首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome stability is jeopardized by imbalances of the dNTP pool; such imbalances affect the rate of fork progression. For example, cytidine deaminase (CDA) deficiency leads to an excess of dCTP, slowing the replication fork. We describe here a novel mechanism by which pyrimidine pool disequilibrium compromises the completion of replication and chromosome segregation: the intracellular accumulation of dCTP inhibits PARP-1 activity. CDA deficiency results in incomplete DNA replication when cells enter mitosis, leading to the formation of ultrafine anaphase bridges between sister-chromatids at “difficult-to-replicate” sites such as centromeres and fragile sites. Using molecular combing, electron microscopy and a sensitive assay involving cell imaging to quantify steady-state PAR levels, we found that DNA replication was unsuccessful due to the partial inhibition of basal PARP-1 activity, rather than slower fork speed. The stimulation of PARP-1 activity in CDA-deficient cells restores replication and, thus, chromosome segregation. Moreover, increasing intracellular dCTP levels generates under-replication-induced sister-chromatid bridges as efficiently as PARP-1 knockdown. These results have direct implications for Bloom syndrome (BS), a rare genetic disease combining susceptibility to cancer and genomic instability. BS results from mutation of the BLM gene, encoding BLM, a RecQ 3’-5’ DNA helicase, a deficiency of which leads to CDA downregulation. BS cells thus have a CDA defect, resulting in a high frequency of ultrafine anaphase bridges due entirely to dCTP-dependent PARP-1 inhibition and independent of BLM status. Our study describes previously unknown pathological consequences of the distortion of dNTP pools and reveals an unexpected role for PARP-1 in preventing DNA under-replication and chromosome segregation defects.  相似文献   

2.
3.
目的:探究Mi R-935调控胃癌SGC7901细胞的增殖和浸润与Notch1基因表达的关系。方法:分别检测40例正常人胃粘膜组织与40例胃印戒细胞癌的Notch1表达情况,并分析胃印戒细胞癌组织中Notch1表达与患者年龄、性别、组织进展程度、TNM分期、有无淋巴结转移的关系;采用Mi R-935转染体外培养的SGC7901细胞系,检测Notch1的表达情况,其后采用Mi R-935抑制剂处理,通过Transwell实验检测胃癌细胞的侵袭能力,细胞划痕实验检测胃癌细胞迁移能力。结果:正常人胃粘膜组织中Notch1表达呈阴性,而胃印戒细胞癌组织中Notch1表达呈阳性;Notch1的表达与胃印戒细胞癌的TNM分期、有无淋巴结转移存在着显著的相关性;转染Mi R-935的SGC7901细胞Notch1表达明显上调,采用Mi R-935抑制剂处理后,Notch1的表达显著下降。结论:Mi R-935可能通过调控Notch1的表达调控胃癌的扩增和浸润。  相似文献   

4.
Deoxyuridine 5′-triphosphate nucleotidohydrolase (dUTPase, EC 3.6.1.23) catalyzes the hydrolysis of dUTP to dUMP and pyrophosphate, and plays important roles in nucleotide metabolism and DNA replication. Hydrolysis of other nucleotides similar in structure to dUTP would be physiologically negative and therefore high substrate specificity is essential. Binding and hydrolysis of nucleotides different to dUTP by the dUTPases from Plasmodium falciparum (PfdUTPase) and human (hdUTPase) was evaluated by applying isothermal titration calorimetry (ITC). The ribo and deoxyribonucleoside triphosphates dGTP, dATP, dCTP, dTTP, UTP, FdUTP and IdUTP have been analysed. dUTP and FdUTP were the most specific substrates for both enzymes. The specificity constants (kcat/Km) for the remaining ones, except for the IdUTP, were very similar for both enzymes, although PfdUTPase showed a slightly higher specificity for dCTP and UTP and the human enzyme for dTTP and dCTP. PfdUTPase was very efficient in using FdUTP as substrate indicating that small size substituents in the 5′ position are well tolerated. In addition product inhibition was assessed by binding studies with the nucleoside monophosphate derivatives and thermodynamic parameters were established. When FdUTP hydrolysis was monitored, Plasmodium dUTPase was more sensitive to end-product inhibition by FdUMP than the human enzyme. Taken together these results highlight further significant differences between the human and Plasmodium enzymes that may be exploitable in selective inhibitor design.  相似文献   

5.
6.
As one of major epigenetic changes responsible for tumor suppressor gene inactivation in the development of cancer, promoter hypermethylation was proposed as a marker to define novel tumor suppressor genes. In the current study we identified ZIC1 (Zic family member 1, odd-paired Drosophila homolog) as a novel tumor suppressor gene silenced through promoter hypermethylation in gastric cancer, the second leading cause of cancer death worldwide. In all of gastric cancer cells lines examined, ZIC1 expression was downregulated and such downregulation was accompanied with the hypermethylation of ZIC1 promoter. Demethylation treatment with 5-aza-2′-deoxycytidine (Aza) reversed ZIC1 downregulation, highlighting the importance of promoter methylation to ZIC1 downregulation in gastric cancer cells. Notably, ZIC1 expression was significantly downregulated in primary gastric carcinoma tissues in comparison with non-tumor adjacent gastric tissues (p < 0.01). Accordingly, promoter methylation of ZIC1 was frequently detected in primary gastric carcinoma tissues (94.6%, 35/37) but not normal gastric tissues, indicating that promoter hypermethylation mediated ZIC1 downregulation may play an important role in gastric carcinogenesis. Indeed, ectopic expression of ZIC1 led to the growth inhibition of gastric cancer cells through the induction of S-phase cell cycle arrest (p < 0.01). Our results revealed ZIC1 as a novel candidate tumor suppressor gene downregulated through promoter hypermethylation in gastric cancer.  相似文献   

7.
Background: The deubiquitinase OTUB1 plays critical oncogenic roles and facilitates tumor progression in cancer. However, less is known regarding the aberrant expression, clinical significance and biological functions of the non-coding RNA OTUB1-isoform 2. We aimed to evaluate the OTUB1-isoform 2 levels in gastric cancer and their possible correlation with clinicopathologic features and patient survival to reveal its biological effects in gastric cancer progression.Methods: Total RNA extraction was performed on 156 gastric cancer case samples, and RT-qPCR was conducted. Chi-square test analysis was used to calculate the correlation between pathological parameters and the OTUB1-isoform 2 mRNA levels. Kaplan-Meier and Cox proportional hazards analyses were used to analyze the overall survival (OS) and disease-free survival (DFS) rates. Nuclear and cytoplasmic RNAs were isolated to detect the subcellular localization of OTUB1-isoform 2. We also assessed whether overexpression of OTUB1-isoform 2 influenced in vitro cell proliferation, cell cycle progression, tumor cell invasion and migration, as well as in vivo nude mouse xenograft and metastasis models.Results: The OTUB1-isoform 2 expression levels were higher in the gastric cancer samples than in the paratumorous gland samples. OTUB1-isoform 2 expression levels tightly correlated with tumor size, lymph node metastasis and TNM staging. Higher OTUB1-isoform 2 expression levels led to significantly poorer OS and DFS rates, and a multivariate analysis revealed that OTUB1-isoform 2 was an independent risk factor for DFS. OTUB1-isoform 2 was predominantly localized in the cell nucleus. Ectopic overexpression of OTUB1-isoform 2 in gastric cancer cells stimulated proliferation by inducing G1-S transition, suppression of cell apoptosis and promotion of tumor cell invasion and migration. Finally, OTUB1-isoform 2 overexpression promoted tumor growth and tumor metastasis in nude mice models.Conclusions: Our study suggests that OTUB1-isoform 2 independently predicts poor prognosis and promotes tumor progression in gastric cancer. The non-coding RNA OTUB1-isoform 2 should be targeted in future molecular therapies.  相似文献   

8.
9.
《Epigenetics》2013,8(10):1189-1197
Carcinogenesis of the stomach involves multiple steps including genetic mutation or epigenetic alteration of tumor suppressor genes or oncogenes. Recently, tumor suppressive miRNAs have been shown to be deregulated by aberrant hypermethylation during gastric cancer progression. In this study, we demonstrate that three independent genetic loci encoding for miR-9 (miR-9-1, miR-9-2 and miR-9-3) are simultaneously modified by DNA methylation in gastric cancer cells. Methylation-mediated silencing of these three miR-9 genes can be reactivated in gastric cancer cells through 5-Aza-dC treatment. Subsequent analysis of the expression levels of miR-9 showed that it was significantly down-regulated in gastric cancers compared with adjacent normal tissues (P value &lt; 0.005). A similar tendency toward a tumor-specific DNA methylation pattern was shown for miR-9-1, miR-9-2 and miR-9-3 in 72 primary human gastric cancer specimens. Ectopic expression of miR-9 inhibited cell proliferation, migration and invasion, suggesting its tumor suppressive potential in gastric cancer progression.  相似文献   

10.
人类白细胞抗原G(human leukocyte antigen,HLA-G)属于非经典HLA-I类分子,在多种肿瘤细胞上均有表达。从结构上可以将HLA-G分为7种亚型:膜结合型HLA-G1-HLA-G4和可溶型HLA-G5-HLA-G7。研究表明,HLA-G1和HLA-G5具有明确的生物学活性也是研究较为深入的两种亚型,他们可以与T淋巴细胞、B淋巴细胞和NK细胞表面的ILT2/CD85j/LILRB1,ILT4/CD85d/LILRB2,KIR2DL4/CD158d受体结合而发挥免疫抑制功能。目前,HLA-G分子可以在肝癌、肾癌、肺癌、胃癌、食道癌、鼻咽癌、卵巢癌、乳腺癌、宫颈癌、直肠癌和血液肿瘤中表达。本文从HLA-G分子的结构和功能出发,综述了HLA-G分子在上述肿瘤中表达的情况,旨在分析HLA-G在各种肿瘤组织中表达的特点以及临床意义,为临床早期诊断和治疗肿瘤提供参考。  相似文献   

11.
One method for improving cancer treatment is the use of nanoparticle drugs functionalized with targeting ligands that recognize receptors expressed selectively by tumor cells. In theory such targeting ligands should specifically deliver the nanoparticle drug to the tumor, increasing drug concentration in the tumor and delivering the drug to its site of action within the tumor tissue. However, the leaky vasculature of tumors combined with a poor lymphatic system allows the passive accumulation, and subsequent retention, of nanosized materials in tumors. Furthermore, a large nanoparticle size may impede tumor penetration. As such, the role of active targeting in nanoparticle delivery is controversial, and it is difficult to predict how a targeted nanoparticle drug will behave in vivo. Here we report in vivo studies for αvβ6-specific H2009.1 peptide targeted liposomal doxorubicin, which increased liposomal delivery and toxicity to lung cancer cells in vitro. We systematically varied ligand affinity, ligand density, ligand stability, liposome dosage, and tumor models to assess the role of active targeting of liposomes to αvβ6. In direct contrast to the in vitro results, we demonstrate no difference in in vivo targeting or efficacy for H2009.1 tetrameric peptide liposomal doxorubicin, compared to control peptide and no peptide liposomes. Examining liposome accumulation and distribution within the tumor demonstrates that the liposome, and not the H2009.1 peptide, drives tumor accumulation, and that both targeted H2009.1 and untargeted liposomes remain in perivascular regions, with little tumor penetration. Thus H2009.1 targeted liposomes fail to improve drug efficacy because the liposome drug platform prevents the H2009.1 peptide from both actively targeting the tumor and binding to tumor cells throughout the tumor tissue. Therefore, using a high affinity and high specificity ligand targeting an over-expressed tumor biomarker does not guarantee enhanced efficacy of a liposomal drug. These results highlight the complexity of in vivo targeting.  相似文献   

12.
USP28, a member of the deubiquitinating enzymes family, plays a vital role in the physiological process of cell proliferation, differentiation and apoptosis, DNA repair, immune response, and stress response. USP28 has been reported to be overexpressed in bladder cancer, colon cancer, breast carcinomas, and so on. Nevertheless, the role of USP28 in gastric cancer has not yet been investigated. In our study, we examined the USP28 expression in 87 paired samples of gastric cancer and normal gastric tissues. We found that USP28 was overexpressed in gastric cancer compared with normal gastric tissues (P < 0.01), and its overexpression was related to the degree of differentiation and metastases. Inhibiting USP28 expression in vitro suppressed the proliferation and invasion of gastric cancer cells by downregulating lysine specific demethylase 1. On the basis of our data, it can be concluded that USP28 may be a novel therapeutic target for gastric cancer.  相似文献   

13.
Once per cell cycle replication is crucial for maintaining genome integrity. Geminin interacts with the licensing factor Cdt1 to prevent untimely replication and is controlled by APC/C-dependent cell cycle specific proteolysis during mitosis and in G1. We show here that human geminin, when expressed in human cells in culture under a constitutive promoter, is excluded from the nucleus during part of the G1 phase and at the transition from G0 to G1. The N-terminal 30 amino acids of geminin, which contain its destruction box, are essential for nuclear exclusion. In addition, 30 amino acids within the central domain of geminin are required for both nuclear exclusion and nuclear accumulation. Cdt1 overexpression targets geminin to the nucleus, while reducing Cdt1 levels by RNAi leads to the appearance of endogenous geminin in the cytoplasm. Our data propose a novel means of regulating the balance of Cdt1/geminin in human cells, at the level of the subcellular localization of geminin.  相似文献   

14.
DD Wang  YB Chen  K Pan  W Wang  SP Chen  JG Chen  JJ Zhao  L Lv  QZ Pan  YQ Li  QJ Wang  LX Huang  ML Ke  J He  JC Xia 《PloS one》2012,7(7):e40364

Background

The ARID1A gene encodes adenine-thymine (AT)-rich interactive domain-containing protein 1A, which participates in chromatin remodeling. ARID1A has been showed to function as a tumor suppressor in various cancer types. In the current study, we investigated the expression and prognosis value of ARID1A in primary gastric cancer. Meanwhile, the biological role of ARID1A was further investigated using cell model in vitro.

Methodology/Principal Findings

To investigate the role of ARID1A gene in primary gastric cancer pathogenesis, real-time quantitative PCR and western blotting were used to examine the ARID1A expression in paired cancerous and noncancerous tissues. Results revealed decreased ARID1A mRNA (P = 0.0029) and protein (P = 0.0015) expression in most tumor-bearing tissues compared with the matched adjacent non-tumor tissues, and in gastric cancer cell lines. To further investigate the clinicopathological and prognostic roles of ARID1A expression, we performed immunohistochemical analyses of the 224 paraffin-embedded gastric cancer tissue blocks. Data revealed that the loss of ARID1A expression was significantly correlated with T stage (P = 0.001) and grade (P = 0.006). Consistent with these results, we found that loss of ARID1A expression was significantly correlated with poor survival in gastric cancer patients (P = 0.003). Cox regression analyses showed that ARID1A expression was an independent predictor of overall survival (P = 0.029). Furthermore, the functions of ARID1A in the proliferation and colony formation of gastric cell lines were analyzed by transfecting cells with full-length ARID1A expression vector or siRNA targeting ARID1A. Restoring ARID1A expression in gastric cancer cells significantly inhibited cell proliferation and colony formation. Silencing ARID1A expression in gastric epithelial cell line significantly enhanced cell growth rate.

Conclusions/Significance

Our data suggest that ARID1A may play an important role in gastric cancer and may serve as a valuable prognostic marker and potential target for gene therapy in the treatment of gastric cancer.  相似文献   

15.

Objective

The purpose of this study was to comparatively analyze the signature Raman spectra of genomic DNA, nuclei, and tissue of normal gastric mucosa and gastric cancer and to investigate the biochemical transformation of molecules associated with gastric mucosa malignancy.

Method

Genomic DNA, nuclei, and tissue from normal gastric mucosa and gastric cancer were analyzed by Raman spectroscopy.

Results

1) The Raman spectrum of gastric cancer genomic DNA showed that two peaks appeared, one at approximately 1090 cm-1 with a higher intensity than the peak at 1050 cm-1 in the spectrum. Characteristic peaks appeared at 950 cm-1, 1010 cm-1, and 1100-1600 cm-1. 2) Using a hematoxylin and eosin (H&E)-stained section, the intensity of the characteristic peak of nucleic acids at 1085 cm-1 was increased and shifted to 1088 cm-1 in cancer cells. The relative intensity of the characteristic peaks of nucleoproteins at 755 cm-1 and 1607 cm-1 was significantly increased in cancer cells compared with normal cells. 3) Compared with normal tissues, the peak representing PO2- symmetric stretching vibration shifted from 1088 cm-1 to 1083 cm-1 in cancer tissue, and the characteristic peak for collagen at 938 cm-1 shifted to 944 cm-1. In addition, an extra characteristic peak indicating C = C stretching vibration appeared at 1379 cm-1 in the lipid spectrum in cancer tissue.

Conclusions

The position, intensity, and shape of peaks in the Raman spectra of DNA, nuclei, and tissue from gastric cancer were significantly different compared with those of normal cells. These results indicate that the DNA phosphate backbone becomes unstable in cancer cells and might be broken; the relative content of histones is increased and stable; the relative collagen content is reduced, facilitating cancer cell metastasis; and the relative content of unsaturated fatty acids is increased, increasing the mobility of the plasma membrane of cancer cells.  相似文献   

16.

Objective

According to the current hypothesis, tumor-associated macrophages (TAMs) are “corrupted” by cancer cells and subsequently facilitate, rather than inhibit, tumor metastasis. Because the molecular mechanisms of cancer cell–TAM interactions are complicated and controversial we aimed to better define this phenomenon.

Methods and Results

Using microRNA microarrays, Real-time qPCR and Western blot we showed that co-culture of canine mammary tumor cells with TAMs or treatment with macrophage-conditioned medium inhibited the canonical Wnt pathway and activated the non-canonical Wnt pathway in tumor cells. We also showed that co-culture of TAMs with tumor cells increased expression of canonical Wnt inhibitors in TAMs. Subsequently, we demonstrated macrophage-induced invasive growth patterns and epithelial–mesenchymal transition of tumor cells. Validation of these results in canine mammary carcinoma tissues (n = 50) and xenograft tumors indicated the activation of non-canonical and canonical Wnt pathways in metastatic tumors and non-metastatic malignancies, respectively. Activation of non-canonical Wnt pathway correlated with number of TAMs.

Conclusions

We demonstrated that TAMs mediate a “switch” between canonical and non-canonical Wnt signaling pathways in canine mammary tumors, leading to increased tumor invasion and metastasis.Interestingly, similar changes in neoplastic cells were observed in the presence of macrophage-conditioned medium or live macrophages. These observations indicate that rather than being “corrupted” by cancer cells, TAMs constitutively secrete canonical Wnt inhibitors that decrease tumor proliferation and development, but as a side effect, they induce the non-canonical Wnt pathway, which leads to tumor metastasis.These data challenge the conventional understanding of TAM–cancer cell interactions.  相似文献   

17.
Ma K  Liu Y  Zhu Q  Liu CH  Duan JL  Tan BK  Zhu YZ 《PloS one》2011,6(6):e20525

Background

S-propargyl-cysteine (SPRC), an H2S donor, is a structural analogue of S-allycysteine (SAC). It was investigated for its potential anti-cancer effect on SGC-7901 gastric cancer cells and the possible mechanisms that may be involved.

Methods and Findings

SPRC treatment significantly decreased cell viability, suppressed the proliferation and migration of SPRC-7901 gastric cancer cells, was pro-apoptotic as well as caused cell cycle arrest at the G1/S phase. In an in vivo study, intra-peritoneal injection of 50 mg/kg and 100 mg/kg of SPRC significantly reduced tumor weights and tumor volumes of gastric cancer implants in nude mice, with a tumor growth inhibition rate of 40–75%. SPRC also induced a pro-apoptotic effect in cancer tissues and elevated the expressions of p53 and Bax in tumors and cells. SPRC treatment also increased protein expression of cystathione-γ-lyase (CSE) in cells and tumors, and elevated H2S levels in cell culture media, plasma and tumoral CSE activity of gastric cancer-induced nude mice by 2, 2.3 and 1.4 fold, respectively. Most of the anti-cancer functions of SPRC on cells and tumors were significantly suppressed by PAG, an inhibitor of CSE activity.

Conclusions

Taken together, the results of our study provide insights into a novel anti-cancer effect of H2S as well as of SPRC on gastric cancer through inducing the activity of a new target, CSE.  相似文献   

18.
The aim of this study is to characterize the function of mitochondria and main energy fluxes in human colorectal cancer (HCC) cells. We have performed quantitative analysis of cellular respiration in post-operative tissue samples collected from 42 cancer patients. Permeabilized tumor tissue in combination with high resolution respirometry was used.Our results indicate that HCC is not a pure glycolytic tumor and the oxidative phosphorylation (OXPHOS) system may be the main provider of ATP in these tumor cells. The apparent Michaelis–Menten constant (Km) for ADP and maximal respiratory rate (Vm) values were calculated for the characterization of the affinity of mitochondria for exogenous ADP: normal colon tissue displayed low affinity (Km = 260 ± 55 μM) whereas the affinity of tumor mitochondria was significantly higher (Km = 126 ± 17 μM). But concurrently the Vm value of the tumor samples was 60–80% higher than that in control tissue. The reason for this change is related to the increased number of mitochondria. Our data suggest that in both HCC and normal intestinal cells tubulin β-II isoform probably does not play a role in the regulation of permeability of the MOM for adenine nucleotides.The mitochondrial creatine kinase energy transfer system is not functional in HCC and our experiments showed that adenylate kinase reactions could play an important role in the maintenance of energy homeostasis in colorectal carcinomas instead of creatine kinase.Immunofluorescent studies showed that hexokinase 2 (HK-2) was associated with mitochondria in HCC cells, but during carcinogenesis the total activity of HK did not change. Furthermore, only minor alterations in the expression of HK-1 and HK-2 isoforms have been observed.Metabolic Control analysis showed that the distribution of the control over electron transport chain and ATP synthasome complexes seemed to be similar in both tumor and control tissues. High flux control coefficients point to the possibility that the mitochondrial respiratory chain is reorganized in some way or assembled into large supercomplexes in both tissues.  相似文献   

19.
Intensive studies of molecular mechanisms responsible for tumor transformation results in identification of new proteins and their genes involved into tumor development. These proteins may be used as markers of tumor transformation of cells and the level of their expression may be evaluated by means of modern highly sensitive and technological methods of analysis. This review summarized literature data on currently used immunohistochemical and molecular genetic markers of gastric cancer. It highlights genetic and epigenetic changes detected in nucleic acids of tumor tissue cells in malignant and benign gastric diseases as well as in the level of DNA circulating in blood of patients with gastric cancer.  相似文献   

20.
目的:探讨miR-10a抑制Tiam1表达对胃癌细胞凋亡和侵袭的影响。方法:获取胃上皮组织细胞及胃癌组织细胞,利用q PCR及Western blot实验检测两种细胞中mi R-10a表达与Tiam1的m RNA及蛋白表达水平,同时检测胃癌细胞S746T及正常胃粘膜细胞RGM-1和NGEC中mi R-10a表达与Tiam1蛋白表达水平。通过将mi R-10a mimic和mi R-10a inhibitor转染HS746T细胞,利用流式细胞术检测HS746T的细胞周期和细胞凋亡,TranswellTM实验检测HS746T细胞的侵袭能力,qPCR及Western blot实验检测凋亡相关蛋白caspase3、caspase9和Bax以及周期相关蛋白P21表达水平;荧光素酶活性分析实验检测Tiam1是mi R-10a的作用靶点。已构建的Tiam1高表达的Tiam1-pcDNA3.1质粒和敲除Tiam1基因的PX458质粒分别转染HS746T细胞,通过流式细胞术及TranswellTM实验检测HS746T细胞的凋亡及侵袭能力。结果:与胃上皮组织细胞相比,早期胃癌临床组织细胞中mi R-10a表达降低,Tiam1的m RNA及蛋白表达升高;mi R-10a的表达与早期胃癌患者的肿瘤转移密切相关,与年龄、性别和肿瘤分期无关;与正常胃粘膜细胞RGM-1和NGEC相比,胃癌细胞HS746T中的mi R-10a表达降低,而Tiam1蛋白表达升高;mi R-10a可抑制HS746T细胞侵袭,促进细胞凋亡,使其停滞于G0/G1期;mi R-10a靶向作用于Tiam1基因的3'非翻译区(3'UTR),减少Tiam1的蛋白表达;Tiam1可抑制HS746T细胞凋亡,促进HS746T细胞侵袭。结论:mi R-10a靶向作用于Tiam1基因的3'UTR,抑制HS746T细胞的增殖及侵袭,促进HS746T细胞凋亡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号