共查询到20条相似文献,搜索用时 15 毫秒
1.
The fruitfly Drosophila melanogaster is well established as a model system in the study of human neurodegenerative diseases. Utilizing RNAi, we have carried out a high-throughput screen for modifiers of aggregate formation in Drosophila larval CNS-derived cells expressing mutant human Huntingtin exon 1 fused to EGFP with an expanded polyglutamine repeat (62Q). 7200 genes, encompassing around 50% of the Drosophila genome, were screened, resulting in the identification of 404 candidates that either suppress or enhance aggregation. These candidates were subjected to secondary screening in normal length (18Q)-expressing cells and pruned to remove dsRNAs with greater than 10 off-target effects (OTEs). De novo RNAi probes were designed and synthesized for the remaining 68 candidates. Following a tertiary round of screening, 21 high confidence candidates were analyzed in vivo for their ability to modify mutant Huntingtin-induced eye degeneration and brain aggregation. We have established useful models for the study of human HD using the fly, and through our RNAi screen, we have identified new modifiers of mutant human Huntingtin aggregation and aggregate formation in the brain. Newly identified modifiers including genes related to nuclear transport, nucleotide processes, and signaling, may be involved in polyglutamine aggregate formation and Huntington disease cascades. 相似文献
2.
3.
4.
5.
6.
7.
Kathleen A. Burke Karlina J. Kauffman C. Samuel Umbaugh Shelli L. Frey Justin Legleiter 《The Journal of biological chemistry》2013,288(21):14993-15005
Huntington disease (HD) is caused by an expanded polyglutamine (poly(Q)) repeat near the N terminus of the huntingtin (htt) protein. Expanded poly(Q) facilitates formation of htt aggregates, eventually leading to deposition of cytoplasmic and intranuclear inclusion bodies containing htt. Flanking sequences directly adjacent to the poly(Q) domain, such as the first 17 amino acids on the N terminus (Nt17) and the polyproline (poly(P)) domain on the C-terminal side of the poly(Q) domain, heavily influence aggregation. Additionally, htt interacts with a variety of membraneous structures within the cell, and Nt17 is implicated in lipid binding. To investigate the interaction between htt exon1 and lipid membranes, a combination of in situ atomic force microscopy, Langmuir trough techniques, and vesicle permeability assays were used to directly monitor the interaction of a variety of synthetic poly(Q) peptides with different combinations of flanking sequences (KK-Q35-KK, KK-Q35-P10-KK, Nt17-Q35-KK, and Nt17-Q35-P10-KK) on model membranes and surfaces. Each peptide aggregated on mica, predominately forming extended, fibrillar aggregates. In contrast, poly(Q) peptides that lacked the Nt17 domain did not appreciably aggregate on or insert into lipid membranes. Nt17 facilitated the interaction of peptides with lipid surfaces, whereas the poly(P) region enhanced this interaction. The aggregation of Nt17-Q35-P10-KK on the lipid bilayer closely resembled that of a htt exon1 construct containing 35 repeat glutamines. Collectively, this data suggests that the Nt17 domain plays a critical role in htt binding and aggregation on lipid membranes, and this lipid/htt interaction can be further modulated by the presence of the poly(P) domain. 相似文献
8.
9.
10.
11.
Background
TC10 is a small GTPase found in lipid raft microdomains of adipocytes. The protein undergoes activation in response to insulin, and plays a key role in the regulation of glucose uptake by the hormone.Methodology/Principal Findings
TC10 requires high concentrations of magnesium in order to stabilize guanine nucleotide binding. Kinetic analysis of this process revealed that magnesium acutely decreased the nucleotide release and exchange rates of TC10, suggesting that the G protein may behave as a rapidly exchanging, and therefore active protein in vivo. However, in adipocytes, the activity of TC10 is not constitutive, indicating that mechanisms must exist to maintain the G protein in a low activity state in untreated cells. Thus, we searched for proteins that might bind to and stabilize TC10 in the inactive state. We found that Caveolin interacts with TC10 only when GDP-bound and stabilizes GDP binding. Moreover, knockdown of Caveolin 1 in 3T3-L1 adipocytes increased the basal activity state of TC10.Conclusions/Significance
Together these data suggest that TC10 is intrinsically active in vivo, but is maintained in the inactive state by binding to Caveolin 1 in 3T3-L1 adipocytes under basal conditions, permitting its activation by insulin. 相似文献12.
13.
14.
15.
Eugenia Karousou Masaru Kamiryo Spyros S. Skandalis Aino Ruusala Trias Asteriou Alberto Passi Hidetoshi Yamashita Ulf Hellman Carl-Henrik Heldin Paraskevi Heldin 《The Journal of biological chemistry》2010,285(31):23647-23654
Hyaluronan is a component of the extracellular matrix, which affects tissue homeostasis. In this study, we investigated the regulatory mechanisms of one of the hyaluronan-synthesizing enzymes, HAS2. Ectopic expression of Flag- and 6myc-HAS2 in COS-1 cells followed by immunoprecipitation and immunoblotting revealed homodimers; after co-transfection with Flag-HAS3, also heterodimers were seen. Furthermore, the expressed HAS2 was ubiquitinated. We identified one acceptor site for ubiquitin on lysine residue 190. Mutation of this residue led to inactivation of the enzymatic activity of HAS2. Interestingly, K190R-mutated HAS2 formed dimers with wt HAS2 and quenched the activity of wt HAS2, thus demonstrating a functional role of the dimeric configuration. 相似文献
16.
Zhonglin Tang Ruyi Liang Shuanping Zhao Ruiqi Wang Ruihua Huang Kui Li 《International journal of biological sciences》2014,10(4):377-385
The calponin 3 (CNN3) gene has important functions involved in skeletal muscle development. MicroRNAs (miRNAs) play critical role in myogenesis by influencing the mRNA stability or protein translation of target gene. Based on paired microRNA and mRNA profiling in the prenatal skeletal muscle of pigs, our previous study suggested that CNN3 was differentially expressed and a potential target for miR-1. To further understand the biological function and regulation mechanism of CNN3, we performed co-expression analysis of CNN3 and miR-1 in developmental skeletal muscle tissues (16 stages) from Tongcheng (a Chinese domestic breed, obese-type) and Landrace (a Western, lean-type) pigs, respectively. Subsequently, dual luciferase and western blot assays were carried out. During skeletal muscle development, we observe a significantly negative expression correlation between the miR-1 and CNN3 at mRNA level. Our dual luciferase and western blot results suggested that the CNN3 gene was regulated by miR-1. We identified four single nucleotide polymorphisms (SNPs) contained within the CNN3 gene. Association analysis indicated that these CNN3 SNPs are significantly associated with birth weight (BW) and the 21-day weaning weight of the piglets examined. These facts indicate that CNN3 is a candidate gene associated with growth traits and regulated by miR-1 during skeletal muscle development in pigs. 相似文献
17.
Valentina Fodale Natalie C. Kegulian Margherita Verani Cristina Cariulo Lucia Azzollini Lara Petricca Manuel Daldin Roberto Boggio Alessandro Padova Rainer Kuhn Robert Pacifici Douglas Macdonald Ryan C. Schoenfeld Hyunsun Park J. Mario Isas Ralf Langen Andreas Weiss Andrea Caricasole 《PloS one》2014,9(12)
Background
In Huntington''s disease, expansion of a CAG triplet repeat occurs in exon 1 of the huntingtin gene (HTT), resulting in a protein bearing>35 polyglutamine residues whose N-terminal fragments display a high propensity to misfold and aggregate. Recent data demonstrate that polyglutamine expansion results in conformational changes in the huntingtin protein (HTT), which likely influence its biological and biophysical properties. Developing assays to characterize and measure these conformational changes in isolated proteins and biological samples would advance the testing of novel therapeutic approaches aimed at correcting mutant HTT misfolding. Time-resolved Förster energy transfer (TR-FRET)-based assays represent high-throughput, homogeneous, sensitive immunoassays widely employed for the quantification of proteins of interest. TR-FRET is extremely sensitive to small distances and can therefore provide conformational information based on detection of exposure and relative position of epitopes present on the target protein as recognized by selective antibodies. We have previously reported TR-FRET assays to quantify HTT proteins based on the use of antibodies specific for different amino-terminal HTT epitopes. Here, we investigate the possibility of interrogating HTT protein conformation using these assays.Methodology/Principal Findings
By performing TR-FRET measurements on the same samples (purified recombinant proteins or lysates from cells expressing HTT fragments or full length protein) at different temperatures, we have discovered a temperature-dependent, reversible, polyglutamine-dependent conformational change of wild type and expanded mutant HTT proteins. Circular dichroism spectroscopy confirms the temperature and polyglutamine-dependent change in HTT structure, revealing an effect of polyglutamine length and of temperature on the alpha-helical content of the protein.Conclusions/Significance
The temperature- and polyglutamine-dependent effects observed with TR-FRET on HTT proteins represent a simple, scalable, quantitative and sensitive assay to identify genetic and pharmacological modulators of mutant HTT conformation, and potentially to assess the relevance of conformational changes during onset and progression of Huntington''s disease. 相似文献18.
19.