首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) often share a common niche within the nasopharynx, both associated with infections such as bronchitis and otitis media. This study investigated how the association between NTHi and S. pneumoniae and the host affects their propensity to form biofilms. We investigated a selection of bacterial strain and serotype combinations on biofilm formation, and the effect of contact with respiratory epithelial cells. Measurement of biofilm showed that co-infection with NTHi and S. pneumoniae increased biofilm formation following contact with epithelial cells compared to no contact demonstrating the role of epithelial cells in biofilm formation. Additionally, the influence of phosphorylcholine (ChoP) on biofilm production was investigated using the licD mutant strain of NTHi 2019 and found that ChoP had a role in mixed biofilm formation but was not the only requirement. The study highlights the complex interactions between microbes and the host epithelium during biofilm production, suggesting the importance of understanding why certain strains and serotypes differentially influence biofilm formation. A key contributor to increased biofilm formation was the upregulation of biofilm formation by epithelial cell factors.  相似文献   

2.
1.  Organisms must contend with seasonal fluctuations in energy availability. To maintain a positive energy balance year-round, a number of adaptations have evolved including seasonal changes in reproduction, energetics and immunity. Photoperiod is the primary environmental signal most animals use to predict seasonal events. Despite the established link between energetics and immune function, little is known regarding how changes in energy availability affect immunity.
2.  The goal of the present study was to determine the effects of food restriction on photoperiodic changes in reproduction and immune function in the Siberian hamster ( Phodopus sungorus ). Adult hamsters were housed in long or short days and were food restricted or fed ad libitum . Immune responses were quantified by measuring specific antibody production and bacterial killing capacity.
3.  Food restriction decreased body and relative reproductive masses in long-day animals. Antibody responses, but not bacterial killing ability, were enhanced in food restricted short-day animals as compared with ad libitum fed controls. We also found differential effects of body fat on immune responses depending on the immune measure.
4.  The effects of food restriction on immune function appear to vary based on the restriction regimen, the response measured, and the physiological state of the organism including energy balance, metabolic rate and reproductive status.
5.  In conclusion, these results suggest that a wide range of factors can differentially affect immune function. In addition, these effects may vary based on the specific response examined. Future studies should include a variety of measurements to provide a more integrative and accurate picture of reproductive, energetic, and photoperiodic effects on immune function.  相似文献   

3.
徐德立  徐来祥 《生态学报》2015,35(6):1882-1890
温带地区小型哺乳动物经常面临着食物资源的波动。食物对动物的免疫功能具有重要影响。将19只成年雄性黑线仓鼠(Cricetulus barabensis)随机分为自由取食组(n=9)和限食组(n=10)。注射植物血球凝集素(PHA)来测定细胞介导的免疫反应,用匙孔血蓝蛋白(KLH)免疫动物,然后测定抗KLH抗体的浓度以反映其体液免疫功能。旨在检验食物限制是否会抑制黑线仓鼠的细胞免疫和体液免疫功能。结果发现,与对照组相比,限食组黑线仓鼠具有较低的体重、体脂、脾脏鲜重、血清瘦素水平、免疫球蛋白Ig G和Ig M浓度。而限食对胸腺鲜重、白细胞数、皮质酮水平以及PHA反应没有显著影响。结果表明黑线仓鼠免疫系统的不同成分对限食反应存在差异,在食物资源短缺时,黑线仓鼠防御细胞外病原体的能力降低,从而导致生存能力的下降。  相似文献   

4.
In most natural environments, association with a surface in a structure known as biofilm is the prevailing microbial life-style of bacteria. Polyphosphate (polyP), an ubiquitous linear polymer of hundreds of orthophosphate residues, has a crucial role in stress responses, stationary-phase survival, and it was associated to bacterial biofilm formation and production of virulence factors. In previous work, we have shown that Escherichia coli cells grown in media containing a critical phosphate concentration >37 mM maintained an unusual high polyP level in stationary phase. The aim of the present work was to analyze if fluctuations in polyP levels in stationary phase affect biofilm formation capacity in E. coli. Polymer levels were modulated by the media phosphate concentration or using mutant strains in polyP metabolism. Cells grown in media containing phosphate concentrations higher than 25 mM were defective in biofilm formation. Besides, there was a disassembly of 24 h preformed biofilm by the addition of high phosphate concentration to the medium. These phenotypes were related to the maintenance or re-synthesis of polyP in stationary phase in static conditions. No biofilm formation was observed in ppkppx or ppkppx/ppk+ strains, deficient in polyP synthesis and hydrolysis, respectively. luxS and lsrK mutants, impaired in autoinducer-2 quorum sensing signal metabolism, were unable to form biofilm unless conditioned media from stationary phase wild type cells grown in low phosphate were used. We conclude that polyP degradation is required for biofilm formation in sufficient phosphate media, activating or triggering the production of autoinducer-2. According to our results, phosphate concentration of the culture media should be carefully considered in bacterial adhesion and virulence studies.  相似文献   

5.
Riemerella anatipestifer was cultured in both iron restriction media and normal media. Two-dimensional gel electrophoresis identified 23 proteins that significantly increased in the iron restriction media. Of them 12 proteins were analyzed with mass spectrography. Nine of 12 proteins belong to 6 different protein families: fibronectin type iii domain protein, secreted subtilase family protein, phosphoglycerate kinase, translation elongation factor, leucine-rich repeat-containing protein, and Galactose-binding domain-like protein. Other 3 proteins were novel with unknown function. Two novel proteins (Riean_1750 and Riean_1752) were expressed in prokaryotic expression systems. The specificities of these 2 novel proteins to R. anatipestifer were confirmed by western-blotting analysis. The ducks immunized with either protein had low mortality challenged by R. anatipestifer, 33.3% and 16.7%, respectively. The ducks developed 100% immunity when immunized with combined Riean_1750 and Riean_1752 proteins. The data suggested 2 novel proteins play important roles in the bacterial survival in the iron restricted environment. They could be used as subunit vaccines of R. anatipestifer.  相似文献   

6.
Streptococcus pneumoniae (pneumococcus) forms organized biofilms to persist in the human nasopharynx. This persistence allows the pneumococcus to produce severe diseases such as pneumonia, otitis media, bacteremia and meningitis that kill nearly a million children every year. While bacteremia and meningitis are mediated by planktonic pneumococci, biofilm structures are present during pneumonia and otitis media. The global emergence of S. pneumoniae strains resistant to most commonly prescribed antibiotics warrants further discovery of alternative therapeutics. The present study assessed the antimicrobial potential of a plant extract, 220D-F2, rich in ellagic acid, and ellagic acid derivatives, against S. pneumoniae planktonic cells and biofilm structures. Our studies first demonstrate that, when inoculated together with planktonic cultures, 220D-F2 inhibited the formation of pneumococcal biofilms in a dose-dependent manner. As measured by bacterial counts and a LIVE/DEAD bacterial viability assay, 100 and 200 µg/ml of 220D-F2 had significant bactericidal activity against pneumococcal planktonic cultures as early as 3 h post-inoculation. Quantitative MIC’s, whether quantified by qPCR or dilution and plating, showed that 80 µg/ml of 220D-F2 completely eradicated overnight cultures of planktonic pneumococci, including antibiotic resistant strains. When preformed pneumococcal biofilms were challenged with 220D-F2, it significantly reduced the population of biofilms 3 h post-inoculation. Minimum biofilm inhibitory concentration (MBIC)50 was obtained incubating biofilms with 100 µg/ml of 220D-F2 for 3 h and 6 h of incubation. 220D-F2 also significantly reduced the population of pneumococcal biofilms formed on human pharyngeal cells. Our results demonstrate potential therapeutic applications of 220D-F2 to both kill planktonic pneumococcal cells and disrupt pneumococcal biofilms.  相似文献   

7.
The human pathogen Streptococcus pneumoniae is the major cause of bacterial meningitis, respiratory tract infection, septicemia, and otitis media. The bacterium expresses neuraminidase (NA) proteins that contribute to pathogenesis by cleaving sialic acids from host glycoconjugates, thereby enhancing biofilm formation and colonization. Recent in vivo experiments have shown that antiviral compounds, widely used in clinics and designed to inhibit influenza NA, significantly reduce biofilm formation and nasopharyngeal colonization of S. pneumoniae in mice. Here, we present the structural basis for the beneficial effect of these compounds against pneumococcal infection. Crystal structures of pneumococcal NanA in complex with zanamivir and oseltamivir carboxylate are discussed, correlated with measured inhibitory constants Ki, and compared with the binding modes of the inhibitors in the viral enzyme. Inhibitor structures show for the first time how clinically approved anti-influenza compounds interact with an NA of the human pathogen S. pneumoniae and give a rational explanation for their antibacterial effects.  相似文献   

8.

Background

Vaccines including conserved antigens from Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) have the potential to reduce the burden of acute otitis media. Little is known about the antibody response to such antigens in young children with recurrent acute otitis media, however, it has been suggested antibody production may be impaired in these children.

Methods

We measured serum IgG levels against 4 pneumococcal (PspA1, PspA 2, CbpA and Ply) and 3 NTHi (P4, P6 and PD) proteins in a cross-sectional study of 172 children under 3 years of age with a history of recurrent acute otitis media (median 7 episodes, requiring ventilation tube insertion) and 63 healthy age-matched controls, using a newly developed multiplex bead assay.

Results

Children with a history of recurrent acute otitis media had significantly higher geometric mean serum IgG levels against NTHi proteins P4, P6 and PD compared with healthy controls, whereas there was no difference in antibody levels against pneumococcal protein antigens. In both children with and without a history of acute otitis media, antibody levels increased with age and were significantly higher in children colonised with S. pneumoniae or NTHi compared with children that were not colonised.

Conclusions

Proteins from S. pneumoniae and NTHi induce serum IgG in children with a history of acute otitis media. The mechanisms in which proteins induce immunity and potential protection requires further investigation but the dogma of impaired antibody responses in children with recurrent acute otitis media should be reconsidered.  相似文献   

9.
Biofilm formation is a complex developmental process regulated by multiple environmental signals. In addition to other nutrients, the transition metal iron can also regulate biofilm formation. Iron-dependent regulation of biofilm formation varies by bacterial species, and the exact regulatory pathways that control iron-dependent biofilm formation are often unknown or only partially characterized. To address this gap in our knowledge, we examined the role of iron availability in regulating biofilm formation in Escherichia coli. The results indicate that biofilm formation is repressed under low-iron conditions in E. coli. Furthermore, a key iron regulator, IscR, controls biofilm formation in response to changes in cellular Fe-S homeostasis. IscR regulates the FimE recombinase to control expression of type I fimbriae in E. coli. We propose that iron-dependent regulation of FimE via IscR leads to decreased surface attachment and biofilm dispersal under iron-limiting conditions.  相似文献   

10.
Effects of seawater ozonation on biofilm development in aquaculture tanks   总被引:3,自引:0,他引:3  
Microbial biofilms developing in aquaculture tanks represent a reservoir for opportunistic bacterial pathogens, and procedures to control formation and bacterial composition of biofilms are important for the development of commercially viable aquaculture industries. This study investigated the effects of seawater ozonation on biofilm development on microscope glass slides placed in small-scale aquaculture tanks containing the live feed organism Artemia. Fluorescence in situ hybridization (FISH) demonstrated that ozonation accelerated the biofilm formation cycle, while it delayed the establishment of filamentous bacteria. Gammaproteobacteria and Alphaproteobacteria were the most abundant bacterial groups in the biofilm for both water types, but ozonation influenced their dynamics. With ozonation, the bacterial community structure was relatively stable and dominated by Gammaproteobacteria throughout the experiment (21–66% of total bacteria). Without ozonation, the community showed larger fluctuations, and Alphaproteobacteria emerged as dominant after 18 days (up to 54% of total bacteria). Ozonation of seawater also affected the dynamics of less abundant populations in the biofilm such as Betaproteobacteria, Planctomycetales and the Cytophaga/Flavobacterium branch of phylum Bacteroidetes. The abundance of Thiothrix, a bacterial genus capable of filamentous growth and fouling of larvae, increased with time for both water types, while no temporal trend could be detected for the genus Vibrio. Denaturing gradient gel electrophoresis (DGGE) demonstrated temporal changes in the dominant bacterial populations for both water types. Sequencing of DGGE bands confirmed the FISH data, and sequences were related to bacterial groups commonly found in biofilms of aquaculture systems. Several populations were closely related to organisms involved in sulfur cycling. Improved Artemia survival rates in tanks receiving ozonated water suggested a positive effect of ozonation on animal health. Although the used ozonation protocol did not hinder biofilm formation, the results suggest ozonation as a promising approach for manipulation of bacterial populations in aquaculture systems, which can prove beneficial for cultured animals.  相似文献   

11.

Background  

Non-typeable Haemophilus influenzae biofilm formation is implicated in a number of chronic infections including otitis media, sinusitis and bronchitis. Biofilm structure includes cells and secreted extracellular matrix that is "slimy" and believed to contribute to the antibiotic resistant properties of biofilm bacteria. Components of biofilm extracellular matrix are largely unknown. In order to identify such biofilm proteins an ex-vivo biofilm of a non-typeable Haemophilus influenzae isolate, originally from an otitis media patent, was produced by on-filter growth. Extracellular matrix fraction was subjected to proteomic analysis via LC-MS/MS to identify proteins.  相似文献   

12.
Toxin-antitoxin (TA) modules are gene pairs specifying for a toxin and its antitoxin and are found on the chromosomes of many bacteria including pathogens. Here we report how each of five such TA systems in E. coli affect bacterial cell death differently in liquid media and during biofilm formation. Of all these systems, only the TA system mazEF mediated cell death both in liquid media and during biofilm formation. At the other extreme, as our results have revealed here, the TA system dinJ-YafQ is unique in that it is involved only in the death process during biofilm formation. Cell death governed by mazEF and dinJ-YafQ seems to participate in biofilm formation through a novel mechanism.  相似文献   

13.
Streptococcus pneumoniae (SP) and nontypeable Haemophilus influenzae (NTHi) are common commensals of the human airway and major bacterial pathogens of otitis media (OM) and other upper airway infections. The interaction between them may play an important role in the pathogenesis of polymicrobial infections. Although previous studies suggested NTHi could promote pneumococcal survival and biofilm formation, how NTHi affects pneumococcal activities has not been defined. Our data in the present studies indicated that the outcome of the interaction between SP and NTHi was in a cell-density-dependent manner and the enhancement of pneumococcal survival happened at the later stages of culturing. Using quantitative PCR, we found that the expression of pneumococcal genes regulating autolysis and fratricide, lytA and cbpD, were significantly down-regulated in co-culture with NTHi. We further observed that influence of NTHi was not on direct cell-to-cell contact, but that this contact may contribute to the interaction between these two microorganisms. These results suggest that pneumococcal survival and biofilm formation can be enhanced by down-regulating pneumococcal cell wall hydrolase production thereby inhibiting pneumococcal autolysis and fratricide in the presence of NTHi.  相似文献   

14.
The seasonal availability of food resources is an important factor shaping the life‐history strategies of organisms. During times of nutritional restriction, physiological trade‐offs can induce periods of immune suppression, thereby increasing susceptibility to infectious disease. Our goal was to provide a conceptual framework describing how the endemic level bovine brucellosis (Brucella abortus) may be maintained in Yellowstone bison based on the seasonality of food resources and the life‐history strategies of the host and pathogen. Our analysis was based on active B. abortus infection (measured via bacterial culture), nutritional indicators (measured as metabolites and hormones in plasma), and carcass measurements of 402 slaughtered bison. Data from Yellowstone bison were used to investigate (1) whether seasonal changes in diet quality affect nutritional condition and coincide with the reproductive needs of female bison; (2) whether active B. abortus infection and infection intensities vary with host nutrition and nutritional condition; and (3) the evidence for seasonal changes in immune responses, which may offer protection against B. abortus, in relation to nutritional condition. Female bison experienced a decline in nutritional condition during winter as reproductive demands of late gestation increased while forage quality and availability declined. Active B. abortus infection was negatively associated with bison age and nutritional condition, with the intensity of infection negatively associated with indicators of nutrition (e.g., dietary protein and energy) and body weight. Data suggest that protective cell‐mediated immune responses may be reduced during the B. abortus transmission period, which coincides with nutritional insufficiencies and elevated reproductive demands during spring. Our results illustrate how seasonal food restriction can drive physiological trade‐offs that suppress immune function and create infection and transmission opportunities for pathogens.  相似文献   

15.
Exopolymeric substances (EPS) are important for biofilm formation and their chemical composition may influence biofilm properties. To explore these relationships the chemical composition of EPS from Bacillus subtilis NCIB 3610 biofilms grown in sucrose-rich (SYM) and sucrose-poor (MSgg and Czapek) media was studied. We observed marked differences in composition of EPS polymers isolated from all three biofilms or from spent media below the biofilms. The polysaccharide levan dominated the EPS of SYM grown biofilms, while EPS from biofilms grown in sucrose-poor media contained significant amounts of proteins and DNA in addition to polysaccharides. The EPS polymers differed also in size with very large polymers (Mw>2000 kDa) found only in biofilms, while small polymers (Mw<200 kD) dominated in the EPS isolated from spent media. Biofilms of the eps knockout were significantly thinner than those of the tasA knockout in all media. The biofilm defective phenotypes of tasA and eps mutants were, however, partially compensated in the sucrose-rich SYM medium. Sucrose supplementation of Czapek and MSgg media increased the thickness and stability of biofilms compared to non-supplemented controls. Since sucrose is essential for synthesis of levan and the presence of levan was confirmed in all biofilms grown in media containing sucrose, this study for the first time shows that levan, although not essential for biofilm formation, can be a structural and possibly stabilizing component of B. subtilis floating biofilms. In addition, we propose that this polysaccharide, when incorporated into the biofilm EPS, may also serve as a nutritional reserve.  相似文献   

16.

Background

S. aureus acquires heme-iron using the iron regulated surface determinant (Isd) system and the heme transport system (Hts) with both systems showing critical importance in systemic models of infection. The contribution of heme-iron acquisition to staphylococcal pneumonia has not yet been elucidated. In addition, the use of computed tomography (CT) for the evaluation of staphylococcal pneumonia and its correlation to pathologic examination of infected lung tissue has not been performed to date. We have applied CT-based imaging to a murine model of staphylococcal pneumonia to determine the virulence contribution of heme-iron acquisition through the Hts and Isd systems.

Methodology/Principal Findings

Mice were intranasally inoculated with ∼1.0×108 colony forming units (CFU) of S. aureus. Lungs from mice infected with wild type S. aureus or strains deficient in isdB and isdH (ΔisdBH) or htsA and isdEhtsAΔisdE) were harvested at 24 hours. Histology, radiographic appearance by computed tomography (CT), percent mortality and bacterial burden were evaluated. Infection with S. aureus ΔisdBH and ΔhtsAΔisdE did not result in a statistically significant difference in mortality or bacterial burden as compared to controls. CT imaging of infected mice also did not reveal an appreciable difference between the various strains when compared to wild type, but did correlate with pathologic findings of pneumonia. However, a systemic model of infection using the ΔhtsAΔisdE strain revealed a statistically significant decrease in bacterial burden in the lung, heart and kidneys.

Conclusions/Significance

The development of staphylococcal pneumonia in this murine model is not dependent on hemoglobin binding or heme-iron uptake into S. aureus. However, this model does reveal that heme-iron acquisition contributes to the pathogenesis of systemic staphylococcal infections. In addition, CT imaging of murine lungs is an attractive adjunct to histologic analysis for the confirmation and staging of pneumonia.  相似文献   

17.
BackgroundIron is a key pathogenic determinant of many infectious diseases. Hepcidin, the hormone responsible for governing systemic iron homeostasis, is widely hypothesized to represent a key component of nutritional immunity through regulating the accessibility of iron to invading microorganisms during infection. However, the deployment of hepcidin in human bacterial infections remains poorly characterized. Typhoid fever is a globally significant, human-restricted bacterial infection, but understanding of its pathogenesis, especially during the critical early phases, likewise is poorly understood. Here, we investigate alterations in hepcidin and iron/inflammatory indices following experimental human typhoid challenge.Conclusions/SignificanceWe demonstrate that strong hepcidin upregulation and hypoferremia, coincident with fever and systemic inflammation, are hallmarks of the early innate response to acute typhoid infection. We hypothesize that hepcidin-mediated iron redistribution into macrophages may contribute to S. Typhi pathogenesis by increasing iron availability for macrophage-tropic bacteria, and that targeting macrophage iron retention may represent a strategy for limiting infections with macrophage-tropic pathogens such as S. Typhi.  相似文献   

18.
Carbohydrate availability shifts when bacteria attach to a surface and form biofilm. When salivary planktonic bacteria form an oral biofilm, a variety of polysaccharides and glycoproteins are the primary carbon sources; however, simple sugar availabilities are limited due to low diffusion from saliva to biofilm. We hypothesized that bacterial glycoside hydrolase (GH) activities would be higher in a biofilm than in saliva in order to maintain metabolism in a low-sugar, high-glycoprotein environment. Salivary bacteria from 13 healthy individuals were used to grow in vitro biofilm using two separate media, one with sucrose and the other limiting carbon sources to a complex carbohydrate. All six GHs measured were higher in vitro when grown in the medium with complex carbohydrate as the sole carbon source. We then collected saliva and overnight dental plaque samples from the same individuals and measured ex vivo activities for the same six enzymes to determine how oral microbial utilization of glycoconjugates shifts between the planktonic phase in saliva and the biofilm phase in overnight dental plaque. Overall higher GH activities were observed in plaque samples, in agreement with in vitro observation. A similar pattern was observed in GH activity profiles between in vitro and ex vivo data. 16S rRNA gene analysis showed that plaque samples had a higher abundance of microorganisms with larger number of GH gene sequences. These results suggest differences in sugar catabolism between the oral bacteria located in the biofilm and those in saliva.  相似文献   

19.
It was hypothesized that seasonality and resource availability altered through tree girdling were major determinants of the phylogenetic composition of the archaeal and bacterial community in a temperate beech forest soil. During a 2-year field experiment, involving girdling of beech trees to intercept the transfer of easily available carbon (C) from the canopy to roots, members of the dominant phylogenetic microbial phyla residing in top soils under girdled versus untreated control trees were monitored at bimonthly intervals through 16S rRNA gene-based terminal restriction fragment length polymorphism profiling and quantitative PCR analysis. Effects on nitrifying and denitrifying groups were assessed by measuring the abundances of nirS and nosZ genes as well as bacterial and archaeal amoA genes. Seasonal dynamics displayed by key phylogenetic and nitrogen (N) cycling functional groups were found to be tightly coupled with seasonal alterations in labile C and N pools as well as with variation in soil temperature and soil moisture. In particular, archaea and acidobacteria were highly responsive to soil nutritional and soil climatic changes associated with seasonality, indicating their high metabolic versatility and capability to adapt to environmental changes. For these phyla, significant interrelations with soil chemical and microbial process data were found suggesting their potential, but poorly described contribution to nitrification or denitrification in temperate forest soils. In conclusion, our extensive approach allowed us to get novel insights into effects of seasonality and resource availability on the microbial community, in particular on hitherto poorly studied bacterial phyla and functional groups.  相似文献   

20.
Among 1,236 colony-forming units (CFU) associated with 11 species of marine sponges collected from a Brazilian coast, a total of 100 morphologically different bacterial strains were analyzed. The phylogenetic diversity of the bacterial isolates was assessed by 16S rRNA gene amplification—restriction fragment length polymorphism (RFLP) analysis, using AluI restriction endonuclease. The RFLP fingerprinting resulted in 21 different patterns with good resolution for the identification of the bacterial isolates at the genus level. The genus Bacillus was the most commonly encountered genus, followed by Kocuria. Regarding the relationship between the morphotypes and species of marine sponges, Mycale microsigmatosa presented major diversity, followed by Dragmacidon reticulatum and Polymastia janeirensis. An antibiotic susceptibility profile of the 100 sponge-associated bacterial strains was determined by the disk diffusion method, and we observed a variable resistance profile, with 15 % of the bacteria being multiresistant. In addition, 71 of 100 strains were able to produce biofilm. These 71 strains were divided into 20 strong biofilm producers, 10 moderate biofilm producers, and 41 weak biofilm producers. The plasmid profile of the 100 bacterial strains was analyzed and 38 (38 %) of these samples possessed one or more plasmids. Studies like this are important to increase the information on these associated bacteria found off the coastline of Brazil, a place which has rich biodiversity that is still unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号