) mouse embryonic fibroblasts (MEFs) also exhibited reduced vaccinia MV infectivity without affecting MV attachment to cells, suggesting a role for CD98 in the postbinding step of virus entry. Further characterization with inhibitors and dominant negative proteins that block different endocytic pathways revealed that vaccinia MV entry into MEFs occurs through a clathrin-independent, caveolin-independent, dynamin-dependent, fluid-phase endocytic pathway, implying that CD98 plays a specific role in the vaccinia MV endocytic pathway. Infections of wild-type and CD98 KO MEF cells with different strains of vaccinia MV provided further evidence that CD98 plays a specific role in MV endocytosis but not in plasma membrane fusion. Finally, different CD98-C69 chimeric proteins were expressed in CD98 KO MEFs, but none were able to reconstitute MV infectivity, suggesting that the overall structure of the CD98 protein is required for vaccinia MV endocytosis.  相似文献   

12.
Clathrin-coated vesicles play an established role in endocytosis from the plasma membrane, but they are also found on internal organelles. We examined the composition of clathrin-coated vesicles on an internal organelle responsible for osmoregulation, the Dictyostelium discoideum contractile vacuole. Clathrin puncta on contractile vacuoles contained multiple accessory proteins typical of plasma membrane–coated pits, including AP2, AP180, and epsin, but not Hip1r. To examine how these clathrin accessory proteins influenced the contractile vacuole, we generated cell lines that carried single and double gene knockouts in the same genetic background. Single or double mutants that lacked AP180 or AP2 exhibited abnormally large contractile vacuoles. The enlarged contractile vacuoles in AP180-null mutants formed because of excessive homotypic fusion among contractile vacuoles. The SNARE protein Vamp7B was mislocalized and enriched on the contractile vacuoles of AP180-null mutants. In vitro assays revealed that AP180 interacted with the cytoplasmic domain of Vamp7B. We propose that AP180 directs Vamp7B into clathrin-coated vesicles on contractile vacuoles, creating an efficient mechanism for regulating the internal distribution of fusion-competent SNARE proteins and limiting homotypic fusions among contractile vacuoles. Dictyostelium contractile vacuoles offer a valuable system to study clathrin-coated vesicles on internal organelles within eukaryotic cells.  相似文献   

13.
Clathrin assembles into a dynamic two-dimensional lattice on the plasma membrane where it plays a critical role in endocytosis. To probe the regulation of this process, we used siRNA against clathrin, in combination with single cell assays for transferrin uptake as well as total internal reflection microscopy, to examine how endocytic rates and membrane dynamics depend upon cellular clathrin concentration ([Clathrin]). We find that endocytosis is tightly controlled by [Clathrin] over a very narrow dynamic range such that small changes in [Clathrin] can lead to large changes in endocytic rates, indicative of a highly cooperative process (apparent Hill coefficient, n > 6). The number of clathrin assemblies at the cell surface was invariant over a wide range of [Clathrin]; however, both the amount of clathrin in each assembly and the subsequent membrane dynamics were steeply dependent on [Clathrin]. Thus clathrin controls the structural dynamics of membrane internalization via a strongly cooperative process. We used this analysis to show that one important regulator of endocytosis, the actin cytoskeleton, acts noncompetitively as a modulator of clathrin function.  相似文献   

14.
Clathrin fromH-K-ATPase-rich membranes derived from the tubulovesicular compartmentof rabbit and hog gastric acid secretory (parietal) cells wascharacterized biochemically, and the subcellular localization ofmembrane-associated clathrin in parietal cells was characterizedby immunofluorescence, electron microscopy, and immunoelectronmicroscopy. Clathrin from H-K- ATPase-rich membranes was determinedto be comprised of conventional clathrin heavy chain and a predominanceof clathrin light chain A. Clathrin and adaptors could be induced topolymerize quantitatively in vitro, forming 120-nm-diameter basketlikestructures. In digitonin-permeabilized resting parietal cells, theintracellular distribution of immunofluorescently labeled clathrin wassuggestive of labeling of the tubulovesicular compartment. Clathrin wasalso unexpectedly localized to canalicular (apical) membranes, as were-adaptin and dynamin, suggesting that this membrane domain ofresting parietal cells is endocytotically active. At theultrastructural level, clathrin was immunolocalized to canalicularand tubulovesicular membranes. H-K-ATPase was immunolocalized tothe same membrane domains as clathrin but did not appear to be enrichedat the specific subdomains that were enriched in clathrin. Finally, inimmunofluorescently labeled primary cultures of parietal cells, incontrast to the H-K-ATPase, intracellular clathrin was found not totranslocate to the apical membrane on secretagogue stimulation. Takentogether, these biochemical and morphological data provide a frameworkfor characterizing the role of clathrin in the regulation of membranetrafficking from tubulovesicles and at the canalicular membrane inparietal cells.

  相似文献   

15.
Outer membrane vesicles (OMVs) released by some Gram-negative bacteria have been shown to exert immunomodulatory effects that favor the establishment of the infection. The aim of the present study was to assess the interaction of OMVs from Brucella abortus with human epithelial cells (HeLa) and monocytes (THP-1), and the potential immunomodulatory effects they may exert. Using confocal microscopy and flow cytometry, FITC-labeled OMVs were shown to be internalized by both cell types. Internalization was shown to be partially mediated by clathrin-mediated endocytosis. Pretreatment of THP-1 cells with Brucella OMVs inhibited some cytokine responses (TNF-α and IL-8) to E. coli LPS, Pam3Cys or flagellin (TLR4, TLR2 and TLR5 agonists, respectively). Similarly, pretreatment with Brucella OMVs inhibited the cytokine response of THP-1 cells to B. abortus infection. Treatment of THP-1 cells with OMVs during IFN-γ stimulation reduced significantly the inducing effect of this cytokine on MHC-II expression. OMVs induced a dose-dependent increase of ICAM-1 expression on THP-1 cells and an increased adhesion of these cells to human endothelial cells. The addition of OMVs to THP-1 cultures before the incubation with live B. abortus resulted in increased numbers of adhered and internalized bacteria as compared to cells not treated with OMVs. Overall, these results suggest that OMVs from B. abortus exert cellular effects that promote the internalization of these bacteria by human monocytes, but also downregulate the innate immune response of these cells to Brucella infection. These effects may favor the persistence of Brucella within host cells.  相似文献   

16.
Shigellosis is an acute inflammatory bowel disease caused by the enteroinvasive bacterium SHIGELLA: Upon host cell-Shigella interaction, major host cell signalling responses are activated. Deciphering the initial molecular events is crucial to understanding the infectious process. We identified a molecular complex involving proteins of both the host, CD44 the hyaluronan receptor, and Shigella, the invasin IpaB, which partitions during infection within specialized membrane microdomains enriched in cholesterol and sphingolipids, called rafts. We also document accumulation of cholesterol and raft-associated proteins at Shigella entry foci. Moreover, we report that Shigella entry is impaired after cholesterol depletion using methyl-beta-cyclodextrin. Finally, we find that Shigella is less invasive in sphingosid-based lipid-deficient cell lines, demonstrating the involvement of sphingolipids. Our results show that rafts are implicated in Shigella binding and entry, suggesting that raft-associated molecular machineries are engaged in mediating the cell signalling response required for the invasion process.  相似文献   

17.
Obligatory intracellular, human ehrlichiosis agents Ehrlichia chaffeensis and Anaplasma phagocytophilum create unique replicative compartments devoid of lysosomal markers in monocytes/macrophages and granulocytes respectively. The entry of these bacteria requires host phospholipase C (PLC)-gamma2 and protein tyrosine kinases, but their entry route is still unclear. Here, using specific inhibitors, double immunofluorescence labelling and the fractionation of lipid rafts, we demonstrate that bacterial entry and intracellular infection involve cholesterol-rich lipid rafts or caveolae and glycosylphosphatidylinositol (GPI)-anchored proteins. By fluorescence microscopy, caveolar marker protein caveolin-1 was co-localized with both early and replicative bacterial inclusions. Additionally, tyrosine-phosphorylated proteins and PLC-gamma2 were found in bacterial early inclusions. In contrast, clathrin was not found in any inclusions from either bacterium. An early endosomal marker, transferrin receptor, was not present in the early inclusions of E. chaffeensis, but was found in replicative inclusions of E. chaffeensis. Furthermore, several bacterial proteins from E. chaffeensis and A. phagocytophilum were co-fractionated with Triton X-100-insoluble raft fractions. The formation of bacteria-encapsulating caveolae, which assemble and retain signalling molecules essential for bacterial entry and interact with the recycling endosome pathway, may ensure the survival of these obligatory intracellular bacteria in primary host defensive cells.  相似文献   

18.
Y Liu  G Yang  X Bu  G Liu  J Ding  P Li  W Jia 《Cell death & disease》2011,2(4):e145
20S-protopanaxadiol (aPPD) is a metabolite of ginseng saponins, which is reported to be pro-apoptotic in some cells but anti-apoptotic in neuronal cells by regulating Akt signaling. Owing to its cholesterol-like structure, we hypothesized that aPPD may regulate Akt signaling by interacting with lipid rafts. Here, we compared Akt signaling in glioblastoma U87MG and neuroblastoma Neuro-2a cells treated with aPPD. aPPD did not change Akt activity in the total plasma membranes of each cell type, but drastically altered the activity of raft-associated Akt. Strikingly, Akt activity was decreased in the rafts of U87MG cells but increased in N2a cells by aPPD through regulating raft-associated dephosphorylation. The bidirectional regulation of raft-associated Akt signaling by aPPD enhanced the chemotoxicity of Paclitaxel or Vinblastine in U87MG cells but attenuated the excitotoxicity of N-methyl--aspartate in N2a cells. Our results demonstrated that the activity of raft-associated but not total membrane Akt determines its cellular functions. Lipid rafts differ in different types of cells, which allows for the possibility of cell-type-specific targeting for which aPPD might prove to be a useful agent.  相似文献   

19.
Several pathogens have been described to enter host cells via cholesterol-enriched membrane lipid raft microdomains. We found that disruption of lipid rafts by the cholesterol-extracting agent methyl-β-cyclodextrin or by the cholesterol-binding antifungal drug Amphotericin B strongly impairs the uptake of the fungal pathogen Candida albicans by human monocytes, suggesting a role of raft microdomains in the phagocytosis of the fungus. Time lapse confocal imaging indicated that Dectin-1, the C-type lectin receptor that recognizes Candida albicans cell wall-associated β-glucan, is recruited to lipid rafts upon Candida albicans uptake by monocytes, supporting the notion that lipid rafts act as an entry platform. Interestingly disruption of lipid raft integrity and interference with fungus uptake do not alter cytokine production by monocytes in response to Candida albicans but drastically dampen fungus specific T cell response. In conclusion, these data suggest that monocyte lipid rafts play a crucial role in the innate and adaptive immune responses to Candida albicans in humans and highlight a new and unexpected immunomodulatory function of the antifungal drug Amphotericin B.  相似文献   

20.
Intestinal epithelial lipid rafts contain ganglioside GM1 that is the receptor for cholera toxin (CT). The ganglioside binds CT at the plasma membrane (PM) and carries the toxin through the trans-Golgi network (TGN) to the endoplasmic reticulum (ER). In the ER, a portion of the toxin unfolds and translocates to the cytosol to activate adenylyl cyclase. Activation of the cyclase leads to an increase in intracellular cAMP, which results in apical chloride secretion. Here, we find that an intact actin cytoskeleton is necessary for the efficient transport of CT to the Golgi and for subsequent activation of adenylyl cyclase. CT bound to GM1 on the cell membrane fractionates with a heterogeneous population of lipid rafts, a portion of which is enriched in actin and other cytoskeletal proteins. In this actin-rich fraction of lipid rafts, CT and actin colocalize on the same membrane microdomains, suggesting a possible functional association. Depolymerization or stabilization of actin filaments interferes with transport of CT from the PM to the Golgi and reduces the levels of cAMP generated in the cytosol. Depletion of membrane cholesterol, which also inhibits CT trafficking to the TGN, causes displacement of actin from the lipid rafts while CT remains stably raft associated. On the basis of these observations, we propose that the CT-GM1 complex is associated with the actin cytoskeleton via the lipid rafts and that the actin cytoskeleton plays a role in trafficking of CT from the PM to the Golgi/ER and the subsequent activation of adenylyl cyclase. membrane microdomains; membrane lipids; bacterial toxins; endocytosis; intestinal mucosa  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号