首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The ubiquitin–proteasome system fulfills an essential role in regulating protein homeostasis by spatially and temporally controlling proteolysis in an ATP- and ubiquitin-dependent manner. However, the localization of proteasomes is highly variable under diverse cellular conditions. In yeast, newly synthesized proteasomes are primarily localized to the nucleus during cell proliferation. Yeast proteasomes are transported into the nucleus through the nuclear pore either as immature subcomplexes or as mature enzymes via adapter proteins Sts1 and Blm10, while in mammalian cells, postmitotic uptake of proteasomes into the nucleus is mediated by AKIRIN2, an adapter protein essentially required for nuclear protein degradation. Stressful growth conditions and the reversible halt of proliferation, that is quiescence, are associated with a decline in ATP and the reorganization of proteasome localization. Cellular stress leads to proteasome accumulation in membraneless granules either in the nucleus or in the cytoplasm. In quiescence, yeast proteasomes are sequestered in an ubiquitin-dependent manner into motile and reversible proteasome storage granules in the cytoplasm. In cancer cells, upon amino acid deprivation, heat shock, osmotic stress, oxidative stress, or the inhibition of either proteasome activity or nuclear export, reversible proteasome foci containing polyubiquitinated substrates are formed by liquid–liquid phase separation in the nucleus. In this review, we summarize recent literature revealing new links between nuclear transport, ubiquitin signaling, and the intracellular organization of proteasomes during cellular stress conditions.  相似文献   

2.
The integrated stress response is a network of highly orchestrated pathways activated when cells are exposed to environmental stressors. While global repression of translation is a well-recognized hallmark of the integrated stress response, less is known about the regulation of mRNA stability during stress. DEAD box proteins are a family of RNA unwinding/remodeling enzymes involved in every aspect of RNA metabolism. We previously showed that DEAD box 1 (DDX1) protein accumulates at DNA double-strand breaks during genotoxic stress and promotes DNA double-strand break repair via homologous recombination. Here, we examine the role of DDX1 in response to environmental stress. We show that DDX1 is recruited to stress granules (SGs) in cells exposed to a variety of environmental stressors, including arsenite, hydrogen peroxide, and thapsigargin. We also show that DDX1 depletion delays resolution of arsenite-induced SGs. Using RNA immunoprecipitation sequencing, we identify RNA targets bound to endogenous DDX1, including RNAs transcribed from genes previously implicated in stress responses. We show the amount of target RNAs bound to DDX1 increases when cells are exposed to stress, and the overall levels of these RNAs are increased during stress in a DDX1-dependent manner. Even though DDX1’s RNA-binding property is critical for maintenance of its target mRNA levels, we found RNA binding is not required for localization of DDX1 to SGs. Furthermore, DDX1 knockdown does not appear to affect RNA localization to SGs. Taken together, our results reveal a novel role for DDX1 in maintaining cytoplasmic mRNA levels in cells exposed to oxidative stress.  相似文献   

3.
BackgroundLead exposure results in a terrible rise in heat shock protein levels.ObjectiveThis research was conducted to look at the effects of lead poisoning on heat shock response, oxidative stress, and inflammatory markers in albino rats, as well as the power of selenium and vitamin E to resist lead toxic effects.MethodsEight groups of albino rats are used. Each group contained six rats where the first group represented the negative control, and the other groups were treated with olive oil, vitamin E, selenium, lead, (vitamin E + lead), (selenium + lead), and (vitamin E + selenium + lead). All the treatments lasted for 28 days. Then, the mRNA expression of interested heat shock proteins (HSP90, HSP70, and HSP60) was assessed. For oxidative stress disruption, we investigated nitric oxide (NO) and malondialdehyde (MDA) content, and enzymatic and non-enzymatic antioxidants activity respectively in rat livers.Resultsour results revealed the synergetic protective effect of the combination of two antioxidants (vitamin E and selenium) against lead poising. This was clear in regulating HSPs expression, inflammatory markers, glucose, lipid profile, liver functions, and antioxidant enzymes more than the treatment with one antioxidant.ConclusionPb is a toxic material that can induce HSPs and inflammatory markers expression. Selenium and vitamin E can give excellent effects in ameliorating Pb toxicity when used together.  相似文献   

4.
Mercury exposure is second-most common cause of metal poisoning which is quite stable and biotransformed to highly toxic metabolites thus eliciting biochemical alterations and oxidative stress. The aim of present study describes the protective effect of selenium either alone or in combination with N-acetyl cysteine (NAC) against acute mercuric chloride poisoning. The experiment was carried out in male albino Sprague Dawley rats (n = 30) which was divided into five groups. Group 1 served as control. Groups 2–5 were administered mercuric chloride (HgCl2: 12 mol/kg, i.p.) once only, group 2 served as experimental control. Animals of groups 3, 4 and 5 were received N-acetyl cysteine (NAC: 0.6 mg/kg, i.p.) and selenium (Se: 0.5 mg/kg, p.o.) and NAC with Se in combination. Acute HgCl2 toxicity caused significant rise in serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, albumin, bilirubin, γ-glutamyl transpeptidase, cholesterol, triglycerides, protein, urea, creatinine, uric acid and blood urea nitrogen content. Animals also showed significantly higher mercury content in liver and kidney, significant rise in lipid peroxidation level with concomitant decrease in reduced glutathione content and the antioxidant enzyme activities of superoxide dismutase and catalase after HgCl2 exposure. Results of the present investigation clearly showed that combination therapy with NAC + Se provide maximum protection against mercury toxicity than monotherapy (alone treated groups) by preventing oxidative degradation of biological membrane from metal mediated free radical attacks.  相似文献   

5.
6.
Parental effort is usually associated with high metabolism that could lead to an increase in the production of reactive oxidative species giving rise to oxidative stress. Since many antioxidants involved in the resistance to oxidative stress can also enhance immune function, an increase in parental effort may diminish the level of antioxidants otherwise involved in parasite resistance. In the present study, we performed brood size manipulation in a population of great tits (Parus major) to create different levels of parental effort. We measured resistance to oxidative stress and used a newly developed quantitative PCR assay to quantify malarial parasitaemia. We found that males with an enlarged brood had significantly higher level of malarial parasites and lower red blood cell resistance to free radicals than males rearing control and reduced broods. Brood size manipulation did not affect female parasitaemia, although females with an enlarged brood had lower red blood cell resistance than females with control and reduced broods. However, for both sexes, there was no relationship between the level of parasitaemia and resistance to oxidative stress, suggesting a twofold cost of reproduction. Our results thus suggest the presence of two proximate and independent mechanisms for the well-documented trade-off between current reproductive effort and parental survival.  相似文献   

7.
Previous studies have shown that polyphenols might be potent neuroprotective agents in Drosophila melanogaster wild type Canton-S acutely or chronically treated with paraquat (PQ), a selective toxin for elimination of dopaminergic (DAergic) neurons by oxidative stress (OS), as model of Parkinson's disease (PD). This study reports for the first time that knock-down (K-D) parkin Drosophila melanogaster (TH-GAL4; UAS-RNAi-parkin) chronically exposed to PQ (0.1–0.25 mM), FeSO4 (Fe, 0.1 mM), deferoxamine (DFO, 0.01 mM) alone or (0.1 mM) PQ in combination with polyphenols propyl gallate (PG, 0.1 mM) and epigallocathecin gallate (EGCG, 0.1, 0.5 mM) showed significantly higher life span and locomotor activity than untreated K-D flies or treated with (1, 5, 20 mM) PQ alone. Whilst gallic acid (GA, 0.1, 0.5 mM) alone or in the presence of PQ provoked no effect on K-D flies, epicathecin (EC, 0.5 mM) only showed a positive effect on prolonging K-D flies’ life span. It is shown that PG (and EGCG) protected protocerebral posterolateral 1 (PPL1) DAergic neurons against PQ. Interestingly, the protective effect of low PQ concentrations, DFO and iron might be explained by a phenomenon known as “hormesis.” However, pre-fed K-D flies with (0.1 mM) PQ for 7 days and then exposed to (0.25 mM) for additional 8 days affect neither survival nor climbing of K-D Drosophila compared to flies treated with (0.25 mM) PQ alone. Remarkably, K-D flies treated with 0.1 mM PQ (7 days) and then with (0.25 mM) PQ plus PG (8 days) behaved almost as flies treated with (0.25 mM) PQ. Taken these data suggest that antioxidant supplements that synergistically act with low pro-oxidant stimuli to prolong and increase locomotor activity become inefficient once a threshold of OS has been reached in K-D flies. Our present findings support the notion that genetically altered Drosophila melanogaster as suitable model to study genetic and environmental factors as causal and/or modulators in the development of autosomal recessive juvenile Parkinsonism (AR-JD)/PD. Most importantly, we have shown for the first time that low amounts of stressors induce a health-promoting extending effect in K-D parkin flies. Altogether our present results open new avenues for the screening, testing and development of novel antioxidant drugs against OS stimuli in neurodegenerative disorders.  相似文献   

8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号