首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic spinal cord injury (SCI) results in an accelerated trajectory of several cardiovascular disease (CVD) risk factors and related aging characteristics, however the molecular mechanisms that are activated have not been explored. Adipokines and leptin signaling are known to play a critical role in neuro-endocrine regulation of energy metabolism, and are now implicated in central inflammatory processes associated with CVD. Here, we examine hypothalamic adipokine gene expression and leptin signaling in response to chronic spinal cord injury and with advanced age. We demonstrate significant changes in fasting-induced adipose factor (FIAF), resistin (Rstn), long-form leptin receptor (LepRb) and suppressor of cytokine-3 (SOCS3) gene expression following chronic SCI and with advanced age. LepRb and Jak2/stat3 signaling is significantly decreased and the leptin signaling inhibitor SOCS3 is significantly elevated with chronic SCI and advanced age. In addition, we investigate endoplasmic reticulum (ER) stress and activation of the uncoupled protein response (UPR) as a biological hallmark of leptin resistance. We observe the activation of the ER stress/UPR proteins IRE1, PERK, and eIF2alpha, demonstrating leptin resistance in chronic SCI and with advanced age. These findings provide evidence for adipokine-mediated inflammatory responses and leptin resistance as contributing to neuro-endocrine dysfunction and CVD risk following SCI and with advanced age. Understanding the underlying mechanisms contributing to SCI and age related CVD may provide insight that will help direct specific therapeutic interventions.  相似文献   

2.
3.
Inflammation in insulin-sensitive tissues (e.g., liver, visceral adipose tissue [VAT]) plays a major role in obesity and insulin resistance. Recruitment of innate immune cells drives the dysregulation of glucose and lipid metabolism. We aimed to seek the role of Toll like receptor 3 (TLR3), a pattern recognition receptor involved in innate immunity, obesity and the metabolic disorder. TLR3 expression in liver and VAT from diet induced obese mice and in VAT from overweight women was examined. Body weight, glucose homeostasis and insulin sensitivity were evaluated in TLR3 wild-type and knockout (KO) mice on a chow diet (CD) or high-fat diet for 15 weeks. At euthanasia, blood was collected, and plasma biochemical parameters and adipokines were determined with commercial kits. Flow cytometry was used to measure macrophage infiltration and activation in VAT. Standard western blot, immunohistochemistry and quantative PCR were used to assess molecules in pathways about lipid and glucose metabolism, insulin and inflammation in tissues of liver and VAT. Utilizing human and animal samples, we found that expression of TLR3 was upregulated in the liver and VAT in obese mice as well as VAT in overweight women. TLR3-deficiency protected against high-fat diet induced obesity, glucose intolerance, insulin resistance and lipid accumulation. Lipolysis was enhanced in VAT and hepatic lipogenesis was inhibited in TLR3 KO animals. Macrophages infiltration into adipose tissue was attenuated in TLR3 KO mice, accompanied with inhibition of NF-κB-dependent AMPK/Akt signaling pathway. These findings demonstrated that TLR3 ablation prevented obesity and metabolic disorders, thereby providing new mechanistic links between inflammation and obesity and associated metabolic abnormalities in lipid/glucose metabolism.  相似文献   

4.

Background  

Obesity causes insulin resistance in target tissues - skeletal muscle, adipose tissue, liver and the brain. Insulin resistance predisposes to type-2 diabetes (T2D) and cardiovascular disease (CVD). Adipose tissue inflammation is an essential characteristic of obesity and insulin resistance. Neuronatin (Nnat) expression has been found to be altered in a number of conditions related to inflammatory or metabolic disturbance, but its physiological roles and regulatory mechanisms in adipose tissue, brain, pancreatic islets and other tissues are not understood.  相似文献   

5.
Metabolic syndrome (MetS) include obesity as a critical feature and is strongly associated with risk of cardiovascular disease (CVD). Insights into mechanisms involved in the pathophysiology of these clinical manifestations are essential for the development of therapeutic strategies. Thus, Western diets (WD) have been widely employed in diet-induced obesity (DIO) model. However, there are variations in fat and sugar proportions of such diets, making comparisons challenging. We aimed to assess the impact of two types of the WD on metabolic status and cardiac remodeling, to achieve a DIO model that better mimics the human pathogenesis of MetS-induced CVD. Male Wistar rats were distributed into three groups: control diet, Western diet fat (WDF), and Western diet sugar (WDS) for 41 weeks. Metabolic and inflammatory parameters and cardiac changes were characterized. WDF and WDS feeding promoted higher serum triglycerides, glucose intolerance, and insulin resistance, while just WDF presented inflammation in adipose tissue. WDF-fed rats showed increased catalase activity and malondialdehyde (MDA) and carbonyl protein levels, suggesting cardiac oxidative stress, while WDS-fed rats only raised MDA. Both WD equally elevated protein expressions involved in lipid metabolism, but only WDF downregulated the glycolysis pathway. Furthermore, the mechanical myocardial function was impaired in obese rats, being more relevant in WDF. In conclusion, both WD effectively triggered MetS features, although inflammation was detected just on the WDF-fed animals. Moreover, the WDF promoted a more pronounced functional, metabolic, and oxidative cardiac disorder, suggesting to be an adequate model for studying CVD in the scenario of MetS.  相似文献   

6.
Objective : Visceral (VAT) and abdominal subcutaneous (SAT) adipose tissues contribute to obesity but may have different metabolic and atherosclerosis risk profiles. We sought to determine the associations of abdominal VAT and SAT mass with markers of cardiac and metabolic risk in a large, multiethnic, population‐based cohort of obese adults. Design and Methods : Among obese participants in the Dallas Heart Study, we examined the cross‐sectional associations of abdominal VAT and SAT mass, assessed by magnetic resonance imaging (MRI) and indexed to body surface area (BSA), with circulating biomarkers of insulin resistance, dyslipidemia, and inflammation (n = 942); and with aortic plaque and liver fat by MRI and coronary calcium by computed tomography (n = 1200). Associations of VAT/BSA and SAT/BSA were examined after adjustment for age, sex, race, menopause, and body mass index. Results : In multivariable models, VAT significantly associated with the homeostasis model assessment of insulin resistance (HOMA‐IR), lower adiponectin, smaller LDL and HDL particle size, larger VLDL size, and increased LDL and VLDL particle number (p < 0.001 for each). VAT also associated with prevalent diabetes, metabolic syndrome, hepatic steatosis, and aortic plaque (p < 0.001 for each). VAT independently associated with C‐reactive protein but not with any other inflammatory biomarkers tested. In contrast, SAT associated with leptin and inflammatory biomarkers, but not with dyslipidemia or atherosclerosis. Associations between SAT and HOMA‐IR were significant in univariable analyses but attenuated after multivariable adjustment. Conclusion : VAT associated with an adverse metabolic, dyslipidemic, and atherogenic obesity phenotype. In contrast, SAT demonstrated a more benign phenotype, characterized by modest associations with inflammatory biomarkers and leptin, but no independent association with dyslipidemia, insulin resistance, or atherosclerosis in obese individuals. These findings suggest that abdominal fat distribution defines distinct obesity sub‐phenotypes with heterogeneous metabolic and atherosclerosis risk.  相似文献   

7.
Obesity is a worldwide disease that is accompanied by several metabolic abnormalities such as hypertension, hyperglycemia and dyslipidemia. The accelerated adipose tissue growth and fat cell hypertrophy during the onset of obesity precedes adipocyte dysfunction. One of the features of adipocyte dysfunction is dysregulated adipokine secretion, which leads to an imbalance of pro-inflammatory, pro-atherogenic versus anti-inflammatory, insulin-sensitizing adipokines. The production of renin–angiotensin system (RAS) components by adipocytes is exacerbated during obesity, contributing to the systemic RAS and its consequences. Increased adipose tissue RAS has been described in various models of diet-induced obesity (DIO) including fructose and high-fat feeding. Up-regulation of the adipose RAS by DIO promotes inflammation, lipogenesis and reactive oxygen species generation and impairs insulin signaling, all of which worsen the adipose environment. Consequently, the increase of circulating RAS, for which adipose tissue is partially responsible, represents a link between hypertension, insulin resistance in diabetes and inflammation during obesity. However, other nutrients and food components such as soy protein attenuate adipose RAS, decrease adiposity, and improve adipocyte functionality. Here, we review the molecular mechanisms by which adipose RAS modulates systemic RAS and how it is enhanced in obesity, which will explain the simultaneous development of metabolic syndrome alterations. Finally, dietary interventions that prevent obesity and adipocyte dysfunction will maintain normal RAS concentrations and effects, thus preventing metabolic diseases that are associated with RAS enhancement.  相似文献   

8.
The purpose of this study was to investigate the associations among central obesity, inflammation, and left ventricular (LV) diastolic dysfunction by structural equation modeling. Echocardiographic parameters were assessed in 102 otherwise-healthy adults over age 30. The participants were classified as having LV diastolic dysfunction by echocardiographic findings including mitral inflow E/A ratio <1, deceleration time >220 cm/s, or decreased peak annular early diastolic velocity in tissue Doppler imaging or otherwise the control group. Serum C-reactive protein (CRP) and lipid profile were also measured. The homeostasis model of insulin resistance (HOMA) was calculated. Central obesity was assessed by computerized tomography (CT) at the L4 level. In a multivariate regression analysis, the relationship between visceral adipose tissue (VAT) and LV diastolic dysfunction became insignificant when CRP was introduced into the model, although CRP itself was significantly associated with LV diastolic dysfunction (odds ratio (OR): 1.32, 95% confidence interval (CI): 1.01-1.72, P = 0.04). A significant correlation was also found between VAT and CRP (r = 0.70; P < 0.001). We then performed path analysis as illustrated by the structural equation model. This proved our hypotheses that VAT might affect LV diastolic dysfunction through the effect of CRP (total fat load with inflammation (B = 1.133, P < 0.001) and that inflammation might affect LV diastolic dysfunction (B = 0.373. P < 0.001)). Using structural equation modeling, we concluded that higher amounts of VAT were associated with low-grade inflammation and this may lead to subclinical LV diastolic dysfunction in otherwise-healthy subjects.  相似文献   

9.
Visceral adipose tissue (VAT) inflammation has been linked to the pathogenesis of insulin resistance and metabolic syndrome. VAT has recently been established as a new component of the immune system and is involved in the production of various adipokines and cytokines. These molecules contribute to inducing and accelerating systemic insulin resistance. In this report, we investigated the role of B cell-activating factor (BAFF) in the induction of insulin resistance. We investigated BAFF levels in the sera and VAT of obese mice. In obese mice, the BAFF levels were preferentially increased in VAT and sera compared to these levels in normal control mice. Next, we treated mice with BAFF to analyze its influence on insulin sensitivity. BAFF impaired insulin sensitivity in normal mice. Finally, we investigated the mechanisms underlying insulin resistance induced by BAFF in adipocytes. BAFF also induced alterations in the expression levels of genes related to insulin resistance in adipocytes. In addition, BAFF directly affected the glucose uptake and phosphorylation of insulin receptor substrate-1 in adipocytes. We propose that autocrine or paracrine BAFF and BAFF-receptor (BAFF-R) interaction in VAT leads to impaired insulin sensitivity via inhibition of insulin signaling pathways and alterations in adipokine production.  相似文献   

10.
Obesity can be considered as a low‐grade inflammatory condition, strongly linked to adverse metabolic outcomes. Obesity‐associated adipose tissue inflammation is characterized by infiltration of macrophages and increased cytokine and chemokine production. The distribution of adipose tissue impacts the outcomes of obesity, with the accumulation of fat in visceral adipose tissue (VAT) and deep subcutaneous adipose tissue (SAT), but not superficial SAT, being linked to insulin resistance. We hypothesized that the inflammatory gene expression in deep SAT and VAT is higher than in superficial SAT. A total of 17 apparently healthy women (BMI: 29.3±5.5 kg/m2) were included in the study. Body fat (dual‐energy X‐ray absorptiometry) and distribution (computed tomography) were measured, and insulin sensitivity, blood lipids, and blood pressure were determined. Inflammation‐related differences in gene expression (real‐time PCR) from VAT, superficial and deep SAT biopsies were analyzed using univariate and multivariate data analyses. Using multivariate discrimination analysis, VAT appeared as a distinct depot in adipose tissue inflammation, while the SAT depots had a similar pattern, with respect to gene expression. A significantly elevated (P < 0.01) expression of the CC chemokine receptor 2 (CCR2) and macrophage migration inhibitory factor (MIF) in VAT contributed strongly to the discrimination. In conclusion, the human adipose tissue depots have unique inflammatory patterns, with CCR2 and MIF distinguishing between VAT and the SAT depots.  相似文献   

11.
In advanced age, increases in oxidative stress and inflammation impair endothelial function, which contributes to the development of cardiovascular disease (CVD). One plausible source of this oxidative stress and inflammation is an increase in the abundance of senescent endothelial cells. Cellular senescence is a cell cycle arrest that occurs in response to various damaging stimuli. In the present study, we tested the hypothesis that advanced age results in endothelial cell telomere dysfunction that induces senescence. In both human and mouse endothelial cells, advanced age resulted in an increased abundance of dysfunctional telomeres, characterized by activation of DNA damage signaling at telomeric DNA. To test whether this results in senescence, we selectively reduced the telomere shelterin protein telomere repeat binding factor 2 (Trf2) from endothelial cells of young mice. Trf2 reduction increased endothelial cell telomere dysfunction and resulted in cellular senescence. Furthermore, induction of endothelial cell telomere dysfunction increased inflammatory signaling and oxidative stress, resulting in impairments in endothelial function. Finally, we demonstrate that endothelial cell telomere dysfunction-induced senescence impairs glucose tolerance. This likely occurs through increases in inflammatory signaling in the liver and adipose tissue, as well as reductions in microvascular density and vasodilation to metabolic stimuli. Cumulatively, the findings of the present study identify age-related telomere dysfunction as a mechanism that leads to endothelial cell senescence. Furthermore, these data provide compelling evidence that senescent endothelial cells contribute to age-related increases in oxidative stress and inflammation that impair arterial and metabolic function.  相似文献   

12.
Deng W  Wang X  Xiao J  Chen K  Zhou H  Shen D  Li H  Tang Q 《PloS one》2012,7(1):e30256

Background

The effect of regulator of G protein signaling 5 (RGS5) on cardiac hypertrophy, atherosclerosis and angiogenesis has been well demonstrated, but the role in the development of obesity and insulin resistance remains completely unknown. We determined the effect of RGS5 deficiency on obesity, hepatic steatosis, inflammation and insulin resistance in mice fed either a normal-chow diet (NC) or a high-fat diet (HF).

Methodology/Principal Findings

Male, 8-week-old RGS5 knockout (KO) and littermate control mice were fed an NC or an HF for 24 weeks and were phenotyped accordingly. RGS5 KO mice exhibited increased obesity, fat mass and ectopic lipid deposition in the liver compared with littermate control mice, regardless of diet. When fed an HF, RGS5 KO mice had a markedly exacerbated metabolic dysfunction and inflammatory state in the blood serum. Meanwhile, macrophage recruitment and inflammation were increased and these increases were associated with the significant activation of JNK, IκBα and NF-κBp65 in the adipose tissue, liver and skeletal muscle of RGS5 KO mice fed an HF relative to control mice. These exacerbated metabolic dysfunction and inflammation are accompanied with decreased systemic insulin sensitivity in the adipose tissue, liver and skeletal muscle of RGS5 KO mice, reflected by weakened Akt/GSK3β phosphorylation.

Conclusions/Significance

Our data suggest that loss of RGS5 exacerbates HF-induced obesity, hepatic steatosis, inflammation and insulin resistance.  相似文献   

13.
Endothelial dysfunction may link obesity to cardiovascular disease (CVD). We tested the hypothesis that visceral abdominal tissue (VAT) as compared with subcutaneous adipose tissue (SAT) is more related to endothelium‐dependent vasodilation. Among Framingham Offspring and Third Generation cohorts (n = 3,020, mean age 50 years, 47% women), we used multivariable linear regression adjusted for CVD and its risk factors to relate computed tomography (CT)‐assessed VAT and SAT, BMI, and waist circumference (WC), with brachial artery measures. In multivariable‐adjusted models, BMI, WC, VAT, and SAT were positively related to baseline artery diameter and baseline mean flow velocity (all P < 0.001), but not hyperemic mean flow velocity. In multivariable‐adjusted models, BMI (P = 0.002), WC (P = 0.001), and VAT (P = 0.01), but not SAT (P = 0.24) were inversely associated with percentage of flow‐mediated dilation (FMD%). However, there was little incremental increase in the proportion of variability explained by VAT (R2 = 0.266) as compared to SAT (R2 = 0.265), above and beyond traditional risk factors. VAT, but not SAT was associated with FMD% after adjusting for clinical covariates. Nevertheless, the differential association with VAT as compared to SAT was minimal.  相似文献   

14.
Glyceroneogenesis, a metabolic pathway that participates during lipolysis in the recycling of free fatty acids to triglycerides into adipocytes, contributes to the lipid-buffering function of adipose tissue. We investigated whether glyceroneogenesis could be affected by human immunodeficiency virus (HIV) protease inhibitors (PIs) responsible or not for dyslipidemia in HIV-infected patients. We treated explants obtained from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) depots from lean individuals. We observed that the dyslipidemic PIs nelfinavir, lopinavir and ritonavir, but not the lipid-neutral PI atazanavir, increased lipolysis and decreased glyceroneogenesis, leading to an increased release of fatty acids from SAT but not from VAT. At the same time, dyslipidemic PIs decreased the amount of perilipin and increased interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) secretion in SAT but not in VAT. Parthenolide, an inhibitor of the NFκB pathway, counteracted PI-induced increased inflammation and decreased glyceroneogenesis. IL-6 (100 ng) inhibited the activity of phosphoenolpyruvate carboxykinase, the key enzyme of glyceroneogenesis, in SAT but not in VAT. Our data show that dyslipidemic but not lipid-neutral PIs decreased glyceroneogenesis as a consequence of PI-induced increased inflammation in SAT that could have an affect on adipocytes and/or macrophages. These results add a new link between fat inflammation and increased fatty acids release and suggest a greater sensitivity of SAT than VAT to PI-induced inflammation.  相似文献   

15.
Metabolic pathologies mainly originate from adipose tissue (AT) dysfunctions. AT differences are associated with fat-depot anatomic distribution in subcutaneous (SAT) and visceral omental (VAT) pads. We address the question whether the functional differences between the two compartments may be present early in the adipose stem cell (ASC) instead of being restricted to the mature adipocytes. Using a specific human ASC model, we evaluated proliferation/differentiation of ASC from abdominal SAT-(S-ASC) and VAT-(V-ASC) paired biopsies in parallel as well as the electrophysiological properties and functional activity of ASC and their in vitro-derived adipocytes. A dramatic difference in proliferation and adipogenic potential was observed between the two ASC populations, S-ASC having a growth rate and adipogenic potential significantly higher than V-ASC and giving rise to more functional and better organized adipocytes. To our knowledge, this is the first comprehensive electrophysiological analysis of ASC and derived-adipocytes, showing electrophysiological properties, such as membrane potential, capacitance and K(+)-current parameters which confirm the better functionality of S-ASC and their derived adipocytes. We document the greater ability of S-ASC-derived adipocytes to secrete adiponectin and their reduced susceptibility to lipolysis. These features may account for the metabolic differences observed between the SAT and VAT. Our findings suggest that VAT and SAT functional differences originate at the level of the adult ASC which maintains a memory of its fat pad of origin. Such stem cell differences may account for differential adipose depot susceptibility to the development of metabolic dysfunction and may represent a suitable target for specific therapeutic approaches.  相似文献   

16.
The lipotoxic effects of obesity are important contributing factors in cancer, diabetes, and cardiovascular disease (CVD), but the genetic mechanisms, by which lipotoxicity influences the initiation and progression of CVD are poorly understood. Hearts, of obese and diabetic individuals, exhibit several phenotypes in common, including ventricular remodeling, prolonged QT intervals, enhanced frequency of diastolic and/or systolic dysfunction, and decreased fractional shortening. High systemic lipid concentrations are thought to be the leading cause of lipid-related CVD in obese or diabetic individuals. However, an alternative possibility is that obesity leads to cardiac-specific steatosis, in which lipids and their metabolites accumulate within the myocardial cells themselves and thereby disrupt normal cardiovascular function. Drosophila has recently emerged as an excellent model to study the fundamental genetic mechanisms of metabolic control, as well as their relationship to heart function. Two recent studies of genetic and diet-induced cardiac lipotoxicity illustrate this. One study found that alterations in genes associated with membrane phospholipid metabolism may play a role in the abnormal lipid accumulation associated with cardiomyopathies. The second study showed that Drosophila fed a diet high in saturated fats, developed obesity, dysregulated insulin and glucose homeostasis, and severe cardiac dysfunction. Here, we review the current understanding of the mechanisms that contribute to the detrimental effects of dysregulated lipid metabolism on cardiovascular function. We also discuss how the Drosophila model could help elucidate the basic genetic mechanisms of lipotoxicity- and metabolic syndrome-related cardiomyopathies in mammals.  相似文献   

17.
18.
19.
South Asians have a higher risk for cardiovascular disease (CVD) that remains largely unexplained. We hypothesized that the increased CVD risk in South Asians compared to Europeans is mediated through higher levels of visceral adipose tissue (VAT) in South Asians compared to total body fat and subcutaneous abdominal adipose tissue (SAT). South Asians (207) and Europeans (201) underwent assessment for demographics, body fat, and risk factors. Linear regression models were created by sex for each risk factor to explore mediation effects of total body fat, SAT, and VAT adjusted for age, income, smoking, and BMI (menopausal status for women). Mediation was based on changes in the ethnicity β coefficient due to additional adjustment for our adipose variable of interest and the Sobel test for mediation. South Asians had worse lipid, glucose, insulin, and C-reactive protein (CRP) levels than Europeans after adjusting for confounders. Most of these differences remained even after further adjustment by either total body fat or SAT. In contrast, VAT attenuated the ethnic differences in risk factors by 16%-52%. After adjusting for VAT, there were no longer ethnic differences in total cholesterol (TC), LDL-C, TC/HDL-C, glucose, and diastolic blood pressure (BP) in men, and in HDL-C, triglycerides (TG), TC/HDL-C, and homeostasis model (HOMA) in women, and VAT was a significant mediator for these risk factors. Higher levels of risk factors for CVD in South Asians are predominantly because of the unique phenotype of South Asians having greater VAT than Europeans even at the same BMI.  相似文献   

20.
The lipotoxic effects of obesity are important contributing factors in cancer, diabetes, and cardiovascular disease (CVD), but the genetic mechanisms, by which lipotoxicity influences the initiation and progression of CVD are poorly understood. Hearts, of obese and diabetic individuals, exhibit several phenotypes in common, including ventricular remodeling, prolonged QT intervals, enhanced frequency of diastolic and/or systolic dysfunction, and decreased fractional shortening. High systemic lipid concentrations are thought to be the leading cause of lipid-related CVD in obese or diabetic individuals. However, an alternative possibility is that obesity leads to cardiac-specific steatosis, in which lipids and their metabolites accumulate within the myocardial cells themselves and thereby disrupt normal cardiovascular function. Drosophila has recently emerged as an excellent model to study the fundamental genetic mechanisms of metabolic control, as well as their relationship to heart function. Two recent studies of genetic and diet-induced cardiac lipotoxicity illustrate this. One study found that alterations in genes associated with membrane phospholipid metabolism may play a role in the abnormal lipid accumulation associated with cardiomyopathies. The second study showed that Drosophila fed a diet high in saturated fats, developed obesity, dysregulated insulin and glucose homeostasis, and severe cardiac dysfunction. Here, we review the current understanding of the mechanisms that contribute to the detrimental effects of dysregulated lipid metabolism on cardiovascular function. We also discuss how the Drosophila model could help elucidate the basic genetic mechanisms of lipotoxicity- and metabolic syndrome-related cardiomyopathies in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号