首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plants have evolved a range of cellular responses to maintain developmental homeostasis and to survive over a range of temperatures. Here, we describe the in vivo and in vitro functions of BOBBER1 (BOB1), a NudC domain containing Arabidopsis (Arabidopsis thaliana) small heat shock protein. BOB1 is an essential gene required for the normal partitioning and patterning of the apical domain of the Arabidopsis embryo. Because BOB1 loss-of-function mutants are embryo lethal, we used a partial loss-of-function allele (bob1-3) to demonstrate that BOB1 is required for organismal thermotolerance and postembryonic development. Recombinant BOB1 protein functions as a molecular chaperone and prevents the aggregation of a model protein substrate in vitro. In plants, BOB1 is cytoplasmic at basal temperatures, but forms heat shock granules containing canonical small heat shock proteins at high temperatures. In addition to thermotolerance defects, bob1-3 exhibits pleiotropic development defects during all phases of development. bob1-3 phenotypes include decreased rates of shoot and root growth as well as patterning defects in leaves, flowers, and inflorescence meristems. Most eukaryotic chaperones play important roles in protein folding either during protein synthesis or during cellular responses to denaturing stress. Our results provide, to our knowledge, the first evidence of a plant small heat shock protein that has both developmental and thermotolerance functions and may play a role in both of these folding networks.Plants are autotrophic sessile organisms that depend on sunlight for their energetic needs. One consequence of this lifestyle is that plants are often subjected to high temperature stress, especially in dry conditions when transpirational cooling is limited. At a cellular level, elevated temperatures result in changes in protein structure that can result in the exposure of normally buried hydrophobic residues. As a consequence of thermal denaturation, proteins may aggregate and cease to function normally. A universal response to temperature-induced protein unfolding in all living organisms is the production of heat shock proteins (HSPs). HSPs are molecular chaperones that provide organismal thermotolerance by preventing the denaturation and aggregation of target proteins as well as facilitating protein refolding. Highly conserved HSPs are found in all organisms and include the small HSP (sHSP) as well as the Hsp60, Hsp70, Hsp90, and Hsp100 families (Baniwal et al., 2004; Taiz and Zeiger, 2006). Members of the sHSP family are defined by their small size (12–43 kD), their ability to prevent protein aggregation, and by a conserved α-crystallin domain (ACD). Plants are unusual in the large number of ACD-containing sHSPs encoded by their genomes: Arabidopsis (Arabidopsis thaliana) has 19 compared to 10 in humans, four in Drosophila melanogaster, and one or two in bacteria (Haslbeck et al., 2005).Although the biochemical activity of plant sHSPs has been well characterized (Lee et al., 1995, 1997; Basha et al., 2004; Siddique et al., 2008), little is known about the in vivo functions of plant sHSPs, perhaps due to functional redundancies in this large gene family. Apart from temperature-dependent changes in hypocotyl elongation, which reflects the ability of cells to expand, no developmental roles for a sHSP have been reported in plants (Jenks and Hasegawa, 2005; Dafny-Yelin et al., 2008). In addition to redundancy, a lack of known developmental functions for plant sHSPs may also be a result of the fact that most are only expressed in response to heat or other stresses. Exceptions include a subset of sHSPs expressed during seed and pollen maturation, developmental stages that involve desiccation (Wehmeyer and Vierling, 2000; Dafny-Yelin et al., 2008). However, since most plant sHSPs are not expressed under nonstress conditions, they are unlikely to affect normal growth and development (Swindell et al., 2007).BOBBER1 (BOB1; At5g53400) is an essential gene required for the normal partitioning and patterning of the apical domain of the Arabidopsis embryo. In bob1-1 and bob1-2 null mutants, meristematic identity is expanded into the portion of the embryo that would normally form the seedling leaves (cotyledons), which in turn are never established. Auxin gradients are never established in bob1 mutant embryos. However, since there are multiple feedback loops involved in auxin signaling and transport, it is unclear whether the lack of auxin maxima in bob1 mutants is a direct or indirect result of a lack of BOB1 activity (Jurkuta et al., 2009). BOB1 encodes a protein with C-terminal homology to NudC, a protein identified in a screen for genes required for nuclear migration in Aspergillus nidulans. Genes with homology to NudC have been shown to interact with dynein microtubule motors. In mammalian tissue culture systems, interference with NudC-like gene function results in defects in chromosome segregation and cytokinesis (Aumais et al., 2003; Nishino et al., 2006; Zhou et al., 2006). The NudC domain has predicted structural homology with the α-crystallin/p23 protein families (Garcia-Ranea et al., 2002), which includes the ACD-containing sHSPs. The ACD, originally identified in the α-crystallin chaperone of the vertebrate eye lens, forms a structure consisting of two antiparallel β-sheets in a sandwich (Scharf et al., 2001; Haslbeck et al., 2005). The NMR structure of the mouse NudC homolog (PDB 1wfi) has the same β-sheet sandwich structure that provides support for the predicted structural homology between NudC domains and ACDs. These observations suggest that NudC domain proteins might share conserved functions with sHSPs. Support for this hypothesis comes from Caenorhabditis elegans where the NudC homolog NUD-1, an essential gene, displays protein chaperone activity in vitro (Faircloth et al., 2009).Here, we use bob1-3, a partial loss-of-function allele, to show that BOB1 is required for normal development and meristem function after embryogenesis. To determine whether BOB1 functions as a protein chaperone, we characterized the in vitro activity of BOB1 protein. We also investigated the thermotolerance functions of BOB1 using bob1-3 and used a BOB1:GFP line that is biologically active to document that BOB1 protein is incorporated into heat shock granules (HSGs) at high temperatures. All of these data suggest that BOB1 encodes a novel sHSP with dual functions in development and thermotolerance. To our knowledge, this is the first demonstration of a developmental patterning function for a plant sHSP.  相似文献   

2.
The chloroplasts genome (plastome) occurs at high copy numbers per cell. Several chloroplast genome copies are densely packed into nucleoprotein particles called nucleoids. How genome packaging occurs and which proteins organize chloroplast nucleoids are largely unknown. Here, we have analyzed the Chlamydornonas reinhardtii homolog of the bacterial architectural DNA-binding protein HU, the histone-like protein HLP. We show that the Chlarnydornonas HLP protein is targeted to chloroplasts and associates with nucleoids. Knockdown of HLP gene expression by RNA interference (RNAi) alters the structure of chloroplast nucleoids and appears to reduce the level of compaction of chloroplast DNA. Unexpectedly, also chloroplast genome copy numbers are significantly decreased in the RNAi strains, suggesting that, in addition to its architectural role in nucleoid formation, the HIP protein is also involved in chloroplast genome maintenance.  相似文献   

3.
4.
Pollen development is a post-meiotic process that produces mature pollen grains from microspores and can be regarded as an ideal model for the study of important plant physiological processes such as reproduction, cellular differentiation, cell fate determination, signal transduction, membrane transport, and fusion and polar growth. The regulation of pollen development is a complicated biological process that is crucial for sexual reproduction in flowering plants (Yamamoto et al.,  相似文献   

5.
In Arabidopsis thaliana, active DNA demethylation is initiated by the DNA glycosylase REPRESSOR OF SILENCING1 (ROS1) and its paralogs DEMETER, DEMETER-LIKE2 (DML2), and DML3. How these demethylation enzymes are regulated, however, is poorly understood. Here, using a transgenic Arabidopsis line harboring the stress-inducible RESPONSIVE TO DEHYDRATION29A (RD29A) promoter–LUCIFERASE (LUC) reporter gene and the cauliflower mosaic virus 35S promoter (35S)–NEOMYCIN PHOSPHOTRANSFERASE II (NPTII) antibiotic resistance marker gene, we characterize a ROS locus, ROS5, that encodes a protein in the small heat shock protein family. ROS5 mutations lead to the silencing of the 35S-NPTII transgene due to DNA hypermethylation but do not affect the expression of the RD29A-LUC transgene. ROS5 physically interacts with the histone acetyltransferase ROS4/INCREASED DNA METHYLATION1 (IDM1) and is required to prevent the DNA hypermethylation of some genes that are also regulated by ROS1 and IDM1. We propose that ROS5 regulates DNA demethylation by interacting with IDM1, thereby creating a chromatin environment that facilitates the binding of ROS1 to erase DNA methylation.  相似文献   

6.
The initiation of chloroplast development in the light is dependent on nuclear encoded components. The nuclear genes encoding key components in the photosynthetic machinery are regulated by signals originating in the plastids. These plastid signals play an essential role in the regulation of photosynthesis associated nuclear genes (PhANGs) when proplastids develop into chloroplasts. One of the plastid signals is linked to the tetrapyrrole biosynthesis and accumulation of the intermediates the Mg-ProtoIX and its methyl ester Mg-ProtoIX-ME. Phytochrome-Associated Protein Phosphatase 5 (PAPP5) was isolated in a previous study as a putative Mg-ProtoIX interacting protein. In order to elucidate if there is a biological link between PAPP5 and the tetrapyrrole mediated signal we generated double mutants between the Arabidopsis papp5 and the crd mutants. The crd mutant over-accumulates Mg-ProtoIX and Mg-ProtoIX-ME and the tetrapyrrole accumulation triggers retrograde signalling. The crd mutant exhibits repression of PhANG expression, altered chloroplast morphology and a pale phenotype. However, in the papp5crd double mutant, the crd phenotype is restored and papp5crd accumulated wild type levels of chlorophyll, developed proper chloroplasts and showed normal induction of PhANG expression in response to light. Tetrapyrrole feeding experiments showed that PAPP5 is required to respond correctly to accumulation of tetrapyrroles in the cell and that PAPP5 is most likely a component in the plastid signalling pathway down stream of the tetrapyrrole Mg-ProtoIX/Mg-ProtoIX-ME. Inhibition of phosphatase activity phenocopied the papp5crd phenotype in the crd single mutant demonstrating that PAPP5 phosphatase activity is essential to mediate the retrograde signal and to suppress PhANG expression in the crd mutant. Thus, our results suggest that PAPP5 receives an inbalance in the tetrapyrrole biosynthesis through the accumulation of Mg-ProtoIX and acts as a negative regulator of PhANG expression during chloroplast biogenesis and development.  相似文献   

7.
8.
Highly conserved molecular chaperone Hsp70 heat shock proteins play a key role in maintaining protein homeostasis (proteostasis). DnaK, a major Hsp70 in Escherichia coli, has been widely used as a paradigm for studying Hsp70s. In the absence of ATP, purified DnaK forms low-ordered oligomer, whereas ATP binding shifts the equilibrium toward the monomer. Recently, we solved the crystal structure of DnaK in complex with ATP. There are two molecules of DnaK-ATP in the asymmetric unit. Interestingly, the interfaces between the two molecules of DnaK are large with good surface complementarity, suggesting functional importance of this crystallographic dimer. Biochemical analyses of DnaK protein supported the formation of dimer in solution. Furthermore, our cross-linking experiment based on the DnaK-ATP structure confirmed that DnaK forms specific dimer in an ATP-dependent manner. To understand the physiological function of the dimer, we mutated five residues on the dimer interface. Four mutations, R56A, T301A, N537A, and D540A, resulted in loss of chaperone activity and compromised the formation of dimer, indicating the functional importance of the dimer. Surprisingly, neither the intrinsic biochemical activities, the ATP-induced allosteric coupling, nor GrpE co-chaperone interaction is affected appreciably in all of the mutations except for R56A. Unexpectedly, the interaction with co-chaperone Hsp40 is significantly compromised. In summary, this study suggests that DnaK forms a transient dimer upon ATP binding, and this dimer is essential for the efficient interaction of DnaK with Hsp40.  相似文献   

9.
10.
Early endosperm development involves a series of rapid nuclear divisions in the absence of cytokinesis; thus, many endosperm mutants reveal genes whose functions are essential for mitosis. This work finds that the endosperm of Arabidopsis thaliana endosperm-defective1 (ede1) mutants never cellularizes, contains a reduced number of enlarged polyploid nuclei, and features an aberrant microtubule cytoskeleton, where the specialized radial microtubule systems and cytokinetic phragmoplasts are absent. Early embryo development is substantially normal, although occasional cytokinesis defects are observed. The EDE1 gene was cloned using a map-based approach and represents the pioneer member of a conserved plant-specific family of genes of previously unknown function. EDE1 is expressed in the endosperm and embryo of developing seeds, and its expression is tightly regulated during cell cycle progression. EDE1 protein accumulates in nuclear caps in premitotic cells, colocalizes along microtubules of the spindle and phragmoplast, and binds microtubules in vitro. We conclude that EDE1 is a novel plant-specific microtubule-associated protein essential for microtubule function during the mitotic and cytokinetic stages that generate the Arabidopsis endosperm and embryo.  相似文献   

11.
Frataxin plays a key role in eukaryotic cellular iron metabolism, particularly in mitochondrial heme and iron-sulfur (Fe-S) cluster biosynthesis. However, its precise role has yet to be elucidated. In this work, we studied the subcellular localization of Arabidopsis frataxin, AtFH, using confocal microscopy, and found a novel dual localization for this protein. We demonstrate that plant frataxin is targeted to both the mitochondria and the chloroplast, where it may play a role in Fe-S cluster metabolism as suggested by functional studies on nitrite reductase (NIR) and ferredoxin (Fd), two Fe-S containing chloroplast proteins, in AtFH deficient plants. Our results indicate that frataxin deficiency alters the normal functioning of chloroplasts by affecting the levels of Fe, chlorophyll, and the photosynthetic electron transport chain in this organelle.  相似文献   

12.
Small heat shock proteins (smHSPs) play important and extensive roles in plant defenses against abiotic stresses. We cloned a gene for a smHSP from the David Lily (Lilium davidii (E. H. Wilson) Raffill var. Willmottiae), which we named LimHSP16.45 based on its protein molecular weight. Its expression was induced by many kinds of abiotic stresses in both the lily and transgenic plants of Arabidopsis. Heterologous expression enhanced cell viability of the latter under high temperatures, high salt, and oxidative stress, and heat shock granules (HSGs) formed under heat or salinity treatment. Assays of enzymes showed that LimHSP16.45 overexpression was related to greater activity by superoxide dismutase and catalase in transgenic lines. Therefore, we conclude that heterologous expression can protect plants against abiotic stresses by preventing irreversible protein aggregation, and by scavenging cellular reactive oxygen species.  相似文献   

13.
14.
15.
FtsZ1 and FtsZ2 are phylogenetically distinct families of FtsZ in plants that co-localize to mid-plastid rings and facilitate division of chloroplasts. In plants, altered levels of either FtsZ1 or FtsZ2 cause dose-dependent defects in chloroplast division; thus, studies on the functional relationship between FtsZgenes require careful manipulation of FtsZ levels in vivo. To define the functional relationship between the two FtsZ2 genes in Arabidopsis thaliana, FtsZ2-1 and FtsZ2-2, we expressed FtsZ2-1 in an ftsZ2-2 null mutant, and vice versa, and determined whether the chloroplast division defects were rescued in plants expressing different total levels of FtsZ2. Full rescue was observed when either the FtsZ2-1 or FtsZ2-2 level approximated total FtsZ2 levels in wild-type (WT). Additionally, FtsZ2-2 interacts with ARC6, as shown previously for FtsZ2- 1. These data indicate that FtsZ2-1 and FtsZ2-2 are functionally redundant for chloroplast division in Arabidopsis. To rigorously validate the requirement of each FtsZ family for chloroplast division, we replaced FtsZ1 with FtsZ2 in vivo, and vice versa, while maintaining the FtsZ level in the transgenic plants equal to that of the total level in WT. Chloroplast division defects were not rescued, demonstrating conclusively that FtsZ1 and FtsZ2 are non-redundant for maintenance of WT chloroplast numbers. Finally, we generated ftsZtriple null mutants and show that plants completely devoid of FtsZ protein are viable and fertile. As plastids are presumably essential organelles, these findings suggest that an FtsZ-independent mode of plastid partitioning may occur in higher plants.  相似文献   

16.
17.
18.
19.
20.
线虫中的小分子热休克蛋白HSP12.1具有类分子伴侣活性   总被引:1,自引:0,他引:1  
很多种类的小分子热休克蛋白(small heat shock protein,sHSP)都能在胁迫条件下抑制蛋白质的聚集,显示出了类分子伴侣活性,这种活性是ATP非依赖型的.从已经进行的实验发现,线虫C.elegans中最小的小分子热休克蛋白家族成员HSP12.1具有类分子伴侣活性,以胰岛素、乙醇脱氢酶和溶菌酶做底物发现HSP12.1能够一定程度地抑制底物的热聚集,虽然这种活性较一些经典的分子伴侣蛋白(线虫中的HSP16.1)要低.与此不同,另外3种和其分子质量相近的sHSP12s(HSP12.2、HSP12.3和HSP12.6)却没有检测出这样的类分子伴侣活性,虽然它们在一级结构上有很高的相似性.另外,在大肠杆菌中表达HSP12.1蛋白能够提高细菌在高温环境下的生存率,45℃处理后的生存率比未表达HSP12.1的菌高4倍左右,不过在线虫中是否发挥同样的功能还不是很清楚.从研究结果来看,C端“尾巴”结构域对sHSP发挥类分子伴侣活性不是必要的,在HSP12.1中没有C端“尾巴”结构域也有类分子伴侣活性就证明了这一点.N端结构域可能在发挥类分子伴侣活性中发挥比较重要的作用,当然α-crystallin结构域也可能参与到发挥这样的功能当中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号