首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Noisy bistable dynamics in gene regulation can underlie stochastic switching and is demonstrated to be beneficial under fluctuating environments. It is not known, however, if fluctuating selection alone can result in bistable dynamics. Using a stochastic model of simple feedback networks, we apply fluctuating selection on gene expression and run in silico evolutionary simulations. We find that independent of the specific nature of the environment–fitness relationship, the main outcome of fluctuating selection is the evolution of increased evolvability in the network; system parameters evolve toward a nonlinear regime where phenotypic diversity is increased and small changes in genotype cause large changes in expression level. In the presence of noise, the evolution of increased nonlinearity results in the emergence and maintenance of bistability. Our results provide the first direct evidence that bistability and stochastic switching in a gene regulatory network can emerge as a mechanism to cope with fluctuating environments. They strongly suggest that such emergence occurs as a byproduct of evolution of evolvability and exploitation of noise by evolution.  相似文献   

2.
3.
Genetically identical cells can show phenotypic variability. This is often caused by stochastic events that originate from randomness in biochemical processes involving in gene expression and other extrinsic cellular processes. From an engineering perspective, there have been efforts focused on theory and experiments to control noise levels by perturbing and replacing gene network components. However, systematic methods for noise control are lacking mainly due to the intractable mathematical structure of noise propagation through reaction networks. Here, we provide a numerical analysis method by quantifying the parametric sensitivity of noise characteristics at the level of the linear noise approximation. Our analysis is readily applicable to various types of noise control and to different types of system; for example, we can orthogonally control the mean and noise levels and can control system dynamics such as noisy oscillations. As an illustration we applied our method to HIV and yeast gene expression systems and metabolic networks. The oscillatory signal control was applied to p53 oscillations from DNA damage. Furthermore, we showed that the efficiency of orthogonal control can be enhanced by applying extrinsic noise and feedback. Our noise control analysis can be applied to any stochastic model belonging to continuous time Markovian systems such as biological and chemical reaction systems, and even computer and social networks. We anticipate the proposed analysis to be a useful tool for designing and controlling synthetic gene networks.  相似文献   

4.
5.
6.
The cellular environment is abuzz with noise originating from the inherent random motion of reacting molecules in the living cell. In this noisy environment, clonal cell populations show cell‐to‐cell variability that can manifest significant phenotypic differences. Noise‐induced stochastic fluctuations in cellular constituents can be measured and their statistics quantified. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever‐present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We show that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. This establishes a potentially powerful approach for the identification of gene networks and offers a new window into the workings of these networks.  相似文献   

7.
Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error, which occurs when the network responds on average to other features of the input trajectory as well as to the signal of interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are stochastic. Trade-offs between these two errors can determine the system''s fidelity. By developing mathematical approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical noise (mechanistic error) can improve fidelity and that both negative and positive feedback degrade fidelity, for standard models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular behavior in natural, dynamic environments.  相似文献   

8.
9.
Autoregulatory feedback loops, where the protein expressed from a gene inhibits or activates its own expression are common gene network motifs within cells. In these networks, stochastic fluctuations in protein levels are attributed to two factors: intrinsic noise (i.e., the randomness associated with mRNA/protein expression and degradation) and extrinsic noise (i.e., the noise caused by fluctuations in cellular components such as enzyme levels and gene-copy numbers). We present results that predict the level of both intrinsic and extrinsic noise in protein numbers as a function of quantities that can be experimentally determined and/or manipulated, such as the response time of the protein and the level of feedback strength. In particular, we show that for a fixed average number of protein molecules, decreasing response times leads to attenuation of both protein intrinsic and extrinsic noise, with the extrinsic noise being more sensitive to changes in the response time. We further show that for autoregulatory networks with negative feedback, the protein noise levels can be minimal at an optimal level of feedback strength. For such cases, we provide an analytical expression for the highest level of noise suppression and the amount of feedback that achieves this minimal noise. These theoretical results are shown to be consistent and explain recent experimental observations. Finally, we illustrate how measuring changes in the protein noise levels as the feedback strength is manipulated can be used to determine the level of extrinsic noise in these gene networks.  相似文献   

10.
11.
Geisel N  Vilar JM  Rubi JM 《PloS one》2011,6(4):e18622
Bacteria spend most of their lifetime in non-growing states which allow them to survive extended periods of stress and starvation. When environments improve, they must quickly resume growth to maximize their share of limited nutrients. Cells with higher stress resistance often survive longer stress durations at the cost of needing more time to resume growth, a strong disadvantage in competitive environments. Here we analyze the basis of optimal strategies that microorganisms can use to cope with this tradeoff. We explicitly show that the prototypical inverse relation between stress resistance and growth rate can explain much of the different types of behavior observed in stressed microbial populations. Using analytical mathematical methods, we determine the environmental parameters that decide whether cells should remain vegetative upon stress exposure, downregulate their metabolism to an intermediate optimum level, or become dormant. We find that cell-cell variability, or intercellular noise, is consistently beneficial in the presence of extreme environmental fluctuations, and that it provides an efficient population-level mechanism for adaption in a deteriorating environment. Our results reveal key novel aspects of responsive phenotype switching and its role as an adaptive strategy in changing environments.  相似文献   

12.
Adaptive phenotypic plasticity is a potent but not ubiquitous solution to environmental heterogeneity, driving interest in what factors promote and limit its evolution. Here, a novel computational model representing stochastic information flow in development is used to explore evolution from a constitutive phenotype to an adaptively plastic response. Results show that populations tend to evolve robustness to developmental stochasticity, but that this evolved robustness limits evolvability; specifically, robust genotypes have less ability to evolve adaptive plasticity when presented with a mix of both the ancestral environment and a new environment. Analytic calculations and computational experiments confirm that this constraint occurs when the initial mutational steps towards plasticity are pleiotropic, such that mutant fitnesses decline in the environment to which their parents are well‐adapted. Greater phenotypic variability improves evolvability in the model by lessening this decline as well as by improving the fitness of partial adaptations to the new environment. By making initial plastic mutations more palatable to natural selection, phenotypic variability can increase the evolvability of an innovative, plastic response without improving evolvability to simpler challenges such as a shifted optimum in a single environment. Populations that evolved robustness by negative feedback between the trait and its rate of change show a particularly strong constraining effect on the evolvability of plasticity, revealing another mechanism by which evolutionary history can limit later innovation. These results document a novel mechanism by which weakening selection could actually stimulate the evolution of a major innovation.  相似文献   

13.
Phenotypic variation in two populations of the White Sea herring Clupea pallasi marisalbi (Berg) (spring spawners and summer spawners), based on 21 meristic and 21 morphometric bilateral characters, has been studied. Total phenotypic variance was partitioned into a within-individual or stochastic component (fluctuating asymmetry) and an among-individual or factorial component, reflecting heterogeneity among individuals and resulting from the diversity of genotypes and environments. Both standardized stochastic and factorial components show clear negative correlations with means across characters. Negative correlation of the factorial components with means is in contradiction to the commonly accepted explanation of negative means-standardized variances association. Slopes of regression of standardized stochastic variances on means in meristic characters was significantly higher in summer spawners than in spring spawners, and results in discordance of stochastic variance across characters: it is higher in spring spawners for low and average variability characters and does not differ for both populations for high variability characters. The populations do not show notable differences in variation of morphometric characters. Consideration of other available data on these populations, such as spawning behaviour and salinity resistance of larvae, suggests that the lower slope of regression of stochastic variances on means is associated with the reduced viability of spring spawners  相似文献   

14.
Mammalian cells respond in a variable manner when provided with physiological pulses of ligand, such as low concentrations of acetylcholine present for just tens of seconds or TNFα for just tens of minutes. For a two-pulse stimulation, some cells respond to both pulses, some do not respond, and yet others respond to only one or the other pulse. Are these different response patterns the result of the small number of ligands being able to only stochastically activate the pathway at random times or an output pattern from a deterministic algorithm responding differently to different stimulation intervals? If the response is deterministic in nature, what parameters determine whether a response is generated or skipped? To answer these questions, we developed a two-pulse test that utilizes different rest periods between stimulation pulses. This “rest-period test” revealed that cells skip responses predictably as the rest period is shortened. By combining these experimental results with a mathematical model of the pathway, we further obtained mechanistic insight into potential sources of response variability. Our analysis indicates that in both intracellular calcium and NFκB signaling, response variability is consistent with extrinsic noise (cell-to-cell variability in protein levels), a short-term memory of stimulation, and high Hill coefficient processes. Furthermore, these results support recent works that have emphasized the role of deterministic processes for explaining apparently stochastic cellular response variability and indicate that even weak stimulations likely guide mammalian cells to appropriate fates rather than leaving outcomes to chance. We envision that the rest-period test can be applied to other signaling pathways to extract mechanistic insight.  相似文献   

15.
Gamma-band synchronization has been linked to attention and communication between brain regions, yet the underlying dynamical mechanisms are still unclear. How does the timing and amplitude of inputs to cells that generate an endogenously noisy gamma rhythm affect the network activity and rhythm? How does such ”communication through coherence” (CTC) survive in the face of rhythm and input variability? We present a stochastic modelling approach to this question that yields a very fast computation of the effectiveness of inputs to cells involved in gamma rhythms. Our work is partly motivated by recent optogenetic experiments (Cardin et al. Nature, 459(7247), 663–667 2009) that tested the gamma phase-dependence of network responses by first stabilizing the rhythm with periodic light pulses to the interneurons (I). Our computationally efficient model E-I network of stochastic two-state neurons exhibits finite-size fluctuations. Using the Hilbert transform and Kuramoto index, we study how the stochastic phase of its gamma rhythm is entrained by external pulses. We then compute how this rhythmic inhibition controls the effectiveness of external input onto pyramidal (E) cells, and how variability shapes the window of firing opportunity. For transferring the time variations of an external input to the E cells, we find a tradeoff between the phase selectivity and depth of rate modulation. We also show that the CTC is sensitive to the jitter in the arrival times of spikes to the E cells, and to the degree of I-cell entrainment. We further find that CTC can occur even if the underlying deterministic system does not oscillate; quasicycle-type rhythms induced by the finite-size noise retain the basic CTC properties. Finally a resonance analysis confirms the relative importance of the I cell pacing for rhythm generation. Analysis of whole network behaviour, including computations of synchrony, phase and shifts in excitatory-inhibitory balance, can be further sped up by orders of magnitude using two coupled stochastic differential equations, one for each population. Our work thus yields a fast tool to numerically and analytically investigate CTC in a noisy context. It shows that CTC can be quite vulnerable to rhythm and input variability, which both decrease phase preference.  相似文献   

16.
Burst-like synthesis of protein is a significant source of cell-to-cell variability in protein levels. Negative feedback is a common example of a regulatory mechanism by which such stochasticity can be controlled. Here we consider a specific kind of negative feedback, which makes bursts smaller in the excess of protein. Increasing the strength of the feedback may lead to dramatically different outcomes depending on a key parameter, the noise load, which is defined as the squared coefficient of variation the protein exhibits in the absence of feedback. Combining stochastic simulation with asymptotic analysis, we identify a critical value of noise load: for noise loads smaller than critical, the coefficient of variation remains bounded with increasing feedback strength; contrastingly, if the noise load is larger than critical, the coefficient of variation diverges to infinity in the limit of ever greater feedback strengths. Interestingly, feedbacks with lower cooperativities have higher critical noise loads, suggesting that they can be preferable for controlling noisy proteins.  相似文献   

17.
Resonance effects and outbreaks in ecological time series   总被引:3,自引:0,他引:3  
Blarer  & Doebeli 《Ecology letters》1999,2(3):167-177
Organismal response to environmental variability is an important aspect of ecological processes. We propose new mechanisms whereby environmental variability can cause cyclic population outbreaks due to the nonlinearity of the organismal response. We consider stage-structured populations that respond to variable environments with variable diapause or dormancy, and in which cyclic changes of the environment induce a resonance-like boost in the population size. If there is also a stochastic component of variation in the environment, the population outbreaks are magnified by the phenomenon of "stochastic resonance". The results show that large population fluctuations may not be due to extrinsic or intrinsic factors alone, but to a nonlinear interaction between the external environment and internal population processes. Indeed, in the presence of such nonlinearities even very small environmental fluctuations can cause massive fluctuations in population size. Our theoretical results may help to explain periodic population cycles and outbreak dynamics found in many infectious diseases and pest species. We also discuss the evolution of the response parameters that regulate diapause or dormancy and promote the outbreak dynamics in variable environments.  相似文献   

18.
19.
A massive integrative mathematical model of DNA double-strand break (DSB) generation, DSB repair system, p53 signaling network, and apoptosis induction pathway was constructed to explore the dominant factors of unknown criteria of cell fate decision. In the proposed model, intranuclear reactions were modeled as stochastic processes and cytoplasmic reactions as deterministic processes, and both reaction sets were simulated simultaneously. The simulated results at the single-cell level showed that the model generated several sustained oscillations (pulses) of p53, Mdm2, ATM, and Wip1, and cell-to-cell variability in the number of p53 pulses depended on IR intensity. In cell populations, the model generated damped p53 oscillations, and IR intensity affected the amplitude of the first p53 oscillation. Cells were then subjected to the same IR dose exhibiting apoptosis induction variability. These simulated results are in quantitative agreement with major biological findings observed in human breast cancer epithelial MCF7, NIH3T3, and fibrosarcoma cells, demonstrating that the proposed model was concededly biologically appropriate. Statistical analysis of the simulated results shows that the generation of multiple p53 pulses is a prerequisite for apoptosis induction. Furthermore, cells exhibited considerable individual variability in p53 dynamics, which correlated with intrinsic apoptosis induction. The simulated results based on the proposed model demonstrated that the stochasticity of intranuclear biochemical reaction processes controls the final decision of cell fate associated with DNA damage. Applying stochastic simulation to an exploration of intranuclear biochemical reaction processes is indispensable in enhancing the understanding of the dynamic characteristics of biological multi-layered systems of higher organisms.  相似文献   

20.
《Biophysical journal》2022,121(19):3600-3615
Epithelial-mesenchymal plasticity (EMP) is a key arm of cancer metastasis and is observed across many contexts. Cells undergoing EMP can reversibly switch between three classes of phenotypes: epithelial (E), mesenchymal (M), and hybrid E/M. While a large number of multistable regulatory networks have been identified to be driving EMP in various contexts, the exact mechanisms and design principles that enable robustness in driving EMP across contexts are not yet fully understood. Here, we investigated dynamic and structural robustness in EMP networks with regard to phenotypic heterogeneity and plasticity. We use two different approaches to simulate these networks: a computationally inexpensive, parameter-independent continuous state space Boolean model, and an ODE-based parameter-agnostic framework (RACIPE), both of which yielded similar phenotypic distributions. While the latter approach is useful for measurements of plasticity, the former model enabled us to extensively investigate robustness in phenotypic heterogeneity. Using perturbations to network topology and by varying network parameters, we show that multistable EMP networks are structurally and dynamically more robust compared with their randomized counterparts, thereby highlighting their topological hallmarks. These features of robustness are governed by a balance of positive and negative feedback loops embedded in these networks. Using a combination of the number of negative and positive feedback loops weighted by their lengths, we identified a metric that can explain the structural and dynamical robustness of these networks. This metric enabled us to compare networks across multiple sizes, and the network principles thus obtained can be used to identify fragilities in large networks without simulating their dynamics. Our analysis highlights a network topology-based approach to quantify robustness in the phenotypic heterogeneity and plasticity emergent from EMP networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号