首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relaxin, an emerging pharmaceutical treatment for acute heart failure, activates the relaxin family peptide receptor (RXFP1), which is a class A G-protein-coupled receptor. In addition to the classic transmembrane (TM) domain, RXFP1 possesses a large extracellular domain consisting of 10 leucine-rich repeats and an N-terminal low density lipoprotein class A (LDLa) module. Relaxin-mediated activation of RXFP1 requires multiple coordinated interactions between the ligand and various receptor domains including a high affinity interaction involving the leucine-rich repeats and a predicted lower affinity interaction involving the extracellular loops (ELs). The LDLa is essential for signal activation; therefore the ELs/TM may additionally present an interaction site to facilitate this LDLa-mediated signaling. To overcome the many challenges of investigating relaxin and the LDLa module interactions with the ELs, we engineered the EL1 and EL2 loops onto a soluble protein scaffold, mapping specific ligand and loop interactions using nuclear magnetic resonance spectroscopy. Key EL residues were subsequently mutated in RXFP1, and changes in function and relaxin binding were assessed alongside the RXFP1 agonist ML290 to monitor the functional integrity of the TM domain of these mutant receptors. The outcomes of this work make an important contribution to understanding the mechanism of RXFP1 activation and will aid future development of small molecule RXFP1 agonists/antagonists.  相似文献   

2.
Human gene-2 (H2) relaxin is currently in Phase III clinical trials for the treatment of acute heart failure. It is a 53-amino acid insulin-like peptide comprising two chains and three disulfide bonds. It interacts with two of the relaxin family peptide (RXFP) receptors. Although its cognate receptor is RXFP1, it is also able to cross-react with RXFP2, the native receptor for a related peptide, insulin-like peptide 3. In order to understand the basis of this cross-reactivity, it is important to elucidate both binding and activation mechanisms of this peptide. The primary binding mechanism of this hormone has been extensively studied and well defined. H2 relaxin binds to the leucine-rich repeats of RXFP1 and RXFP2 using B-chain-specific residues. However, little is known about the secondary interaction that involves the A-chain of H2 relaxin and transmembrane exoloops of the receptors. We demonstrate here through extensive mutation of the A-chain that the secondary interaction between H2 relaxin and RXFP1 is not driven by any single amino acid, although residues Tyr-3, Leu-20, and Phe-23 appear to contribute. Interestingly, these same three residues are important drivers of the affinity and activity of H2 relaxin for RXFP2 with additional minor contributions from Lys-9, His-12, Lys-17, Arg-18, and Arg-22. Our results provide new insights into the mechanism of secondary activation interaction of RXFP1 and RXFP2 by H2 relaxin, leading to a potent and RXFP1-selective analog, H2:A(4–24)(F23A), which was tested in vitro and in vivo and found to significantly inhibit collagen deposition similar to native H2 relaxin.  相似文献   

3.
H2 relaxin is a peptide hormone associated with a number of therapeutically relevant physiological effects, including regulation of collagen metabolism and multiple vascular control pathways. It is currently in phase III clinical trials for the treatment of acute heart failure due to its ability to induce vasodilation and influence renal function. It comprises 53 amino acids and is characterized by two separate polypeptide chains (A-B) that are cross-linked by three disulfide bonds. This size and complex structure represents a considerable challenge for the chemical synthesis of H2 relaxin, a major limiting factor for the exploration of modifications and derivatizations of this peptide, to optimize effect and drug-like characteristics. To address this issue, we describe the solid phase peptide synthesis and structural and functional evaluation of 24 analogues of H2 relaxin with truncations at the termini of its peptide chains. We show that it is possible to significantly truncate both the N and C termini of the B-chain while still retaining potent biological activity. This suggests that these regions are not critical for interactions with the H2 relaxin receptor, RXFP1. In contrast, truncations do reduce the activity of H2 relaxin for the related receptor RXFP2 by improving RXFP1 selectivity. In addition to new mechanistic insights into the function of H2 relaxin, this study identifies a critical active core with 38 amino acids. This minimized core shows similar antifibrotic activity as native H2 relaxin when tested in human BJ3 cells and thus represents an attractive receptor-selective lead for the development of novel relaxin therapeutics.  相似文献   

4.
Understanding the molecular basis of natural ligand binding and activation of the glucagon-like peptide 1 (GLP1) receptor may facilitate the development of agonist drugs useful for the management of type 2 diabetes mellitus. We previously reported molecular approximations between carboxyl-terminal residues 24 and 35 within GLP1 and its receptor. In this work, we have focused on the amino-terminal region of GLP1, known to be critical for receptor activation. We developed two high-affinity, full agonist photolabile GLP1 probes having sites of covalent attachment in positions 6 and 12 of the 30-residue peptide (GLP1(7–36)). Both probes bound to the receptor specifically and covalently labeled single distinct sites. Chemical and protease cleavage of the labeled receptor identified the juxtamembrane region of its amino-terminal domain as the region of covalent attachment of the position 12 probe, whereas the region of labeling by the position 6 probe was localized to the first extracellular loop. Radiochemical sequencing identified receptor residue Tyr145, adjacent to the first transmembrane segment, as the site of labeling by the position 12 probe, and receptor residue Tyr205, within the first extracellular loop, as the site of labeling by the position 6 probe. These data provide support for a common mechanism for natural ligand binding and activation of family B G protein-coupled receptors. This region of interaction of peptide amino-terminal domains with the receptor may provide a pocket that can be targeted by small molecule agonists.  相似文献   

5.
Many experimental and clinical studies suggest a relationship between enhanced angiotensin II release by the angiotensin-converting enzyme (ACE) and the pathophysiology of atherosclerosis. The atherosclerosis-enhancing effects of angiotensin II are complex and incompletely understood. To identify anti-atherogenic target genes, we performed microarray gene expression profiling of the aorta during atherosclerosis prevention with the ACE inhibitor, captopril. Atherosclerosis-prone apolipoprotein E (apoE)-deficient mice were used as a model to decipher susceptible genes regulated during atherosclerosis prevention with captopril. Microarray gene expression profiling and immunohistology revealed that captopril treatment for 7 months strongly decreased the recruitment of pro-atherogenic immune cells into the aorta. Captopril-mediated inhibition of plaque-infiltrating immune cells involved down-regulation of the C-C chemokine receptor 9 (CCR9). Reduced cell migration correlated with decreased numbers of aorta-resident cells expressing the CCR9-specific chemoattractant factor, chemokine ligand 25 (CCL25). The CCL25-CCR9 axis was pro-atherogenic, because inhibition of CCR9 by RNA interference in hematopoietic progenitors of apoE-deficient mice significantly retarded the development of atherosclerosis. Analysis of coronary artery biopsy specimens of patients with coronary artery atherosclerosis undergoing bypass surgery also showed strong infiltrates of CCR9-positive cells in atherosclerotic lesions. Thus, the C-C chemokine receptor, CCR9, exerts a significant role in atherosclerosis.  相似文献   

6.
G protein-coupled receptor (GPCR) signaling is affected by formation of GPCR homo- or heterodimers, but GPCR regulation by other cell surface proteins is not well understood. We reported that the kinin B1 receptor (B1R) heterodimerizes with membrane carboxypeptidase M (CPM), facilitating receptor signaling via CPM-mediated conversion of bradykinin or kallidin to des-Arg kinin B1R agonists. Here, we found that a catalytically inactive CPM mutant that still binds substrate (CPM-E264Q) also facilitates efficient B1R signaling by B2 receptor agonists bradykinin or kallidin. This response required co-expression of B1R and CPM-E264Q in the same cell, was disrupted by antibody that dissociates CPM from B1R, and was not found with a CPM-E264Q-B1R fusion protein. An additional mutation that reduced the affinity of CPM for C-terminal Arg and increased the affinity for C-terminal Lys inhibited the B1R response to bradykinin (with C-terminal Arg) but generated a response to Lys(9)-bradykinin. CPM-E264Q-mediated activation of B1Rs by bradykinin resulted in increased intramolecular fluorescence resonance energy transfer (FRET) in a B1R FRET construct, similar to that generated directly by a B1R agonist. In cytokine-treated human lung microvascular endothelial cells, disruption of B1R-CPM heterodimers inhibited B1R-dependent NO production stimulated by bradykinin and blocked the increased endothelial permeability caused by treatment with bradykinin and pyrogallol (a superoxide generator). Thus, CPM and B1Rs on cell membranes form a critical complex that potentiates B1R signaling. Kinin peptide binding to CPM causes a conformational change in the B1R leading to intracellular signaling and reveals a new mode of GPCR activation by a cell surface peptidase.  相似文献   

7.
Agonist-induced internalization was observed for both inducible and constitutively expressed forms of the cannabinoid CB(1) receptor. These were also internalized by the peptide orexin A, which has no direct affinity for the cannabinoid CB(1) receptor, but only when the orexin OX(1) receptor was co-expressed along with the cannabinoid CB(1) receptor. This effect of orexin A was concentration-dependent and blocked by OX(1) receptor antagonists. Moreover, the ability of orexin A to internalize the CB(1) receptor was also blocked by CB(1) receptor antagonists. Remarkably, orexin A was substantially more potent in producing internalization of the CB(1) receptor than in causing internalization of the bulk OX(1) receptor population, and this was true in cells in which the CB(1) receptor was maintained at a constant level, whereas levels of OX(1) could be varied and vice versa. Both co-immunoprecipitation and cell surface, homogenous time-resolved fluorescence resonance energy transfer based on covalent labeling of N-terminal "SNAP" and "CLIP" tags present in the extracellular N-terminal domain of the receptors confirmed the capacity of these two receptors to heteromultimerize. These studies confirm the capacity of the CB(1) and OX(1) receptors to interact directly and demonstrate that this complex has unique regulatory characteristics. The higher potency of the agonist orexin A to regulate the CB(1)-OX(1) heteromer compared with the OX(1)-OX(1) homomer present in the same cells and the effects of CB(1) receptor antagonists on the function of orexin A suggest an interplay between these two systems that may modulate appetite, feeding, and wakefulness.  相似文献   

8.
9.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play important roles in insulin secretion through their receptors, GLP1R and GIPR. Although GLP-1 and GIP are attractive candidates for treatment of type 2 diabetes and obesity, little is known regarding the molecular interaction of these peptides with the heptahelical core domain of their receptors. These core domains are important not only for specific ligand binding but also for ligand-induced receptor activation. Here, using chimeric and point-mutated GLP1R/GIPR, we determined that evolutionarily conserved amino acid residues such as Ile(196) at transmembrane helix 2, Leu(232) and Met(233) at extracellular loop 1, and Asn(302) at extracellular loop 2 of GLP1R are responsible for interaction with ligand and receptor activation. Application of chimeric GLP-1/GIP peptides together with molecular modeling suggests that His(1) of GLP-1 interacts with Asn(302) of GLP1R and that Thr(7) of GLP-1 has close contact with a binding pocket formed by Ile(196), Leu(232), and Met(233) of GLP1R. This study may provide critical clues for the development of peptide and/or nonpeptide agonists acting at GLP1R.  相似文献   

10.
Ligand binding to extracellular domains of G protein-coupled receptors can result in novel and nuanced allosteric effects on receptor signaling. We previously showed that the protein-protein interaction of carboxypeptidase M (CPM) and kinin B1 receptor (B1R) enhances B1R signaling in two ways; 1) kinin binding to CPM causes a conformational activation of the B1R, and 2) CPM-generated des-Arg-kinin agonist is efficiently delivered to the B1R. Here, we show CPM is also a positive allosteric modulator of B1R signaling to its agonist, des-Arg10-kallidin (DAKD). In HEK cells stably transfected with B1R, co-expression of CPM enhanced DAKD-stimulated increases in intracellular Ca2+ or phosphoinositide turnover by a leftward shift of the dose-response curve without changing the maximum. CPM increased B1R affinity for DAKD by ∼5-fold but had no effect on basal B1R-dependent phosphoinositide turnover. Soluble, recombinant CPM bound to HEK cells expressing B1Rs without stimulating receptor signaling. CPM positive allosteric action was independent of enzyme activity but depended on interaction of its C-terminal domain with the B1R extracellular loop 2. Disruption of the CPM/B1R interaction or knockdown of CPM in cytokine-treated primary human endothelial cells inhibited the allosteric enhancement of CPM on B1R DAKD binding or ERK1/2 activation. CPM also enhanced the DAKD-induced B1R conformational change as detected by increased intramolecular fluorescence or bioluminescence resonance energy transfer. Thus, CPM binding to extracellular loop 2 of the B1R results in positive allosteric modulation of B1R signaling, and disruption of this interaction could provide a novel therapeutic approach to reduce pathological B1R signaling.  相似文献   

11.
G protein-coupled receptors (GPCRs), such as the ghrelin receptor (GHS-R1a), the melanocortin 3 receptor (MC3), and the serotonin 2C receptor (5-HT2C), are well known for their key role in the homeostatic control of food intake and energy balance. Ghrelin is the only known gut peptide exerting an orexigenic effect and has thus received much attention as an anti-obesity drug target. In addition, recent data have revealed a critical role for ghrelin in dopaminergic mesolimbic circuits involved in food reward signaling. This study investigates the downstream signaling consequences and ligand-mediated co-internalization following heterodimerization of the GHS-R1a receptor with the dopamine 1 receptor, as well as that of the GHS-R1a-MC3 heterodimer. In addition, a novel heterodimer between the GHS-R1a receptor and the 5-HT2C receptor was identified. Interestingly, dimerization of the GHS-R1a receptor with the unedited 5-HT2C-INI receptor, but not with the partially edited 5-HT2C-VSV isoform, significantly reduced GHS-R1a agonist-mediated calcium influx, which was completely restored following pharmacological blockade of the 5-HT2C receptor. These results combined suggest a potential novel mechanism for fine-tuning GHS-R1a receptor-mediated activity via promiscuous dimerization of the GHS-R1a receptor with other G protein-coupled receptors involved in appetite regulation and food reward. These findings may uncover novel mechanisms of significant relevance for the future pharmacological targeting of the GHS-R1a receptor in the homeostatic regulation of energy balance and in hedonic appetite signaling, both of which play a significant role in the development of obesity.  相似文献   

12.
The glucagon-like peptide-1 receptor (GLP-1R) is a therapeutically important family B G protein-coupled receptor (GPCR) that is pleiotropically coupled to multiple signaling effectors and, with actions including regulation of insulin biosynthesis and secretion, is one of the key targets in the management of type II diabetes mellitus. However, there is limited understanding of the role of the receptor core in orthosteric ligand binding and biological activity. To assess involvement of the extracellular loop (ECL) 2 in ligand-receptor interactions and receptor activation, we performed alanine scanning mutagenesis of loop residues and assessed the impact on receptor expression and GLP-1(1-36)-NH(2) or GLP-1(7-36)-NH(2) binding and activation of three physiologically relevant signaling pathways as follows: cAMP formation, intracellular Ca(2+) (Ca(2+)(i)) mobilization, and phosphorylation of extracellular signal-regulated kinases 1 and 2 (pERK1/2). Although antagonist peptide binding was unaltered, almost all mutations affected GLP-1 peptide agonist binding and/or coupling efficacy, indicating an important role in receptor activation. However, mutation of several residues displayed distinct pathway responses with respect to wild type receptor, including Arg-299 and Tyr-305, where mutation significantly enhanced both GLP-1(1-36)-NH(2)- and GLP-1(7-36)-NH(2)-mediated signaling bias for pERK1/2. In addition, mutation of Cys-296, Trp-297, Asn-300, Asn-302, and Leu-307 significantly increased GLP-1(7-36)-NH(2)-mediated signaling bias toward pERK1/2. Of all mutants studied, only mutation of Trp-306 to alanine abolished all biological activity. These data suggest a critical role of ECL2 of the GLP-1R in the activation transition(s) of the receptor and the importance of this region in the determination of both GLP-1 peptide- and pathway-specific effects.  相似文献   

13.
Breakthroughs in G protein-coupled receptor structure determination based on crystallography have been mainly obtained from receptors occupied in their transmembrane domain core by low molecular weight ligands, and we have only recently begun to elucidate how the extracellular surface of G protein-coupled receptors (GPCRs) allows for the binding of larger peptide molecules. In the present study, we used a unique chemoselective photoaffinity labeling strategy, the methionine proximity assay, to directly identify at physiological conditions a total of 38 discrete ligand/receptor contact residues that form the extracellular peptide-binding site of an activated GPCR, the angiotensin II type 1 receptor. This experimental data set was used in homology modeling to guide the positioning of the angiotensin II (AngII) peptide within several GPCR crystal structure templates. We found that the CXC chemokine receptor type 4 accommodated the results better than the other templates evaluated; ligand/receptor contact residues were spatially grouped into defined interaction clusters with AngII. In the resulting receptor structure, a β-hairpin fold in extracellular loop 2 in conjunction with two extracellular disulfide bridges appeared to open and shape the entrance of the ligand-binding site. The bound AngII adopted a somewhat vertical binding mode, allowing concomitant contacts across the extracellular surface and deep within the transmembrane domain core of the receptor. We propose that such a dualistic nature of GPCR interaction could be well suited for diffusible linear peptide ligands and a common feature of other peptidergic class A GPCRs.  相似文献   

14.
GABAB receptors are the G-protein coupled receptors (GPCRs) for GABA, the main inhibitory neurotransmitter in the central nervous system. Native GABAB receptors comprise principle and auxiliary subunits that regulate receptor properties in distinct ways. The principle subunits GABAB1a, GABAB1b, and GABAB2 form fully functional heteromeric GABAB(1a,2) and GABAB(1b,2) receptors. Principal subunits regulate forward trafficking of the receptors from the endoplasmic reticulum to the plasma membrane and control receptor distribution to axons and dendrites. The auxiliary subunits KCTD8, -12, -12b, and -16 are cytosolic proteins that influence agonist potency and G-protein signaling of GABAB(1a,2) and GABAB(1b,2) receptors. Here, we used transfected cells to study assembly, surface trafficking, and internalization of GABAB receptors in the presence of the KCTD12 subunit. Using bimolecular fluorescence complementation and metabolic labeling, we show that GABAB receptors associate with KCTD12 while they reside in the endoplasmic reticulum. Glycosylation experiments support that association with KCTD12 does not influence maturation of the receptor complex. Immunoprecipitation and bioluminescence resonance energy transfer experiments demonstrate that KCTD12 remains associated with the receptor during receptor activity and receptor internalization from the cell surface. We further show that KCTD12 reduces constitutive receptor internalization and thereby increases the magnitude of receptor signaling at the cell surface. Accordingly, knock-out or knockdown of KCTD12 in cultured hippocampal neurons reduces the magnitude of the GABAB receptor-mediated K+ current response. In summary, our experiments support that the up-regulation of functional GABAB receptors at the neuronal plasma membrane is an additional physiological role of the auxiliary subunit KCTD12.  相似文献   

15.
G protein-coupled receptors (GPCRs) can interact with regulator of G protein signaling (RGS) proteins. However, the effects of such interactions on signal transduction and their physiological relevance have been largely undetermined. Ligand-bound GPCRs initiate by promoting exchange of GDP for GTP on the Gα subunit of heterotrimeric G proteins. Signaling is terminated by hydrolysis of GTP to GDP through intrinsic GTPase activity of the Gα subunit, a reaction catalyzed by RGS proteins. Using yeast as a tool to study GPCR signaling in isolation, we define an interaction between the cognate GPCR (Mam2) and RGS (Rgs1), mapping the interaction domains. This reaction tethers Rgs1 at the plasma membrane and is essential for physiological signaling response. In vivo quantitative data inform the development of a kinetic model of the GTPase cycle, which extends previous attempts by including GPCR-RGS interactions. In vivo and in silico data confirm that GPCR-RGS interactions can impose an additional layer of regulation through mediating RGS subcellular localization to compartmentalize RGS activity within a cell, thus highlighting their importance as potential targets to modulate GPCR signaling pathways.  相似文献   

16.
We demonstrate here that the bioactive lipid sphingosine 1-phosphate (S1P) uses sphingosine 1-phosphate receptor 4 (S1P4) and human epidermal growth factor receptor 2 (HER2) to stimulate the extracellular signal regulated protein kinase 1/2 (ERK-1/2) pathway in MDA-MB-453 cells. This was based on several lines of evidence. First, the S1P stimulation of ERK-1/2 was abolished by JTE013, which we show here is an S1P2/4 antagonist and reduced by siRNA knockdown of S1P4. Second, the S1P-stimulated activation of ERK-1/2 was almost completely abolished by a HER2 inhibitor (ErbB2 inhibitor II) and reduced by siRNA knockdown of HER2 expression. Third, phyto-S1P, which is an S1P4 agonist, stimulated ERK-1/2 activation in an S1P4- and HER2-dependent manner. Fourth, FTY720 phosphate, which is an agonist at S1P1,3,4,5 but not S1P2 stimulated activation of ERK-1/2. Fifth, S1P stimulated the tyrosine phosphorylation of HER2, which was reduced by JTE013. HER2 which is an orphan receptor tyrosine kinase is the preferred dimerization partner of the EGF receptor. However, EGF-stimulated activation of ERK-1/2 was not affected by siRNA knockdown of HER2 or by ErbB2 (epidermal growth factor receptor 2 (or HER2)) inhibitor II in MDA-MB-453 cells. Moreover, S1P-stimulated activation of ERK-1/2 does not require an EGF receptor. Thus, S1P and EGF function in a mutually exclusive manner. In conclusion, the magnitude of the signaling gain on the ERK-1/2 pathway produced in response to S1P can be increased by HER2 in MDA-MB-453 cells. The linkage of S1P with an oncogene suggests that S1P and specifically S1P4 may have an important role in breast cancer progression.  相似文献   

17.
MAPK and Akt pathways are predominant mediators of trophic signaling for many neuronal systems. Among the vasoactive intestinal peptide/secretin/glucagon family of related peptides, pituitary adenylate cyclase-activating polypeptide (PACAP) binding to specific PAC1 receptor isoforms can engage multiple signaling pathways and promote neuroprotection through mechanisms that are not well understood. Using a primary sympathetic neuronal system, the current studies demonstrate that PACAP activation of PAC1HOP1 receptors engages both MAPK and Akt neurotrophic pathways in an integrated program to facilitate neuronal survival after growth factor withdrawal. PACAP not only stimulated prosurvival ERK1/2 and ERK5 activation but also abrogated SAPK/JNK and p38 MAPK signaling in parallel. In contrast to the potent and rapid effects of PACAP in ERK1/2 phosphorylation, PACAP stimulated Akt phosphorylation in a late phase of PAC1HOP1 receptor signaling. From inhibitor and immunoprecipitation analyses, the PACAP/PAC1HOP1 receptor-mediated Akt responses did not represent transactivation mechanisms but appeared to depend on Gαq/phosphatidylinositol 3-kinase γ activity and vesicular internalization pathways. Phosphatidylinositol 3-kinase γ-selective inhibitors blocked PACAP-stimulated Akt phosphorylation in primary neuronal cultures and in PAC1HOP1-overexpressing cell lines; RNA interference-mediated knockdown of the receptor effectors attenuated PACAP-mediated Akt activation. Similarly, perturbation of endocytic pathways also blocked Akt phosphorylation. Between ERK and Akt pathways, PACAP-stimulated Akt signaling was the primary cascade that attenuated cultured neuron apoptosis after growth factor withdrawal. The partitioning of PACAP-mediated Akt signaling in endosomes may be a key mechanism contributing to the high spatial and temporal specificity in signal transduction necessary for survival pathways.  相似文献   

18.
Although amino acids are dietary nutrients that evoke the secretion of glucagon-like peptide 1 (GLP-1) from intestinal L cells, the precise molecular mechanism(s) by which amino acids regulate GLP-1 secretion from intestinal L cells remains unknown. Here, we show that the G protein-coupled receptor (GPCR), family C group 6 subtype A (GPRC6A), is involved in amino acid-induced GLP-1 secretion from the intestinal L cell line GLUTag. Application of l-ornithine caused an increase in intracellular Ca2+ concentration ([Ca2+]i) in GLUTag cells. Application of a GPRC6A receptor antagonist, a phospholipase C inhibitor, or an IP3 receptor antagonist significantly suppressed the l-ornithine-induced [Ca2+]i increase. We found that the increase in [Ca2+]i stimulated by l-ornithine correlated with GLP-1 secretion and that l-ornithine stimulation increased exocytosis in a dose-dependent manner. Furthermore, depletion of endogenous GPRC6A by a specific small interfering RNA (siRNA) inhibited the l-ornithine-induced [Ca2+]i increase and GLP-1 secretion. Taken together, these findings suggest that the GPRC6A receptor functions as an amino acid sensor in GLUTag cells that promotes GLP-1 secretion.  相似文献   

19.
The receptor for parathyroid hormone (PTHR) is a main regulator of calcium homeostasis and bone maintenance. As a member of class B of G protein-coupled receptors, it harbors a large extracellular domain, which is required for ligand binding. Here, we demonstrate that the PTHR extracellular domain is cleaved by a protease belonging to the family of extracellular metalloproteinases. We show that the cleavage takes place in a region of the extracellular domain that belongs to an unstructured loop connecting the ligand-binding parts and that the N-terminal 10-kDa fragment is connected to the receptor core by a disulfide bond. Cleaved receptor revealed reduced protein stability compared with noncleaved receptor, suggesting degradation of the whole receptor. In the presence of the agonistic peptides PTH(1–34), PTH(1–14), or PTH(1–31), the processing of the PTHR extracellular domain was inhibited, and receptor protein levels were stabilized. A processed form of the PTHR was also detected in human kidney. These findings suggest a new model of PTHR processing and regulation of its stability.  相似文献   

20.
Understanding serotonergic (5-HT) signaling is critical for understanding human physiology, behavior, and neuropsychiatric disease. 5-HT mediates its actions via ionotropic and metabotropic 5-HT receptors. The 5-HT1A receptor is a metabotropic G protein-coupled receptor linked to the Gi/o signaling pathway and has been specifically implicated in the pathogenesis of depression and anxiety. To understand and precisely control 5-HT1A signaling, we created a light-activated G protein-coupled receptor that targets into 5-HT1A receptor domains and substitutes for endogenous 5-HT1A receptors. To induce 5-HT1A-like targeting, vertebrate rhodopsin was tagged with the C-terminal domain (CT) of 5-HT1A (Rh-CT5-HT1A). Rh-CT5-HT1A activates G protein-coupled inward rectifying K+ channels in response to light and causes membrane hyperpolarization in hippocampal neurons, similar to the agonist-induced responses of the 5-HT1A receptor. The intracellular distribution of Rh-CT5-HT1A resembles that of the 5-HT1A receptor; Rh-CT5-HT1A localizes to somatodendritic sites and is efficiently trafficked to distal dendritic processes. Additionally, neuronal expression of Rh-CT5-HT1A, but not Rh, decreases 5-HT1A agonist sensitivity, suggesting that Rh-CT5-HT1A and 5-HT1A receptors compete to interact with the same trafficking machinery. Finally, Rh-CT5-HT1A is able to rescue 5-HT1A signaling of 5-HT1A KO mice in cultured neurons and in slices of the dorsal raphe showing that Rh-CT5-HT1A is able to functionally compensate for native 5-HT1A. Thus, as an optogenetic tool, Rh-CT5-HT1A has the potential to directly correlate in vivo 5-HT1A signaling with 5-HT neuron activity and behavior in both normal animals and animal models of neuropsychiatric disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号