首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Crosstalk between integrins and FGF receptors has been implicated in FGF signaling, but the specifics of the crosstalk are unclear. We recently discovered that 1) FGF1 directly binds to integrin αvβ3, 2) the integrin-binding site and FGF receptor (FGFR) binding site are distinct, and 3) the integrin-binding-defective FGF1 mutant (R50E) is defective in inducing FGF signaling although R50E still binds to FGFR and heparin and induces transient ERK1/2 activation.

Principal Findings

We tested if excess R50E affect DNA synthesis and cell survival induced by WT FGF1 in BaF3 mouse pro-B cells expressing human FGFR1. R50E suppressed DNA synthesis and cell proliferation induced by WT FGF1. We tested if WT FGF1 and R50E generate integrin-FGF1-FGFR ternary complex. WT FGF1 induced ternary complex formation (integrin-FGF-FGFR1) and recruitment of SHP-2 to the complex in NIH 3T3 cells and human umbilical endothelial cells, but R50E was defective in these functions. It has been reported that sustained ERK1/2 activation is integrin-dependent and crucial to cell cycle entry upon FGF stimulation. We thus determined the time-course of ERK1/2 activation induced by WT FGF1 and R50E. We found that WT FGF1 induced sustained activation of ERK1/2, but R50E was defective in this function.

Conclusions/Significance

Our results suggest that 1) R50E is a dominant-negative mutant, 2) Ternary complex formation is involved in FGF signaling, 3) The defect of R50E to bind to integrin may be directly related to the antagonistic action of R50E. Taken together, these results suggest that R50E has potential as a therapeutic in cancer.  相似文献   

2.
U12, one of 20 derivatives synthesized from ursodeoxycholic acid (UDCA), has been found to have anticancer effects in liver cancer cell lines (SMMC-7721 and HepG2) and to protect normal liver cells from deoxycholic acid (DCA) damage (QSG-7701). Its anticancer mechanism was investigated using computer-aided network pharmacology and comparative proteomics. Results showed that its anti-malignancy activities were activated by mTOR/S6K1, cyclinD1/CDK2/4 and caspase-dependent apoptotic signaling pathways in hepatocellular carcinoma cells (HCC). The action of U12 may be similar to that of rapamycin. Animal testing confirmed that U12 exerted better anti-tumor activity than UDCA and had less severe side effects than fluorouracil (5-Fu). These observations indicate that U12 differs from UDCA and other derivatives and may be a suitable lead for the development of compounds useful in the treatment of HCC.  相似文献   

3.
Based on the data about structure and antidiabetic activity of twenty seven vanadium and zinc coordination complexes collected from literature we developed QSAR models using the GUSAR program. These QSAR models were applied to 10 novel vanadium coordination complexes designed in silico in order to predict their hypoglycemic action. The five most promising substances with predicted potent hypoglycemic action were selected for chemical synthesis and pharmacological evaluation. The selected coordination vanadium complexes were synthesized and tested in vitro and in vivo for their hypoglycemic activities and acute rat toxicity. Estimation of acute rat toxicity of these five vanadium complexes was performed using a freely available web-resource (http://way2drug.com/GUSAR/acutoxpredict.html). It has shown that the selected compounds belong to the class of moderate toxic pharmaceutical agents, according to the scale of Hodge and Sterner. Comparison with the predicted data has demonstrated a reasonable correspondence between the experimental and predicted values of hypoglycemic activity and toxicity. Bis{tert-butyl[amino(imino)methyl]carbamato}oxovanadium (IV) and sodium(2,2′-Bipyridyl)oxo-diperoxovanadate(V) octahydrate were identified as the most potent hypoglycemic agents among the synthesized compounds.  相似文献   

4.
The cholinergic anti-inflammatory pathway is one of the putative biochemical pathways that link diabetes with Alzheimer disease. Hence, we aimed to verify the potential antidiabetic effect of galantamine, unveil the possible mechanisms and evaluate its interaction with vildagliptin. The n5-STZ rat model was adopted and the diabetic animals were treated with galantamine and/or vildagliptin for 4 weeks. Galantamine lowered the n5-STZ-induced elevation in body weight, food/water intake, serum levels of glucose, fructosamine, and ALT/AST, as well as AChE in the tested organs. Moreover, it modulated successfully the lipid profile assessed in serum, liver, and muscle, and increased serum insulin level, as well as % β-cell function, in a pattern similar to that of vildagliptin. Additionally, galantamine confirmed its antioxidant (Nrf2, TAC, MDA), anti-inflammatory (NF-κB, TNF-α, visfatin, adiponectin) and anti-apoptotic (caspase-3, cytochrome c) capabilities by altering the n5-STZ effect on all the aforementioned parameters. On the molecular level, galantamine/vildagliptin have improved the insulin (p-insulin receptor, p-Akt, GLUT4/GLUT2) and Wnt/β-catenin (p-GSK-3β, β-catenin) signaling pathways. On almost all parameters, the galantamine effects surpassed that of vildagliptin, while the combination regimen showed the best effects. The present results clearly proved that galantamine modulated glucose/lipid profile possibly through its anti-oxidant, -apoptotic, -inflammatory and -cholinesterase properties. These effects could be attributed partly to the enhancement of insulin and Wnt/β-catenin signaling pathways. Galantamine can be strongly considered as a potential antidiabetic agent and as an add-on therapy with other oral antidiabetics.  相似文献   

5.
The imbalance of CD4+CD25+ regulatory T (Treg) cells and Th17 cells has shown to be involved in pathogenesis of atherosclerosis and acute coronary syndrome [ACS, including unstable angina (UA) and acute myocardial infarction (AMI)]. The purpose of this study is to explore the significance of Treg/Th17 ratio in early diagnosis for ACS. We detected expression of Treg and Th17 in patients with AMI, UA, stable angina, and subjects with normal coronary arteries at the time of admission. Our results showed that ACS patients have a significant increase of Th17 number, but a marked decline of Treg/Th17 ratio, Treg number, and Treg function. Significant positive correlations in Th17 frequency and negative correlation in Treg frequency, Treg/Th17 ratio were found to levels of oxidized low-density lipoprotein (Ox-LDL), high sensitive C-reactive protein (hsCRP), Lipoprotein (a) [Lp(a)], and Creatine kinase-MB(mass) (CK-MBmass) in serum. Receiver-operating characteristic curves shown that the predictive specificity and sensitivity of Treg/Th17 ratio for ACS and AMI was the highest among all the five markers: Ox-LDL, hsCRP, Lp(a), CK-MBmass, and Treg/Th17 ratio. In conclusion, Treg/Th17 ratio appeared to be a novel indicator for early diagnosis of ACS.  相似文献   

6.
7.
Phosphodiesterase 10A (PDE10A) inhibition is a novel and promising approach for the treatment of central nervous system disorders such as schizophrenia and Huntington’s disease. A novel PDE10A inhibitor, TAK-063 [1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)-pyridazin-4(1H)-one] has shown high inhibitory activity and selectivity for human recombinant PDE10A2 in vitro; the half-maximal inhibitory concentration was 0.30 nM, and selectivity over other phosphodiesterases (PDEs) was more than 15000-fold. TAK-063 at 10 µM did not show more than 50% inhibition or stimulation of 91 enzymes or receptors except for PDEs. In vitro autoradiography (ARG) studies using rat brain sections revealed that [3H]TAK-063 selectively accumulated in the caudate putamen (CPu), nucleus accumbens (NAc), globus pallidus, substantia nigra, and striatonigral projection, where PDE10A is highly expressed. This [3H]TAK-063 accumulation was almost entirely blocked by an excess amount of MP-10, a PDE10A selective inhibitor, and the accumulation was not observed in brain slices of Pde10a-knockout mice. In rat brain sections, [3H]TAK-063 bound to a single high-affinity site with mean ± SEM dissociation constants of 7.2 ± 1.2 and 2.6 ± 0.5 nM for the CPu and NAc shell, respectively. Orally administered [14C]TAK-063 selectively accumulated in PDE10A expressing brain regions in an in vivo ARG study in rats. Striatal PDE10A occupancy by TAK-063 in vivo was measured using T-773 as a tracer and a dose of 0.88 mg/kg (p.o.) was calculated to produce 50% occupancy in rats. Translational studies with TAK-063 and other PDE10A inhibitors such as those presented here will help us better understand the pharmacological profile of this class of potential central nervous system drugs.  相似文献   

8.
9.
10.
HER2 is overexpressed in 20–25% of breast cancers. Overexpression of HER2 is an adverse prognostic factor and correlates with decreased patient survival. HER2 stimulates breast tumorigenesis via a number of intracellular signaling molecules, including PI3K/AKT and MAPK/ERK. S100A14, one member of the S100 protein family, is significantly associated with outcome of breast cancer patients. Here, for the first time, we show that S100A14 and HER2 are coexpressed in invasive breast cancer specimens, and there is a significant correlation between the expression levels of the two proteins by immunohistochemistry. S100A14 and HER2 are colocalized in plasma membrane of breast cancer tissue cells and breast cancer cell lines BT474 and SK-BR3. We demonstrate that S100A14 binds directly to HER2 by co-immunoprecipitation and pull-down assays. Further study shows that residues 956–1154 of the HER2 intracellular domain and residue 83 of S100A14 are essential for the two proteins binding. Moreover, we observe a decrease of HER2 phosphorylation, downstream signaling, and HER2-stimulated cell proliferation in S100A14-silenced MCF-7, BT474, and SK-BR3 cells. Our findings suggest that S100A14 functions as a modulator of HER2 signaling and provide mechanistic evidence for its role in breast cancer progression.  相似文献   

11.
In this letter, we report discovery of diacylphloroglucinol compounds as a new class of GPR40 (FFAR1) agonists. Several diacylphloroglucinols with varying length of acyl functionality and substitution on aromatic hydroxyls were synthesized and evaluated for GPR40 agonism using functional calcium-flux assay. Out of 17 compounds evaluated, 14, 17, 19 and 25 exhibited good GPR40 agonistic activity with EC(50) values ranging from 0.07 to 8 microM (pEC(50) 7.12-5.09), respectively, with maximal agonistic response of 84-102%.  相似文献   

12.
13.
Adenosine-5’-triphosphate (ATP) is generally regarded as a substrate for energy currency and protein modification. Recent findings uncovered the allosteric function of ATP in cellular signal transduction but little is understood about this critical behavior of ATP. Through extensive analysis of ATP in solution and proteins, we found that the free ATP can exist in the compact and extended conformations in solution, and the two different conformational characteristics may be responsible for ATP to exert distinct biological functions: ATP molecules adopt both compact and extended conformations in the allosteric binding sites but conserve extended conformations in the substrate binding sites. Nudged elastic band simulations unveiled the distinct dynamic processes of ATP binding to the corresponding allosteric and substrate binding sites of uridine monophosphate kinase, and suggested that in solution ATP preferentially binds to the substrate binding sites of proteins. When the ATP molecules occupy the allosteric binding sites, the allosteric trigger from ATP to fuel allosteric communication between allosteric and functional sites is stemmed mainly from the triphosphate part of ATP, with a small number from the adenine part of ATP. Taken together, our results provide overall understanding of ATP allosteric functions responsible for regulation in biological systems.  相似文献   

14.
N-myristoyltransferase (NMT) plays critical roles in the modulation of various signaling molecules, however, the regulation of this enzyme in diverse cellular states remains poorly understood. We provide experimental evidence to show for the first time that for the isoform 1 of human NMT (hNMT1), the regulatory roles extend into the catalytic core. In our present study, we expressed, purified, and characterized a truncation mutant devoid of 28 N-terminal amino acids from the catalytic module (Δ28-hNMT1s) and compared its properties to the full-length catalytic domain of hNMT1. The deletion of the N-terminal peptide had no effect on the enzyme stability. Our findings suggest that the N-terminal region in the catalytic module of hNMT1 functions serves as a regulatory control element. The observations of an ~3 fold increase in enzymatic efficiency following removal of the N-terminal peptide of hNMT1s indicates that N-terminal amino acids acts as an inhibitory segment and negatively regulate the enzyme activity. Our findings that the N-terminal region confers control over activity, taken together with the earlier observations that the N-terminal of hNMT1 is differentially processed in diverse cellular states, suggests that the proteolytic processing of the peptide segment containing the inhibitory region provides a molecular mechanism for physiological up-regulation of myristoyltransferase activity.  相似文献   

15.
Growing evidence demonstrates that extracellular matrices regulate many aspects of megakaryocyte (MK) development; however, among the different extracellular matrix receptors, integrin α2β1 and glycoprotein VI are the only collagen receptors studied in platelets and MKs. In this study, we demonstrate the expression of the novel collagen receptor discoidin domain receptor 1 (DDR1) by human MKs at both mRNA and protein levels and provide evidence of DDR1 involvement in the regulation of MK motility on type I collagen through a mechanism based on the activity of SHP1 phosphatase and spleen tyrosine kinase (Syk). Specifically, we demonstrated that inhibition of DDR1 binding to type I collagen, preserving the engagement of the other collagen receptors, glycoprotein VI, α2β1, and LAIR-1, determines a decrease in MK migration due to the reduction in SHP1 phosphatase activity and consequent increase in the phosphorylation level of its main substrate Syk. Consistently, inhibition of Syk activity restored MK migration on type I collagen. In conclusion, we report the expression and function of a novel collagen receptor on human MKs, and we point out that an increasing level of complexity is necessary to better understand MK-collagen interactions in the bone marrow environment.  相似文献   

16.
Yolk granules were collected from full-grown ovarian oocytes of the newt, Cynops pyrrhogaster , and dissolved in 3% acetic acid or 8 M urea solution. Culture dishes were then coated with either of the yolk-granule solutions. The yolk-coated surfaces acted as adhesive substrata for dissociated gastrula cells, which showed active locomotion when spread on the surfaces. Divalent cation was required for cell adhesion and spreading on the yolk-coated surface. Trypsin and glycosidase digestions of dissociated cells or the yolk-coated surfaces inhibited cell adhesion and spreading. Addition of concanavalin A to the culture medium inhibited cell spreading on the yolk-coated surfaces, while high concentration (50 mM) of the saccharides, D-galactose, D-lactose and D-mannose, had a slightly inhibitory effect on cell spreading.
Two yolk components (30-kD and 108-kD proteins) were isolated from yolk granules and applied to the culture dish surfaces. Surfaces coated with the 30-kD protein showed strong adhesiveness for dissociated gastrula cells.  相似文献   

17.
Aquaporins facilitate efficient diffusion of water across cellular membranes, and water homeostasis is critically important in conditions such as cerebral edema. Changes in aquaporin 1 and 4 expression in the brain are associated with cerebral edema, and the lack of water channel modulators is often highlighted. Here we present evidence of an endogenous modulator of aquaporin 1 and 4. We identify miR-320a as a potential modulator of aquaporin 1 and 4 and explore the possibility of using miR-320a to alter the expression of aquaporin 1 and 4 in normal and ischemic conditions. We show that precursor miR-320a can function as an inhibitor, whereas anti-miR-320a can act as an activator of aquaporin 1 and 4 expressions. We have also shown that anti-miR-320a could bring about a reduction of infarct volume in cerebral ischemia with a concomitant increase in aquaporins 1 and 4 mRNA and protein expression.  相似文献   

18.
19.
The protein G0/G1 switch gene 2 (G0S2) is a small basic protein that functions as an endogenous inhibitor of adipose triglyceride lipase (ATGL), a key enzyme in intracellular lipolysis. In this study, we identified a short sequence covering residues Lys-20 to Ala-52 in G0S2 that is still fully capable of inhibiting mouse and human ATGL. We found that a synthetic peptide corresponding to this region inhibits ATGL in a noncompetitive manner in the nanomolar range. This peptide is highly selective for ATGL and does not inhibit other lipases, including hormone-sensitive lipase, monoacylglycerol lipase, lipoprotein lipase, and patatin domain-containing phospholipases 6 and 7. Because increased lipolysis is linked to the development of metabolic disorders, the inhibition of ATGL by G0S2-derived peptides may represent a novel therapeutic tool to modulate lipolysis.  相似文献   

20.
Glibenclamide (GL)-loaded microcapsules (MC) and transdermal patches (TDP) were formulated and in vitro and in vivo parameters compared to find out the best route of drug administration. The formulation TDP1 having a drug–polymer ratio 1:1 showed comparatively higher GL release and better permeation across mice skin (p < 0.05). From the comparative study, it was concluded that the transdermal system of GL produced better improvement compared to oral microcapsule administration (p < 0.05). The transdermal system exhibited comparatively slow and continuous supply of GL at a desired rate to systemic circulation avoiding metabolism, which improved day-to-day glycemic control in diabetic subjects. Transdermal system of GL exhibited better control of hyperglycemia and prolonged plasma half-life by transdermal systems (9.6 ± 1.2 h) in comparison with oral microcapsule (5.84 ± 2.1 h), indicating that the drug, when administered by transdermal systems, will remain in the body for a longer period. From the glucose tolerance test, transdermal route effectively maintained the normoglycemic levels in contrast to the oral group (MC1), which produced remarkable hypoglycemia ranging from −12.6 ± 2.1% to −18 ± 2.3%. The significantly high (p < 0.05) area under the curve values observed with transdermal system (1,346.2 ± 92.3 ng ml−1 h−1) also indicate increased bioavailability of the drug from these systems compared to the oral route (829.8 ± 76.4 ng ml−1 h−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号