首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyanobacterial mutants defective in acyl-acyl carrier protein synthetase (Aas) secrete free fatty acids (FFAs) into the external medium and hence have been used for the studies aimed at photosynthetic production of biofuels. While the wild-type strain of Synechocystis sp. PCC 6803 is highly sensitive to exogenously added linolenic acid, mutants defective in the aas gene are known to be resistant to the externally provided fatty acid. In this study, the wild-type Synechocystis cells were shown to be sensitive to lauric, oleic, and linoleic acids as well, and the resistance to these fatty acids was shown to be enhanced by inactivation of the aas gene. On the basis of these observations, we developed an efficient method to isolate aas-deficient mutants from cultures of Synechocystis cells by counter selection using linoleic acid or linolenic acid as the selective agent. A variety of aas mutations were found in about 70 % of the FFA-resistant mutants thus selected. Various aas mutants were isolated also from Synechococcus sp. PCC 7002, using lauric acid as a selective agent. Selection using FFAs was useful also for construction of markerless aas knockout mutants from Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002. Thus, genetic engineering of FFA-producing cyanobacterial strains would be greatly facilitated by the use of the FFAs for counter selection.  相似文献   

2.
Due to their capability of photosynthesis and autotrophic growth, cyanobacteria are currently investigated with regard to the sustainable production of a wide variety of chemicals. So far, however, no attempt has been undertaken to engineer cyanobacteria for the biotechnological production of vitamins, which is probably due to the light-sensitivity of many of these compounds. We now describe a photoautotrophic bioprocess to synthesize riboflavin, a vitamin used as a supplement in the feed and food industry. By overexpressing the riboflavin biosynthesis genes ribDGEABHT from Bacillus subtilis in the marine cyanobacterium Synechococcus sp. PCC 7002 riboflavin levels in the supernatant of the corresponding recombinant strain increased 56-fold compared to the wild-type. Introduction of a second promoter region upstream of the heterologous ribAB gene – coding for rate-limiting enzymatic functions in the riboflavin biosynthesis pathway – led to a further increase of riboflavin levels (211-fold compared to the wild-type). Degradation of the light-sensitive product riboflavin was prevented by culturing the genetically engineered Synechococcus sp. PCC 7002 strains in the presence of dichromatic light generated by red light-emitting diodes (λ = 630 and 700 nm). Synechococcus sp. PCC 7002 naturally is resistant to the toxic riboflavin analog roseoflavin. Expression of the flavin transporter pnuX from Corynebacterium glutamicum in Synechococcus sp. PCC 7002 resulted in roseoflavin-sensitive recombinant strains which in turn could be employed to select roseoflavin-resistant, riboflavin-overproducing strains as a chassis for further improvement.  相似文献   

3.
4.
Genome sequences of microorganisms typically contain hundreds of genes with vaguely defined functions. Targeted gene inactivation and phenotypic characterization of the resulting mutant strains is a powerful strategy to investigate the function of these genes. We have adapted the recently reported uracil-specific excision reagent (USER) cloning method for targeted gene inactivation in cyanobacteria and used it to inactivate genes in glycogen metabolism in Synechococcus sp. PCC 7002. Knock-out plasmid constructs were made in a single cloning step, where transformation of E. coli yielded about 90% colonies with the correct construct. The two homologous regions were chosen independently of each other and of restriction sites in the target genome. Mutagenesis of Synechococcus sp. PCC 7002 was tested with four antibiotic resistance selection markers (spectinomycin, erythromycin, kanamycin, and gentamicin), and both single-locus and double-loci mutants were prepared. We found that Synechococcus sp. PCC 7002 contains two glycogen phosphorylases (A0481/glgP and A2139/agpA) and that both need to be genetically inactivated to eliminate glycogen phosphorylase activity in the cells.  相似文献   

5.
6.
The euryhaline, unicellular cyanobacterium Synechococcus sp. strain PCC 7002 produces the dicyclic aromatic carotenoid synechoxanthin (χ,χ-caroten-18,18′-dioic acid) as a major pigment (>15% of total carotenoid) and when grown to stationary phase also accumulates small amounts of renierapurpurin (χ,χ-carotene) (J. E. Graham, J. T. J. Lecomte, and D. A. Bryant, J. Nat. Prod. 71:1647-1650, 2008). Two genes that were predicted to encode enzymes involved in the biosynthesis of synechoxanthin were identified by comparative genomics, and these genes were insertionally inactivated in Synechococcus sp. strain PCC 7002 to verify their function. The cruE gene (SYNPCC7002_A1248) encodes β-carotene desaturase/methyltransferase, which converts β-carotene to renierapurpurin. The cruH gene (SYNPCC7002_A2246) encodes an enzyme that is minimally responsible for the hydroxylation/oxidation of the C-18 and C-18′ methyl groups of renierapurpurin. Based on observed and biochemically characterized intermediates, a complete pathway for synechoxanthin biosynthesis is proposed.  相似文献   

7.
The genome of the model cyanobacterium, Synechococcus sp. PCC 7002, encodes two paralogs of CruA-type lycopene cyclases, SynPCC7002_A2153 and SynPCC7002_A0043, which are denoted cruA and cruP, respectively. Unlike the wild-type strain, a cruA deletion mutant is light-sensitive, grows slowly, and accumulates lycopene, γ-carotene, and 1-OH-lycopene; however, this strain still produces β-carotene and other carotenoids derived from it. Expression of cruA from Synechocystis sp. PCC 6803 (cruA 6803) in Escherichia coli strains that synthesize either lycopene or γ-carotene did not lead to the synthesis of either γ-carotene or β-carotene, respectively. However, expression of this orthologous cruA 6803 gene (sll0147) in the Synechococcus sp. PCC 7002 cruA deletion mutant produced strains with phenotypic properties identical to the wild type. CruA6803 was purified from Synechococcus sp. PCC 7002 by affinity chromatography, and the purified protein was pale yellow-green due to the presence of bound chlorophyll (Chl) a and β-carotene. Native polyacrylamide gel electrophoresis of the partly purified protein in the presence of lithium dodecylsulfate at 4 °C confirmed that the protein was yellow-green in color. When purified CruA6803 was assayed in vitro with either lycopene or γ-carotene as substrate, β-carotene was synthesized. These data establish that CruA6803 is a lycopene cyclase and that it requires a bound Chl a molecule for activity. Possible binding sites for Chl a and the potential regulatory role of the Chl a in coordination of Chl and carotenoid biosynthesis are discussed.  相似文献   

8.
We have determined the complete nucleotide sequence of pAQ1,the smallest plasmid of the unicellular marine cyanobacteriumSynechococcus sp. PCC7002. The plasmid consists of 4,809 bpand has at least four open reading frames that potentially encodepolypeptides of 50 or more amino acids. We found that a palindromicelement, the core sequence of which is G(G/A)CGATCGCC, is over-representednot only in plasmid pAQ1 but also in the accumulated cyanobacterialgenomic sequences from Synechococcus sp. PCC6301, PCC7002, PCC7942,vulcanus and Synechocystis sp. PCC6803 within GenBank and EMBLdatabases. It suggests that this sequence might mediate generearrangement, thus increasing genetic diversity, since recombinationevents are frequent in cyanobacteria.  相似文献   

9.
Thirty-two strains of phycoerythrin-containing marine picocyanobacteria were screened for the capacity to produce cyanophycin, a nitrogen storage compound synthesized by some, but not all, cyanobacteria. We found that one of these strains, Synechococcus sp. strain G2.1 from the Arabian Sea, was able to synthesize cyanophycin. The cyanophycin extracted from the cells was composed of roughly equimolar amounts of arginine and aspartate (29 and 35 mol%, respectively), as well as a small amount of glutamate (15 mol%). Phylogenetic analysis, based on partial 16S ribosomal DNA (rDNA) sequence data, showed that Synechococcus sp. strain G2.1 formed a well-supported clade with several strains of filamentous cyanobacteria. It was not closely related to several other well-studied marine picocyanobacteria, including Synechococcus strains PCC7002, WH7805, and WH8018 and Prochlorococcus sp. strain MIT9312. This is the first report of cyanophycin production in a phycoerythrin-containing strain of marine or halotolerant Synechococcus, and its discovery highlights the diversity of this ecologically important functional group.  相似文献   

10.
11.
Oxygenic phototrophs are vulnerable to damage by reactive oxygen species (ROS) that are produced in photosystem I (PSI) by excess photon energy over the demand of photosynthetic CO2 assimilation. In plant leaves, repetitive short-pulse (rSP) illumination produces ROS to inactivate PSI. The production of ROS is alleviated by oxidation of the reaction center chlorophyll in PSI, P700, during the illumination with the short-pulse light, which is supported by flavodiiron protein (FLV). In this study, we found that in the cyanobacterium Synechocystis sp. PCC 6803 P700 was oxidized and PSI was not inactivated during rSP illumination even in the absence of FLV. Conversely, the mutant deficient in respiratory terminal oxidases was impaired in P700 oxidation during the illumination with the short-pulse light to suffer from photo-oxidative damage in PSI. Interestingly, the other cyanobacterium Synechococcus sp. PCC 7002 could not oxidize P700 without FLV during rSP illumination. These data indicate that respiratory terminal oxidases are critical to protect PSI from ROS damage during rSP illumination in Synechocystis sp. PCC 6803 but not Synechococcus sp. PCC 7002.  相似文献   

12.
PsbU is an extrinsic protein of the photosystem II complex of cyanobacteria and red algae. Our previous in vitro studies (Y. Nishiyama, D.A. Los, H. Hayashi, N. Murata [1997] Plant Physiol 115: 1473–1480) revealed that PsbU stabilizes the oxygen-evolving machinery of the photosystem II complex against heat-induced inactivation in the cyanobacterium Synechococcus sp. PCC 7002. To elucidate the role of PsbU in vivo, we inactivated the psbU gene in Synechococcus sp. PCC 7002 by targeted mutagenesis. Inactivation of the psbU gene resulted in marked changes in the acclimative responses of cells to high temperature: Mutated cells were unable to increase the thermal stability of their oxygen-evolving machinery when grown at moderately high temperatures. Moreover, the cellular thermotolerance of the mutated cells failed to increase upon acclimation of cells to high temperature. The heat-shock response, as assessed in terms of the levels of homologs of the heat-shock proteins Hsp60, Hsp70, and Hsp17, was unaffected by the mutation in psbU, suggesting that heat-shock proteins were not involved in the changes in the acclimative responses. Our observations indicate that PsbU is involved in the mechanism that underlies the enhancement of the thermal stability of the oxygen-evolving machinery and that the stabilization of the oxygen-evolving machinery is crucial for the acquisition of cellular thermotolerance.  相似文献   

13.
We have previously constructed the physical map of a cyanobacterium,Synechoystis sp. strain PCC6803 on the basis of restrictionand linking clone analysis. Since a total of 82 genes and geneclusters have been isolated from this strain, most of whichare involved in oxygenic photosynthesis, portions of their sequenceswere amplified by the PCR method and assigned on the physicalmap of the genome by hybridization with restriction fragments,ordered clones, which were obtained from cosmid and libraries,and long PCR-products. An exception was the gene psbG2 whichwas mapped on an extra-chromosomal unit of 45 kb. Since geneticmaps of some of genes assigned above, especially those for photosynthesis,have been reported for two other cyanobacterial strains, Anabaenasp. PCC7120 and Synechococcus sp. PCC7002, gene organizationswere compared among the three strains. However, no significantcorrelation was observed, suggesting that rearrangement of genesoccurred in the respective strains during or after establishmentof the species.  相似文献   

14.
15.
It has been reported that higher plants and cyanobacteria synthesize sucrose (Suc) by a similar sequential action of sucrose-phosphate synthase (SPS) and sucrose-phosphate phosphatase (SPP). In the genome of the marine unicellular cyanobacterium Synechococcus sp. PCC 7002 there is a sequence that was not annotated as a putative SPP encoding gene (sppA), although the sequence was available. In this study, we functionally characterize the sppA gene of that strain and demonstrate that it is cotranscribed with spsA, the SPS encoding gene. This is the first report on the coordination of Suc synthesis gene expression in an oxygenic-photosynthetic organism.  相似文献   

16.
Two Synechococcus strains from the Culture Collection of the Institute for Marine Sciences of Andalusia (Cádiz, Spain), namely Syn01 and Syn02, were found to be closely related to the model strain Synechococcus sp. PCC7002 according to 16S rDNA (99% identity). Pigment and lipid profiles and crtR genes of these strains were ascertained and compared. The sequences of the crtR genes of these strains were constituted by 888 bp, and showed 99% identity between Syn01 and Syn02, and 94% identity of Syn01 and Syn02 to Synechococcus sp. PCC7002. There was coincidence in photosynthetic pigments between the three strains apart from the pigment synechoxanthin, which could be only observed in Synechococcus sp. PCC7002. Species of sulfoquinovosyl‐diacyl‐glycerol (SQDG), phosphatidyl‐glycerol (PG), mono‐ and di‐galactosyl‐diacyl‐glycerol (MGDG and DGDG) were detected by high performance liquid chromatography‐mass spectrometry analysis of lipid extracts. The most abundant species within each lipid class were those containing C18:3 together with C16:0 fatty acyl substituents in the glycerol backbone of the same molecule. From these results it is concluded that these cyanobacterial strains belong to group 2 of the lipid classification of cyanobacteria.  相似文献   

17.
Cyanobacteria are ideal metabolic engineering platforms for carbon-neutral biotechnology because they directly convert CO2 to a range of valuable products. In this study, we present a computational assessment of biochemical production in Synechococcus sp. PCC 7002 (Synechococcus 7002), a fast growing cyanobacterium whose genome has been sequenced, and for which genetic modification methods have been developed. We evaluated the maximum theoretical yields (mol product per mol CO2 or mol photon) of producing various chemicals under photoautotrophic and dark conditions using a genome-scale metabolic model of Synechococcus 7002. We found that the yields were lower under dark conditions, compared to photoautotrophic conditions, due to the limited amount of energy and reductant generated from glycogen. We also examined the effects of photon and CO2 limitations on chemical production under photoautotrophic conditions. In addition, using various computational methods such as minimization of metabolic adjustment (MOMA), relative metabolic change (RELATCH), and OptORF, we identified gene-knockout mutants that are predicted to improve chemical production under photoautotrophic and/or dark anoxic conditions. These computational results are useful for metabolic engineering of cyanobacteria to synthesize value-added products.  相似文献   

18.
19.
The ctaCIDIEI and ctaCIIDIIEII gene clusters that encode heme–copper cytochrome oxidases have been characterized in the marine cyanobacterium Synechococcus sp. PCC 7002 and the inactivation of ctaDI was shown to affect high-light adaptation. In this study, Synechococcus sp. PCC 7002 wild-type, ctaDI, ctaDII, and ctaDI–ctaDII double mutants were grown under extreme high-light and oxidative stress to further assess the roles of cytochrome oxidases in cyanobacteria. Cells of the ctaDI mutant strain barely grew under extreme high-light illumination of 4.5 mE m−2 s−1, suggesting that CtaDI is required for high-light acclimation in Synechococcus sp. PCC 7002. The ctaDI–ctaDII double mutant cells unexpectedly tolerated extreme high-light intensity, indicating that the disruption of ctaDII gene suppresses the high-light sensitivity phenotype of the ctaDI single mutant. The ctaDII mutant cells also exhibited higher tolerance to the oxidative stress compound, methyl viologen, in the growth media. The ctaDII mutant and the ctaDI–ctaDII double mutant cells had approximately twofold higher levels of superoxide dismutase (SOD) activity, indicating that the disruption of ctaDII gene increased the capacity to decompose active oxygen species. These results suggest that the CtaII cytochrome oxidase may be involved with the oxidative stress response, including the control of SOD expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号