首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrPC in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrPC in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrPC promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrPC suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrPC as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.  相似文献   

2.
The chemokine receptors CCR2 and CX3CR1 are critical for the recruitment of “inflammatory” and “resident” monocytes, respectively, subpopulations that differentially affect vascular remodeling in atherosclerosis. Here, we tested the hypothesis that bone marrow-derived cell (BMC)-specific CCR2 and CX3CR1 differentially control venular and arteriolar remodeling. Venular and arteriolar lumenal remodeling were observed by intravital microscopy in mice with either CCR2 or CX3CR1 deficient BMCs after implantation of a dorsal skinfold window chamber, a model in which arterioles and venules lumenally enlarge in wild-type (WT) mice. Arteriolar remodeling was abolished in mice with either CCR2 or CX3CR1-deficient BMCs. In contrast, the loss of CX3CR1 from BMCs, but not CCR2, significantly reduced small venule remodeling compared to WT controls. We conclude that microvascular remodeling is differentially regulated by BMC-expressed chemokine receptors. Both CCR2 and CX3CR1 regulate arteriole growth; however, only BMC-expressed CX3CR1 impacts small venule growth. These findings may provide a basis for additional investigations aimed at determining how patterns of monocyte subpopulation recruitment spatially influence microvascular remodeling.  相似文献   

3.
Bone marrow (BM) derived vascular precursor cells (BM-PC, endothelial progenitors) are involved in normal and malignant angiogenesis, in ischemia and in wound healing. However, the mechanisms by which BM-PC stimulate the pre-existing endothelial cells at sites of vascular remodelling/recovery, and their contribution towards the formation of new blood vessels are still undisclosed. In the present report, we exploited the possibility that members of the Notch signalling pathway, expressed by BM-PC during endothelial differentiation, might regulate their pro-angiogenic or pro-wound healing properties. We demonstrate that Notch pathway modulates the adhesion of BM-PC to extracellular matrix (ECM) in vitro via regulation of integrin alpha3beta1; and that Notch pathway inhibition on BM-PC impairs their capacity to stimulate endothelial cell tube formation on matrigel and to promote endothelial monolayer recovery following wounding in vitro. Moreover, we show that activation of Notch pathway on BM-PC improved wound healing in vivo through angiogenesis induction. Conversely, inoculation of BM-PC pre-treated with a gamma secretase inhibitor (GSI) into wounded mice failed to induce angiogenesis at the wound site and did not promote wound healing, presumably due to a lower frequency of BM-PC at the wound area. Our data suggests that Notch pathway regulates BM-PC adhesion to ECM at sites of vascular repair and that it also regulates the capacity of BM-PC to stimulate angiogenesis and to promote wound healing. Drug targeting of the Notch pathway on BM-PC may thus represent a novel strategy to modulate neo-angiogenesis and vessel repair.  相似文献   

4.
Liver fibrosis is the excessive accumulation of extracellular matrix (ECM) proteins including collagen that occurs in most types of chronic liver diseases. Studies concerning the capacity of mesenchymal stem cells (MSCs) and simvasatain (SIMV) to repair fibrotic tissues through reducing inflammation, collagen deposition, are still controversial. This study aimed to investigate the therapeutic efficacy of bone marrow (BM)-derived MSCs and SIMV on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Rats were divided into: normal, CCl4, CCl4/MSCs, CCl4/SIMV, CCl4/MSCs/SIMV, and SIMV groups. BM-derived MSCs were detected by RT-PCR of CD29 and were then infused into the tail vein of female rats that received CCl4 injection to induce liver fibrosis. Sex-determining region Y (SRY) gene on Y-chromosome gene was assessed by PCR to confirm homing of the male stem cells in liver tissue of the female recipients. Serum liver function tests, liver procollagens I and III, tissue inhibitors of metalloproteinase-1 (TIMP-1), endoglin, matrix metalloproteinase-1 (MMP-1) gene expressions, transforming growth factor-beta (TGF-β1) immunostaining, and histopathologicl examination were performed. MSCs and SIMV decreased liver procollagens I and III, TIMP-1 and endoglin gene expressions, TGF-β1 immunostaining, and serum liver function tests compared with the CCl4 group. MMP-1 expression was increased in the CCl4/MSCs group. Histopathological examination as well as fibrosis score supports the biochemical and molecular findings. It can be concluded that MSCs and SIMV were effective in the treatment of hepatic CCl4-induced fibrosis-rat model. Treatment with MSCs was superior to SIMV. This antifibrotic effect can be attributed to their effect on the MMPs/TIMPs balance which is central in fibrogenesis.  相似文献   

5.
6.
Chronic inflammation is a hallmark of cancer. Inflammatory chemokines, such as C-C chemokine ligand 2 (CCL2), are often present in tumors but their roles in cancer initiation and maintenance are not clear. Here we report that CCL2 promotes mammary carcinoma development in a clinically relevant murine model of breast cancer. Targeted disruption of Ccl2 slowed the growth of activated Her2/neu-driven mammary tumors and prolonged host survival. Disruption of Ccl2 was associated with a decrease in the development and mobilization of endothelial precursor cells (EPCs) which can contribute to tumor neovascularization. In contrast, disruption of Ccr2, which encodes CCL2’s sole signaling receptor, accelerated tumor development, shortened host survival, and mobilized EPCs. However, pharmacological inhibition of CCR2 phenocopied Ccl2 disruption rather than Ccr2 disruption, suggesting that the Ccr2-/- phenotype is a consequence of unanticipated alterations not linked to intact CCL2/CCR2 signaling. Consistent with this explanation, Ccr2-/- monocytes are more divergent from wild type monocytes than Ccl2-/- monocytes in their expression of genes involved in key developmental and functional pathways. Taken together, our data suggest a tumor-promoting role for CCL2 acting through CCR2 on the tumor microenvironment and support the targeting of this chemokine/receptor pair in breast cancer.  相似文献   

7.
The chemokine (C-C motif) receptor 2B (CCR2B) is one of the two isoforms of the receptor for monocyte chemoattractant protein-1 (CCL2), the major chemoattractant for monocytes, involved in an array of chronic inflammatory diseases. Employing the yeast two-hybrid system, we identified the actin-binding protein filamin A (FLNa) as a protein that associates with the carboxyl-terminal tail of CCR2B. Co-immunoprecipitation experiments and in vitro pull down assays demonstrated that FLNa binds constitutively to CCR2B. The colocalization of endogenous CCR2B and filamin A was detected at the surface and in internalized vesicles of THP-1 cells. In addition, CCR2B and FLNa were colocalized in lamellipodia structures of CCR2B-expressing A7 cells. Expression of the receptor in filamin-deficient M2 cells together with siRNA experiments knocking down FLNa in HEK293 cells, demonstrated that lack of FLNa delays the internalization of the receptor. Furthermore, depletion of FLNa in THP-1 monocytes by RNA interference reduced the migration of cells in response to MCP-1. Therefore, FLNa emerges as an important protein for controlling the internalization and spatial localization of the CCR2B receptor in different dynamic membrane structures.  相似文献   

8.
9.
Hindlimb unloading, as a simulation of microgravity, decreases the osteogenic potential of mesenchymal stem cells (MSCs) from hindlimb femur of rat. We simulated the microgravity by 28-day of hindlimb unloading for male Sprague–Dawley rat, and performed intramuscular injection of BMP-2 and FGF2 at a given interval during hindlimb unloading. Then, the bone marrow (BM) was collected from hindlimb femur of rat. MSCs were isolated from BM, cultured for four passages, and then induced for osteogenesis. The results revealed that the hindlimb unloading decreased the osteogenic potential of MSCs and also the expression of osteoblast gene marker mRNAs in cells induced by osteogenic conditions. Hindlimb unloading for 28 days resulted in the decrease of vinculin-containing focal adhesion in MSCs. During hindlimb unloading, the interval intramuscular injection of BMP-2 or FGF2 alone could increase the osteogenic potential of MSCs and the expression of osteoblast gene marker mRNA. However, the effect of BMP-2 or FGF2 injection alone was significantly lower than that of combination injection of both factors. The further examination showed that the intramuscular injection of BMP-2 promoted the expression of Runx2 mRNA and that the intramuscular injection of FGF2 increased the phosphorylation of ERK and Runx2. Nevertheless, the intramuscular injection of any factor could not increase the formation of vinculin-containing focal adhesions in MSCs. This suggests that BMP-2 should increase the expression of Runx2, and that the activation of Runx2 should be promoted by the FGF2 signaling pathway which activated ERK/Runx2. The activation of this signaling pathway should not lie on the formation of vinculin-containing focal adhesions.  相似文献   

10.

Background

Mesenchymal stromal cells (MSC) have gained importance in tissue repair, tissue engineering and in immunosupressive therapy during the last years. Due to the limited availability of MSC in the bone marrow, ex vivo amplification prior to clinical application is requisite to obtain therapeutic applicable cell doses. Translation of preclinical into clinical-grade large-scale MSC expansion necessitates precise definition and standardization of all procedural parameters including cell seeding density, culture medium and cultivation devices. While xenogeneic additives such as fetal calf serum are still widely used for cell culture, its use in the clinical context is associated with many risks, such as prion and viral transmission or adverse immunological reactions against xenogeneic components.

Methods and Findings

We established animal-free expansion protocols using platelet lysate as medium supplement and thereby could confirm its safety and feasibility for large-scale MSC isolation and expansion. Five different GMP-compliant standardized protocols designed for the safe, reliable, efficient and economical isolation and expansion of MSC was performed and MSC obtained were analyzed for differentiation capacity by qPCR and histochemistry. Expression of standard MSC markers as defined by the International Society for Cellular Therapy as well as expression of additional MSC markers and of various chemokine and cytokine receptors was analysed by flow cytometry. Changes of metabolic markers and cytokines in the medium were addressed using the LUMINEX platform.

Conclusions

The five different systems for isolation and expansion of MSC described in this study are all suitable to produce at least 100 millions of MSC, which is commonly regarded as a single clinical dose. Final products are equal according to the minimal criteria for MSC defined by the ISCT. We showed that chemokine and integrin receptors analyzed had the same expression pattern, suggesting that MSC from either of the systems show equal characteristics of homing and adhesion.  相似文献   

11.

Background

Renal fibrosis is the final common pathway of chronic kidney disease (CKD). Moesin is a member of Ezrin/Radixin/Moesin (ERM) protein family but its role in renal fibrosis is not clear.

Method

Human proximal tubular cells (HK-2) were stimulated with or without TGF-β1. Moesin and downstream target genes were examined by real-time PCR and western blot. Phosphorylation of moesin and related signaling pathway was investigated as well. Rat model of unilateral ureteral obstruction (UUO) was established and renal moesin was examined by immunohistochemistry. Moesin in HK-2 cells were knocked down by siRNA and change of downstream genes in transfected HK-2 cells was studied. All animal experiments were reviewed and approved by the Ethics Committee for animal care of Ruijin Hospital.

Result

HK-2 cells stimulated with TGF-β1 showed up-regulated level of α-SMA and down-regulated level of E-Cadherin as well as elevated mRNA and protein level of moesin. In rat model of UUO, renal moesin expression increased in accordance with severity of tubulointerestital fibrosis in the kidneys with ureteral ligation while the contralateral kidneys were normal. Further study showed that TGF-β1 could induce phosphorylation of moesin which depended on Erk signaling pathway and Erk inhibitor PD98059 could block moesin phosphorylation. Effects of TGF-β1 on moesin phosphorylation was prior to its activation to total moesin. RNA silencing studies showed that knocking down of moesin could attenuate decrease of E-Cadherin induced by TGF-β1.

Conclusion

We find that moesin might be involved in renal fibrosis and its effects could be related to interacting with E-Cadherin.  相似文献   

12.
13.
Renal fibrosis is responsible for progressive renal diseases that cause chronic renal failure. Sfrp1 (secreted Frizzled-related protein 1) is highly expressed in kidney, although little is known about connection between the protein and renal diseases. Here, we focused on Sfrp1 to investigate its roles in renal fibrosis using a mouse model of unilateral ureteral obstruction (UUO). In wild-type mice, the expression of Sfrp1 protein was markedly increased after UUO. The kidneys from Sfrp1 knock-out mice showed significant increase in expression of myofibrobast markers, α-smooth muscle actin (αSMA). Sfrp1 deficiency also increased protein levels of the fibroblast genes, vimentin, and decreased those of the epithelial genes, E-cadherin, indicated that enhanced epithelial-to-mesenchymal transition. There was no difference in the levels of canonical Wnt signaling; rather, the levels of phosphorylated c-Jun and JNK were more increased in the Sfrp1−/− obstructed kidney. Moreover, the apoptotic cell population was significantly elevated in the obstructed kidneys from Sfrp1−/− mice following UUO but was slightly increased in those from wild-type mice. These results indicate that Sfrp1 is required for inhibition of renal damage through the non-canonical Wnt/PCP pathway.  相似文献   

14.
We investigated activation signaling events in bone marrow-derived macrophages after infection with Leishmania donovani, an intracellular parasite of macrophages. Leishmania donovani infection caused a general suppression of activation parameters like O2- and NO production. However, conditions which allow parasite attachment and prevent entry resulted in triggering of O2- and NO production and stimulation of O2 consumption. Optimal NO and O2- production occurred when bone marrow-derived macrophages and Leishmania ratio was 1:100. The activation signal for O2- production was initiated 15 min after parasite attachment, whereas augmentation of NO production started 6 h after attachment. Activation of O2- and NO generation by L. donovani attachment was inhibited by staurosporine as well as by prolonged treatment of phorbol myristate acetate suggesting a protein kinase C-dependent mechanism. Translocation studies showed that protein kinase C activity in cell membrane fraction rapidly and transiently increased following parasite attachment. No such protein kinase C translocation event occurred in L. donovani infected bone marrow-derived macrophages. Phorbol myristate acetate was found to stimulate membrane translocation of protein kinase C in parasite attached cells whereas it was impaired in infected cells. However, both attachment and infection induced a similar shift of phorbol receptors from cytosolic to membrane fraction indicating that in infected cells the translocation of protein kinase C protein was not impaired but the activity of the membrane associated enzyme was somehow inhibited. These results suggest that although internalization of intracellular parasites like L. donovani caused inhibition of nitrite and superoxide release, mere attachment on macrophage surface resulted in an activation of protein kinase C-mediated downstream oxidative events.  相似文献   

15.
16.
Nitrification, the microbial oxidation of ammonium to nitrate, is a central part of the nitrogen cycle. In the ocean’s surface layer, the process alters the distribution of inorganic nitrogen species available to phytoplankton and produces nitrous oxide. A widely held idea among oceanographers is that nitrification is inhibited by light in the ocean. However, recent evidence that the primary organisms involved in nitrification, the ammonia-oxidizing archaea (AOA), are present and active throughout the surface ocean has challenged this idea. Here we show, through field experiments coupling molecular genetic and biogeochemical approaches, that competition for ammonium with phytoplankton is the strongest regulator of nitrification in the photic zone. During multiday experiments at high irradiance a single ecotype of AOA remained active in the presence of rapidly growing phytoplankton. Over the course of this three day experiment, variability in the intensity of competition with phytoplankton caused nitrification rates to decline from those typical of the lower photic zone (60 nmol L−1 d−1) to those in well-lit layers (<1 nmol L−1 d−1). During another set of experiments, nitrification rates exhibited a diel periodicity throughout much of the photic zone, with the highest rates occurring at night when competition with phytoplankton is lowest. Together, the results of our experiments indicate that nitrification rates in the photic zone are more strongly regulated by competition with phytoplankton for ammonium than they are by light itself. This finding advances our ability to model the impact of nitrification on estimates of new primary production, and emphasizes the need to more strongly consider the effects of organismal interactions on nutrient standing stocks and biogeochemical cycling in the surface of the ocean.  相似文献   

17.

Background

Chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1), belongs to the CC chemokine family that is associated with the disease status and outcomes of osteoarthritis (OA). Here, we investigated the intracellular signaling pathways involved in CCL2-induced vascular cell adhesion molecule-1 (VCAM-1) expression in human OA synovial fibroblasts (OASFs).

Methodology/Principal Findings

Stimulation of OASFs with CCL2 induced VCAM-1 expression. CCL2-mediated VCAM-1 expression was attenuated by CCR2 inhibitor (RS102895), PKCδ inhibitor (rottlerin), p38MAPK inhibitor (SB203580), and AP-1 inhibitors (curcumin and tanshinone IIA). Stimulation of cells with CCL2 increased PKCδ and p38MAPK activation. Treatment of OASFs with CCL2 also increased the c-Jun phosphorylation and c-Jun binding to the AP-1 element on the VCAM-1 promoter. Moreover, CCL2-mediated CCR2, PKCδ, p38MAPK, and AP-1 pathway promoted the adhesion of monocytes to the OASFs monolayer.

Conclusions/Significance

Our results suggest that CCL2 increases VCAM-1 expression in human OASFs via the CCR2, PKCδ, p38MAPK, c-Jun, and AP-1 signaling pathway. The CCL2-induced VCAM-1 expression promoted monocytes adhesion to human OASFs.  相似文献   

18.
肾间质纤维化是终末期肾脏病的病理基础,肾脏衰老是肾间质纤维化的危险因素。越来越多的研究证明,脂代谢紊乱会导致肾脏衰老和肾间质纤维化。脂代谢紊乱引起的脂质堆积,会造成脂毒性和细胞应激性损伤,从而诱发衰老与细胞外基质(extracellular matrix,ECM)的分泌。维持脂代谢稳态有助于减轻肾脏衰老与肾间质纤维化的发生发展。脂代谢途径的关键酶和调控蛋白有望成为改善肾脏衰老和肾间质纤维化的潜在靶点。本综述概括了脂代谢紊乱在肾脏衰老和间质纤维化中的作用,并对脂代谢中肾脏衰老和间质纤维化的预防靶点和策略进行了总结,为治疗肾纤维化发现新靶点提供了参考。  相似文献   

19.
Menin, the product of the multiple endocrine neoplasia type 1 (Men1) tumor suppressor gene, mediates the cell proliferation and differentiation actions of transforming growth factor-β (TGF-β) ligand family members. In vitro, menin modulates osteoblastogenesis and osteoblast differentiation promoted and sustained by bone morphogenetic protein-2 (BMP-2) and TGF-β, respectively. To examine the in vivo function of menin in bone, we conditionally inactivated Men1 in mature osteoblasts by crossing osteocalcin (OC)-Cre mice with floxed Men1 (Men1f/f) mice to generate mice lacking menin in differentiating osteoblasts (OC-Cre;Men1f/f mice). These mice displayed significant reduction in bone mineral density, trabecular bone volume, and cortical bone thickness compared with control littermates. Osteoblast and osteoclast number as well as mineral apposition rate were significantly reduced, whereas osteocyte number was increased. Primary calvarial osteoblasts proliferated more quickly but had deficient mineral apposition and alkaline phosphatase activity. Although the mRNA expression of osteoblast marker and cyclin-dependent kinase inhibitor genes were all reduced, that of cyclin-dependent kinase, osteocyte marker, and pro-apoptotic genes were increased in isolated Men1 knock-out osteoblasts compared with controls. In contrast to the knock-out mice, transgenic mice overexpressing a human menin cDNA in osteoblasts driven by the 2.3-kb Col1a1 promoter, showed a gain of bone mass relative to control littermates. Osteoblast number and mineral apposition rate were significantly increased in the Col1a1-Menin-Tg mice. Therefore, osteoblast menin plays a key role in bone development, remodeling, and maintenance.  相似文献   

20.

Background

Microglia of the central nervous system act as sentinels and rapidly react to infection or inflammation. The pathophysiological role of bone marrow-derived microglia is of particular interest because they affect neurodegenerative disorders and neuropathic pain. The hypothesis of the current study is that chronic psychological stress (chronic PS) induces the infiltration of bone marrow-derived microglia into hypothalamus by means of chemokine axes in brain and bone marrow.

Methods and Findings

Here we show that bone marrow-derived microglia specifically infiltrate the paraventricular nucleus (PVN) of mice that received chronic PS. Bone marrow derived-microglia are CX3CR1lowCCR2+CXCR4high, as distinct from CX3CR1highCCR2-CXCR4low resident microglia, and express higher levels of interleukin-1β (IL-1β) but lower levels of tumor necrosis factor-α (TNF-α). Chronic PS stimulates the expression of monocyte chemotactic protein-1 (MCP-1) in PVN neurons, reduces stromal cell-derived factor-1 (SDF-1) in the bone marrow and increases the frequency of CXCR4+ monocytes in peripheral circulation. And then a chemokine (C-C motif) receptor 2 (CCR2) or a β3-adrenoceptor blockade prevents infiltration of bone marrow-derived microglia in the PVN.

Conclusion

Chronic PS induces the infiltration of bone marrow-derived microglia into PVN, and it is conceivable that the MCP-1/CCR2 axis in PVN and the SDF-1/CXCR4 axis in bone marrow are involved in this mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号