共查询到20条相似文献,搜索用时 15 毫秒
1.
Macsari I Sandberg L Besidski Y Gravenfors Y Ginman T Bylund J Bueters T Eriksson AB Lund PE Venyike E Arvidsson PI 《Bioorganic & medicinal chemistry letters》2011,21(13):3871-3876
Blocking of certain sodium channels is considered to be an attractive mechanism to treat chronic pain conditions. Phenyl isoxazole carbamate 1 was identified as a potent and selective NaV1.7 blocker. Structural analogues of 1, both carbamates, ureas and amides, were proven to be useful in establishing the structure-activity relationship and improving ADME related properties. Amide 24 showed a good overall in vitro profile, that translated well to rat in vivo PK. 相似文献
2.
A permeant ion is known to create in the channel pore a local electrical field, the intensity of which exceeds the intensity
of an electrical field produced by the membrane potential. In our study, we consider a sodium channel model, in which the
effects of a permeant ion, an inactivating particle, and pharmacological agents on mobile charged groups of the channel are
semi-phenomenologically taken into account by using motion equations for a generalized structural variable. Stationary solutions
for the equation correspond to “open,” “closed,” and “inactivated” channel states. Because of this, the channel free energy
profile, as a function of the structural variable, has three local minima. The three energy values of these states depend
both on the electrical field applied externally and on the near-membrane concentrations of permeant ions and acting pharmacological
agents. Sodium channel activation and inactivation kinetics are considered resulting from relative changes of the free energy
typical of the above three states of the channel. The results we obtained in the course of channel activation and inactivation
modeling and their voltage dependence are qualitatively consistent with the commonly known experimental data. The proposed
model allows one to qualitatively predict the dependence of the sodium channel kinetic characteristics on the concentrations
of permeant ions and pharmacological agents. 相似文献
3.
Bezanilla F 《Trends in biochemical sciences》2005,30(4):166-168
A recent electron paramagnetic resonance study of KvAP, a prokaryotic voltage-gated channel, in its lipid native environment has revealed the location of the transmembrane segments, the connecting loops and the relative position of the voltage-sensing charges. The results confirm that the previously reported crystal structure does not represent a native conformation and give us structural constraints that will help in determining the molecular structure of the voltage sensor. 相似文献
4.
Pascal Béguin Kazuaki Nagashima Ramasubbu N. Mahalakshmi Réjan Vigot Atsuko Matsunaga Takafumi Miki Mei Yong Ng Yu Jin Alvin Ng Chiaw Hwee Lim Hock Soon Tay Le-Ann Hwang Dmitri Firsov Bor Luen Tang Nobuya Inagaki Yasuo Mori Susumu Seino Thomas Launey Walter Hunziker 《The Journal of cell biology》2014,205(2):233-249
Voltage-gated calcium channels (VGCCs) are key regulators of cell signaling and Ca2+-dependent release of neurotransmitters and hormones. Understanding the mechanisms that inactivate VGCCs to prevent intracellular Ca2+ overload and govern their specific subcellular localization is of critical importance. We report the identification and functional characterization of VGCC β-anchoring and -regulatory protein (BARP), a previously uncharacterized integral membrane glycoprotein expressed in neuroendocrine cells and neurons. BARP interacts via two cytosolic domains (I and II) with all Cavβ subunit isoforms, affecting their subcellular localization and suppressing VGCC activity. Domain I interacts at the α1 interaction domain–binding pocket in Cavβ and interferes with the association between Cavβ and Cavα1. In the absence of domain I binding, BARP can form a ternary complex with Cavα1 and Cavβ via domain II. BARP does not affect cell surface expression of Cavα1 but inhibits Ca2+ channel activity at the plasma membrane, resulting in the inhibition of Ca2+-evoked exocytosis. Thus, BARP can modulate the localization of Cavβ and its association with the Cavα1 subunit to negatively regulate VGCC activity. 相似文献
5.
6.
Temperature was used as a biophysical tool to investigate the energy changes associated with conformational change during
the gating of a non-inactivating voltage-gated K+ channel present in the membrane of αT3-1 cells, a gonadotroph cell line. The time course of the current activation was described by a single exponential function
at three temperatures: 15, 25 and 35 °C. The Q
10 values were between 1.5 to 1.9 and in agreement with the activation energy determined from Arrhenius plots of the forward
and backward rate constants associated with channel opening. The Gibb's free energy change associated with channel opening
and closing at various membrane potentials estimated by two approaches yield similar values. The changes in Gibb's free energy
(ΔG°) with depolarization potential is a quadratic and more prominent at 15 than at 25 or 35 °C. The results suggest that increase
in temperature favours movement of voltage sensing segments, and reduces the restraint on them brought about by other parts
of the channel molecule.
Received: 2 September 1998 / Revised version: 27 October 1998 / Accepted: 21 January 1999 相似文献
7.
There is excellent agreement between the electrophysiological properties and the structure of the mitochondrial outer membrane
protein, VDAC, ex vivo. However, the inference that the well-defined canonical “open” state of the VDAC pore is the normal
physiological state of the channel in vivo is being challenged by several lines of evidence. Knowing the atomic structure
of the detergent solubilized protein, a long sought after goal, will not be sufficient to understand the functioning of this
channel protein. In addition, detailed information about VDAC’s topology in the outer membrane of intact mitochondria, and
the structural changes that it undergoes in response to different stimuli in the cell will be needed to define its physiological
functions and regulation. 相似文献
8.
D Ungar A Barth W Haase A Kaunzinger E Lewitzki T Ruiz H Reil?nder H Michel 《European journal of biochemistry》2001,268(20):5386-5396
Most of the completely sequenced prokaryotic genomes contain genes of potassium channel homologues, but there is still not much known about the role of these proteins in prokaryotes. Here we describe the large-scale overproduction and purification of a prokaryotic voltage-gated potassium channel homologue, Kch, from Escherichia coli. After successful overproduction of the protein, a specific increase in the potassium permeability of the cells was found. Kch could be purified in large amounts using classical purification methods to prevent aggregation of the protein. The physiological state of the protein was revealed to be a homotetramer and the protein was shown to be localized to the cytoplasmic membrane of the cells. In the course of the localization studies, we found a specific increase in the density of the cytoplasmic membrane on Kch production. This was linked to the observed increase in the protein to lipid ratio in the membranes. Another observed change in the membrane composition was an increase in the cardiolipin to phosphatidylglycerol ratio, which may indicate a specific cardiolipin requirement of Kch. On the basis of some of our results, we discuss a function for Kch in the maintenance of the membrane potential in E. coli. 相似文献
9.
A unified nomenclature for describing voltage-gated calcium channel genes is proposed. The terminology has been approved
by the HUGO/GDB nomenclature committee.
Received: 5 February 1997 / Accepted: 4 April 1997 相似文献
10.
Caprini M Fava M Valente P Fernandez-Ballester G Rapisarda C Ferroni S Ferrer-Montiel A 《The Journal of biological chemistry》2005,280(18):18253-18264
Voltage-gated ion channels are modular proteins designed by the structural linkage of a voltage sensor and a pore domain. The functional coupling of these two protein modules is a subject of intense research. A major focus has been directed to decipher the role of the S4-S5 linker and the C-end of the inner pore helix in channel gating. However, the contribution of the cytosolic N terminus of S5 remains elusive. To address this issue, we used a chimeric subunit that linked the voltage sensor of the Shaker channel to the prokaryotic KcsA pore domain (denoted as Shaker-KcsA). This chimera preserved the Shaker sequences at both the N terminus of S5 and the C-end of S6. Chimeric Shaker-KcsA subunits did not form functional homomeric channels but were synthesized, folded, and trafficked to the cell surface, as evidenced by their co-assembly with Shaker wild type subunits. Sequential substitution of Shaker amino acids at the C-end of S6 and the N terminus of S5 by the corresponding KcsA created voltage-sensitive channels with voltage-dependent properties that asymptotically approached those of the wild type Shaker channel. Noteworthy, substitution of the region encompassing Phe(401)-Phe(404) at the N-end of Shaker S5 by KcsA residues resulted in a significant gain in voltage sensitivity of the chimeras. Furthermore, analysis of channel function at high [K(+)](o) revealed that the Phe(401)-Phe(404) region is an important molecular determinant for competent coupling of voltage sensing and pore opening. Taken together, these findings indicate that complete replacement of Shaker S5 and S6 by KcsA M1 and M2 is required for voltage-dependent gating of the prokaryotic channel. In addition, our results imply that the region encompassing Phe(401)-Phe(404) in Shaker is involved in protein-protein interactions with the voltage sensor, and signal to the Phe(401) in the S5 segment as a key molecular determinant to pair the voltage sensor and the pore domain. 相似文献
11.
《Biophysical journal》2021,120(15):3050-3069
Through molecular dynamics (MD) and free energy simulations in electric fields, we examine the factors influencing conductance of bacterial voltage-gated sodium channel NavMs. The channel utilizes four glutamic acid residues in the selectivity filter (SF). Previously, we have shown, through constant pH and free energy calculations of pKa values, that fully deprotonated, singly protonated, and doubly protonated states are all feasible at physiological pH, depending on how many ions are bound in the SF. With 173 MD simulations of 450 or 500 ns and additional free energy simulations, we determine that the conductance is highest for the deprotonated state and decreases with each additional proton bound. We also determine that the pKa value of the four glutamic residues for the transition between deprotonated and singly protonated states is close to the physiological pH and that there is a small voltage dependence. The pKa value and conductance trends are in agreement with experimental work on bacterial Nav channels, which show a decrease in maximal conductance with lowering of pH, with pKa in the physiological range. We examine binding sites for Na+ in the SF, compare with previous work, and note a dependence on starting structures. We find that narrowing of the gate backbone to values lower than the crystal structure's backbone radius reduces the conductance, whereas increasing the gate radius further does not affect the conductance. Simulations with some amount of negatively charged lipids as opposed to purely neutral lipids increases the conductance, as do simulations at higher voltages. 相似文献
12.
Dendrotoxin proteins isolated from Mamba snake venom block potassium channels with a high degree of specificity and selectivity. Using site-directed mutagenesis we have identified residues that constitute the functional interaction surfaces of delta-dendrotoxin and its voltage-gated potassium channel receptor. delta-Dendrotoxin uses a triangular patch formed by seven side-chains (Lys3, Tyr4, Lys6, Leu7, Pro8, Arg10, Lys26) to block K(+) currents carried by a Shaker potassium channel variant. The inhibitory surface of the toxin interacts with channel residues at Shaker positions 423, 425, 427, 431, and 449 near the pore. Amino acid mutations that interact across the toxin-channel interface were identified by mutant cycle analysis. These results constrain the possible orientation of dendrotoxin with respect to the K(+) channel structure. We propose that dendrotoxin binds near the pore entryway but does not act as a physical plug. 相似文献
13.
Mechanosensitive (MS) ion channels are ubiquitous in eukaryotic cell types but baffling because of their contentious physiologies and diverse molecular identities. In some cellular contexts mechanically responsive ion channels are undoubtedly mechanosensory transducers, but it does not follow that all MS channels are mechanotransducers. Here we demonstrate, for an archetypical voltage-gated channel (Shaker-IR; inactivation-removed), robust MS channel behavior. In oocyte patches subjected to stretch, Shaker-IR exhibits both stretch-activation (SA) and stretch-inactivation (SI). SA is seen when prestretch P(open) (set by voltage) is low, and SI is seen when it is high. The stretch effects occur in cell-attached and excised patches at both macroscopic and single-channel levels. Were one ignorant of this particular MS channel's identity, one might propose it had been designed as a sophisticated reporter of bilayer tension. Knowing Shaker-IR's provenance and biology, however, such a suggestion would be absurd. We argue that the MS responses of Shaker-IR reflect not overlooked "mechano-gating" specializations of Shaker, but a common property of multiconformation membrane proteins: inherent susceptibility to bilayer tension. The molecular diversity of MS channels indicates that susceptibility to bilayer tension is hard to design out of dynamic membrane proteins. Presumably the cost of being insusceptible to bilayer tension often outweighs the benefits, especially where the in situ milieu of channels can provide mechanoprotection. 相似文献
14.
Electrical excitability in cells such as neurons and myocytes depends not only upon the expression of voltage-gated sodium channels but also on their correct targeting within the plasma membrane. Placing sodium channels within a broader cell biological context is beginning to shed new light on a variety of important questions such as the integration of neuronal signaling. Mutations that affect sodium channel trafficking have been shown to underlie several life-threatening conditions including cardiac arrhythmias, revealing an important clinical context to these studies. 相似文献
15.
BSC1, which was originally identified by its sequence similarity to voltage-gated Na(+) channels, encodes a functional voltage-gated cation channel whose properties differ significantly from Na(+) channels. BSC1 has slower kinetics of activation and inactivation than Na(+) channels, it is more selective for Ba(2+) than for Na(+), it is blocked by Cd(2+), and Na(+) currents through BSC1 are blocked by low concentrations of Ca(2+). All of these properties are more similar to voltage-gated Ca(2+) channels than to voltage-gated Na(+) channels. The selectivity for Ba(2+) is partially due to the presence of a glutamate in the pore-forming region of domain III, since replacing that residue with lysine (normally present in voltage-gated Na(+) channels) makes the channel more selective for Na(+). BSC1 appears to be the prototype of a novel family of invertebrate voltage-dependent cation channels with a close structural and evolutionary relationship to voltage-gated Na(+) and Ca(2+) channels. 相似文献
16.
Piotr Bednarczyk Joanna E. Kowalczyk Ma?gorzata Ber?sewicz Adam Szewczyk 《Biochemical and biophysical research communications》2010,397(3):614-620
Transient cerebral ischemia is known to induce endogenous mechanisms that can prevent or delay neuronal injury, such as the activation of mitochondrial potassium channels. However, the molecular mechanism of this effect remains unclear. In this study, the single-channel activity was measured using the patch-clamp technique of the mitoplasts isolated from gerbil hippocampus. In 70% of all patches, a potassium-selective current with the properties of a voltage-gated Kv-type potassium channel was recorded with mean conductance 109 ± 6 pS in a symmetrical solution. The channel was blocked at negative voltages and irreversibly by margatoxin, a specific Kv1.3 channel inhibitor. The ATP/Mg2+ complex and Ca2+ ions had no effect on channel activity. Additionally, agitoxin-2, a potent inhibitor of voltage-gated potassium channels, had no effect on mitochondrial channel activity. This observation suggests that in contrast to surface membrane channels, the mitochondrial voltage-gated potassium channel could have a different molecular structure with no affinity to agitoxin-2. Western blots of gerbil hippocampal mitochondria and immunohistochemistry on gerbil brain sections confirmed the expression of the Kv1.3 protein in mitochondria. Our findings indicate that gerbil brain mitochondria contain a voltage-gated potassium channel that can influence the function of mitochondria in physiological and pathological conditions and that has properties similar to the surface membrane Kv1.3 channel. 相似文献
17.
Energetics of pore opening in a voltage-gated K(+) channel 总被引:9,自引:0,他引:9
Voltage-dependent gating in K(+) channels results from the mechanical coupling of voltage sensor movements to pore opening. We used single and double mutations in the pore of the Shaker K(+) channel to analyze a late concerted pore opening transition and interpreted the results in the context of known K(+) channel structures. Gating sensitive mutations are located at mechanistically informative regions of the pore and are coupled energetically across distances up to 15 A. We propose that the pore is intrinsically more stable when closed, and that to open the pore the voltage sensors must exert positive work by applying an outward lateral force near the inner helix bundle. 相似文献
18.
Wu J Liu F Nilsson A Duan RD 《American journal of physiology. Gastrointestinal and liver physiology》2004,287(5):G967-G973
Sphingomyelin (SM) hydrolysis in the gut has implications in colonic tumorigenesis and cholesterol absorption. It is triggered by intestinal alkaline sphingomyelinase (Alk-SMase) that is present in the intestinal mucosa and content. The mechanism by which the enzyme is released into the lumen is not clear. We studied whether trypsin can dissociate Alk-SMase from the mucosa and affect its activity. During luminal perfusion of rat intestine, addition of trypsin to the buffer increased Alk-SMase activity in the perfusate output by about threefold. Treating COS-7 cells transfected with Alk-SMase cDNA with trypsin increased the SMase activity in the medium and reduced that in the cell lysate dose dependently. The appearance of Alk-SMase in the perfusate and culture medium was confirmed by Western blot analysis. The effect of trypsin was blocked by trypsin inhibitor, and neither chymotrypsin nor elastase had a similar effect. We also expressed the full length and COOH-terminal truncated Alk-SMase in COS-7 cells and found that the activity of the full-length enzyme is mainly in the cells, whereas that of the truncated form is mainly in the medium. Both forms were active, but only the activity of the full-length Alk-SMase was enhanced by trypsin. By linking a poly-His tag to the constructed cDNA, we found that the first tryptic site Arg440 upstream of the signal anchor was attacked by trypsin. In conclusion, trypsin cleaves the Alk-SMase at the COOH terminal, releases it from mucosa, and meanwhile enhances its activity. The findings indicate a physiological role of trypsin in SM digestion. 相似文献
19.
Miyuki Kuno Hiroyuki Ando Hirokazu Morihata Hiromu Sakai Hiroyuki Mori Makoto Sawada Shigetoshi Oiki 《The Journal of general physiology》2009,134(3):191-205
Voltage-gated proton channels are found in many different types of cells, where they facilitate proton movement through the membrane. The mechanism of proton permeation through the channel is an issue of long-term interest, but it remains an open question. To address this issue, we examined the temperature dependence of proton permeation. Under whole cell recordings, rapid temperature changes within a few milliseconds were imposed. This method allowed for the measurement of current amplitudes immediately before and after a temperature jump, from which the ratios of these currents (Iratio) were determined. The use of Iratio for evaluating the temperature dependence minimized the contributions of factors other than permeation. Temperature jumps of various degrees (ΔT, −15 to 15°C) were applied over a wide temperature range (4–49°C), and the Q10s for the proton currents were evaluated from the Iratios. Q10 exhibited a high temperature dependence, varying from 2.2 at 10°C to 1.3 at 40°C. This implies that processes with different temperature dependencies underlie the observed Q10. A novel resistivity pulse method revealed that the access resistance with its low temperature dependence predominated in high temperature ranges. The measured temperature dependence of Q10 was decomposed into Q10 of the channel and of the access resistances. Finally, the Q10 for proton permeation through the voltage-gated proton channel itself was calculated and found to vary from 2.8 at 5°C to 2.2 at 45°C, as expected for an activation enthalpy of 64 kJ/mol. The thermodynamic features for proton permeation through proton-selective channels were discussed for the underlying mechanism. 相似文献
20.
依靠现代分子生物学技术及电生理的记录,探讨各种Na^+通道亚型在中枢与周边神经系统以及一些非兴奋性组织细胞中的分布,表达,突变及其对信息调控的功能特征,已成为当今神经生物学等学科发展中的一个研究新热点,本文将侧重对有关哺乳动物Na^+通道亚型的分类,在不同组织细胞中的分布及其表达调控的功能机制等一些研究进展做一简要的回眸。 相似文献