共查询到20条相似文献,搜索用时 15 毫秒
1.
Nørgaard P Westphal V Tachibana C Alsøe L Holst B Winther JR 《The Journal of cell biology》2001,152(3):553-562
PDI1 is the essential gene encoding protein disulfide isomerase in yeast. The Saccharomyces cerevisiae genome, however, contains four other nonessential genes with homology to PDI1: MPD1, MPD2, EUG1, and EPS1. We have investigated the effects of simultaneous deletions of these genes. In several cases, we found that the ability of the PDI1 homologues to restore viability to a pdi1-deleted strain when overexpressed was dependent on the presence of low endogenous levels of one or more of the other homologues. This shows that the homologues are not functionally interchangeable. In fact, Mpd1p was the only homologue capable of carrying out all the essential functions of Pdi1p. Furthermore, the presence of endogenous homologues with a CXXC motif in the thioredoxin-like domain is required for suppression of a pdi1 deletion by EUG1 (which contains two CXXS active site motifs). This underlines the essentiality of protein disulfide isomerase-catalyzed oxidation. Most mutant combinations show defects in carboxypeptidase Y folding as well as in glycan modification. There are, however, no significant effects on ER-associated protein degradation in the various protein disulfide isomerase-deleted strains. 相似文献
2.
Coordinated spindle assembly and orientation requires Clb5p-dependent kinase in budding yeast 下载免费PDF全文
Segal M Clarke DJ Maddox P Salmon ED Bloom K Reed SI 《The Journal of cell biology》2000,148(3):441-452
The orientation of the mitotic spindle along a polarity axis is critical in asymmetric cell divisions. In the budding yeast, Saccharomyces cerevisiae, loss of the S-phase B-type cyclin Clb5p under conditions of limited cyclin-dependent kinase activity (cdc28-4 clb5Delta cells) causes a spindle positioning defect that results in an undivided nucleus entering the bud. Based on time-lapse digital imaging microscopy of microtubules labeled with green fluorescent protein fusions to either tubulin or dynein, we observed that the asymmetric behavior of the spindle pole bodies during spindle assembly was lost in the cdc28-4 clb5Delta cells. As soon as a spindle formed, both poles were equally likely to interact with the bud cell cortex. Persistent dynamic interactions with the bud ultimately led to spindle translocation across the bud neck. Thus, the mutant failed to assign one spindle pole body the task of organizing astral microtubules towards the mother cell. Our data suggest that Clb5p-associated kinase is required to confer mother-bound behavior to one pole in order to establish correct spindle polarity. In contrast, B-type cyclins, Clb3p and Clb4p, though partially redundant with Clb5p for an early role in spindle morphogenesis, preferentially promote spindle assembly. 相似文献
3.
The spindle position checkpoint in Saccharomyces cerevisiae delays mitotic exit until the spindle has moved into the mother-bud neck, ensuring that each daughter cell inherits a nucleus. The small G protein Tem1p is critical in promoting mitotic exit and is concentrated at the spindle pole destined for the bud. The presumed nucleotide exchange factor for Tem1p, Lte1p, is concentrated in the bud. These findings suggested the hypothesis that movement of the spindle pole through the neck allows Tem1p to interact with Lte1p, promoting GTP loading of Tem1p and mitotic exit. However, we report that deletion of LTE1 had little effect on the timing of mitotic exit. We also examined several mutants in which some cells inappropriately exit mitosis even though the spindle is within the mother. In some of these cells, the spindle pole body did not interact with the bud or the neck before mitotic exit. Thus, some alternative mechanism must exist to coordinate mitotic exit with spindle position. In both wild-type and mutant cells, mitotic exit was preceded by loss of cytoplasmic microtubules from the neck. Thus, the spindle position checkpoint may monitor such interactions. 相似文献
4.
The yeast a-factor receptor (Ste3p) is subject to two mechanistically distinct modes of endocytosis: a constitutive, ligand-independent pathway and a ligand-dependent uptake pathway. Whereas the constitutive pathway leads to degradation of the receptor in the vacuole, the present work finds that receptor internalized via the ligand-dependent pathway recycles. With the a-factor ligand continuously present in the culture medium, trafficking of the receptor achieves an equilibrium in which continuing uptake to endosomal compartments is balanced by its recycling return to the plasma membrane. Withdrawal of ligand from the medium leads to a net return of the internalized receptor back to the plasma membrane. Although recycling is demonstrated for receptors that lack the signal for constitutive endocytosis, evidence is provided indicating a participation of recycling in wild-type Ste3p trafficking as well: a-factor treatment both slows wild-type receptor turnover and results in receptor redistribution to intracellular endosomal compartments. Apparently, a-factor acts as a switch, diverting receptor from vacuole-directed endocytosis and degradation, to recycling. A model is presented for how the two Ste3p endocytic modes may collaborate to generate the polarized receptor distribution characteristic of mating cells. 相似文献
5.
Hélène Simonin 《生物化学与生物物理学报:生物膜》2007,1768(6):1600-1610
Yeasts are often exposed to variations in osmotic pressure in their natural environments or in their substrates when used in fermentation industries. Such changes may lead to cell death or activity loss. Although the involvement of the plasma membrane is strongly suspected, the mechanism remains unclear. Here, the integrity and functionality of the yeast plasma membrane at different levels of dehydration and rehydration during an osmotic treatment were assessed using various fluorescent dyes. Flow cytometry and confocal microscopy of cells stained with oxonol, propidium iodide, and lucifer yellow were used to study changes in membrane polarization, permeabilization, and endocytosis, respectively. Cell volume contraction, reversible depolarization, permeabilization, and endovesicle formation were successively observed with increasing levels of osmotic pressure during dehydration. The maximum survival rate was also detected at a specific rehydration level, of 20 MPa, above which cells were strongly permeabilized. Thus, we show that the two steps of an osmotic treatment, dehydration and rehydration, are both involved in the induction of cell death. Permeabilization of the plasma membranes is the critical event related to cell death. It may result from lipidic phase transitions in the membrane and from variations in the area-to-volume ratio during the osmotic treatment. 相似文献
6.
Functional genomics: tools of the trade 总被引:3,自引:1,他引:2
7.
The genomes of two hemiascomycetous yeasts (Saccharomyces cerevisiae and Candida albicans) and one archiascomycete (Schizosaccharomyces pombe) have been completely sequenced and the genes have been annotated. In addition, the genomes of 13 more Hemiascomycetes have been partially sequenced. The amount of data thus obtained provides information on the evolutionary relationships between yeast species. In addition, the differential genetic characteristics of the microorganisms explain a number of distinctive biological traits. Gene order conservation is observed between phylogenetically close species and is lost in distantly related species, probably due to rearrangements of short regions of DNA. However, gene function is much more conserved along evolution. Compared to S. cerevisiae and S. pombe, C. albicans has a larger number of specific genes, i.e., genes not found in other organisms, a fact that can account for the biological characteristics of this pathogenic dimorphic yeast which is able to colonize a large variety of environments. 相似文献
8.
The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting 下载免费PDF全文
MYO2 encodes a type V myosin heavy chain needed for the targeting of vacuoles and secretory vesicles to the growing bud of yeast. Here we describe new myo2 alleles containing conditional lethal mutations in the COOH-terminal tail domain. Within 5 min of shifting to the restrictive temperature, the polarized distribution of secretory vesicles is abolished without affecting the distribution of actin or the mutant Myo2p, showing that the tail has a direct role in vesicle targeting. We also show that the actin cable-dependent translocation of Myo2p to growth sites does not require secretory vesicle cargo. Although a fusion protein containing the Myo2p tail also concentrates at growth sites, this accumulation depends on the polarized delivery of secretory vesicles, implying that the Myo2p tail binds to secretory vesicles. Most of the new mutations alter a region of the Myo2p tail conserved with vertebrate myosin Vs but divergent from Myo4p, the myosin V involved in mRNA transport, and genetic data suggest that the tail interacts with Smy1p, a kinesin homologue, and Sec4p, a vesicle-associated Rab protein. The data support a model in which the Myo2p tail tethers secretory vesicles, and the motor transports them down polarized actin cables to the site of exocytosis. 相似文献
9.
Frank Madeo Eleonore Fr?hlich Martin Ligr Martin Grey Stephan J. Sigrist Dieter H. Wolf Kai-Uwe Fr?hlich 《The Journal of cell biology》1999,145(4):757-767
Oxygen radicals are important components of metazoan apoptosis. We have found that apoptosis can be induced in the yeast Saccharomyces cerevisiae by depletion of glutathione or by low external doses of H2O2. Cycloheximide prevents apoptotic death revealing active participation of the cell. Yeast can also be triggered into apoptosis by a mutation in CDC48 or by expression of mammalian bax. In both cases, we show oxygen radicals to accumulate in the cell, whereas radical depletion or hypoxia prevents apoptosis. These results suggest that the generation of oxygen radicals is a key event in the ancestral apoptotic pathway and offer an explanation for the mechanism of bax-induced apoptosis in the absence of any established apoptotic gene in yeast. 相似文献
10.
A novel member of the split betaalphabeta fold: Solution structure of the hypothetical protein YML108W from Saccharomyces cerevisiae 下载免费PDF全文
Pineda-Lucena A Liao JC Cort JR Yee A Kennedy MA Edwards AM Arrowsmith CH 《Protein science : a publication of the Protein Society》2003,12(5):1136-1140
As part of the Northeast Structural Genomics Consortium pilot project focused on small eukaryotic proteins and protein domains, we have determined the NMR structure of the protein encoded by ORF YML108W from Saccharomyces cerevisiae. YML108W belongs to one of the numerous structural proteomics targets whose biological function is unknown. Moreover, this protein does not have sequence similarity to any other protein. The NMR structure of YML108W consists of a four-stranded beta-sheet with strand order 2143 and two alpha-helices, with an overall topology of betabetaalphabetabetaalpha. Strand beta1 runs parallel to beta4, and beta2:beta1 and beta4:beta3 pairs are arranged in an antiparallel fashion. Although this fold belongs to the split betaalphabeta family, it appears to be unique among this family; it is a novel arrangement of secondary structure, thereby expanding the universe of protein folds. 相似文献
11.
12.
The heme biosynthesis pathway in the yeast Saccharomyces cerevisiae is a highly regulated system, but the mechanisms accounting for this regulation remain unknown. In an attempt to identify rate-limiting steps in heme synthesis, which may constitute potential regulatory points, we constructed yeast strains overproducing two enzymes of the pathway: the porphobilinogen synthase (PBG-S) and deaminase (PBG-D). Biochemical analysis of the enzyme-overproducing strains revealed intracellular porphobilinogen and porphyrin accumulation. These results indicate that both enzymes play a rate-limiting role in yeast heme biosynthesis. 相似文献
13.
Vineet Choudhary Rabih Darwiche David Gfeller Vincent Zoete Olivier Michielin Roger Schneiter 《Journal of lipid research》2014,55(5):883-894
Proteins belonging to the CAP superfamily are present in all kingdoms of life and have been implicated in different physiological processes. Their molecular mode of action, however, is poorly understood. Saccharomyces cerevisiae expresses three members of this superfamily, pathogen-related yeast (Pry)1, -2, and -3. We have recently shown that Pry function is required for the secretion of cholesteryl acetate and that Pry proteins bind cholesterol and cholesteryl acetate, suggesting that CAP superfamily members may generally act to bind sterols or related small hydrophobic compounds. Here, we analyzed the mode of sterol binding by Pry1. Computational modeling indicates that ligand binding could occur through displacement of a relatively poorly conserved flexible loop, which in some CAP family members displays homology to the caveolin-binding motif. Point mutations within this motif abrogated export of cholesteryl acetate but did not affect binding of cholesterol. Mutations of residues located outside the caveolin-binding motif, or mutations in highly conserved putative catalytic residues had no effect on export of cholesteryl acetate or on lipid binding. These results indicate that the caveolin-binding motif of Pry1, and possibly of other CAP family members, is crucial for selective lipid binding and that lipid binding may occur through displacement of the loop containing this motif. 相似文献
14.
15.
Errors during the process of translating mRNA information into protein products occur infrequently. Frameshift errors occur less frequently than other types of errors, suggesting that the translational machinery has more robust mechanisms for precluding that kind of error. Despite these mechanisms, mRNA sequences have evolved that increase the frequency up to 10,000-fold. These sequences, termed programmed frameshift sites, usually consist of a heptameric nucleotide sequence, at which the change in frames occurs along with additional sequences that stimulate the efficiency of frameshifting. One such stimulatory site derived from the Ty3 retrotransposon of the yeast Saccharomyces cerevisiae (the Ty3 stimulator) comprises a 14 nucleotide sequence with partial complementarity to a Helix 18 of the 18S rRNA, a component of the ribosome's accuracy center. A model for the function of the Ty3 stimulator predicts that it base pairs with Helix 18, reducing the efficiency with which the ribosome rejects erroneous out of frame decoding. We have tested this model by making a saturating set of single-base mutations of the Ty3 stimulator. The phenotypes of these mutations are inconsistent with the Helix 18 base-pairing model. We discuss the phenotypes of these mutations in light of structural data on the path of the mRNA on the ribosome, suggesting that the true target of the Ty3 stimulator may be rRNA and ribosomal protein elements of the ribosomal entry tunnel, as well as unknown constituents of the solvent face of the 40S subunit. 相似文献
16.
17.
Organization of the yeast Zip1 protein within the central region of the synaptonemal complex 下载免费PDF全文
The yeast Zip1 protein is a component of the central region of the synaptonemal complex (SC). Zip1 is predicted to form an alpha-helical coiled coil, flanked by globular domains at the NH(2) and COOH termini. Immunogold labeling with domain-specific anti-Zip1 antibodies demonstrates that the NH(2)-terminal domain of Zip1 is located in the middle of the central region of the SC, whereas the COOH-terminal domain is embedded in the lateral elements of the complex. Previous studies have shown that overproduction of Zip1 results in the assembly of two types of aggregates, polycomplexes and networks, that are unassociated with chromatin. Our epitope mapping data indicate that the organization of Zip1 within polycomplexes is similar to that of the SC, whereas the organization of Zip1 within networks is fundamentally different. Zip1 protein purified from bacteria assembles into dimers in vitro, and electron microscopic analysis demonstrates that the two monomers within a dimer are arranged in parallel and in register. Together, these results suggest that two Zip1 dimers, lying head-to-head, span the width of the SC. 相似文献
18.
The fundamental principle underlying sexual selection theory is that an allele conferring an advantage in the competition for mates will spread through a population. Remarkably, this has never been demonstrated empirically. We have developed an experimental system using yeast for testing genetic models of sexual selection. Yeast signal to potential partners by producing an attractive pheromone; stronger signallers are preferred as mates. We tested the effect of high and low levels of sexual selection on the evolution of a gene determining the strength of this signal. Under high sexual selection, an allele encoding a stronger signal was able to invade a population of weak signallers, and we observed a corresponding increase in the amount of pheromone produced. By contrast, the strong signalling allele failed to invade under low sexual selection. Our results demonstrate, for the first time, the spread of a sexually selected allele through a population, confirming the central assumption of sexual selection theory. Our yeast system is a powerful tool for investigating the genetics of sexual selection. 相似文献
19.
Han B Xue Y Li J Deng XW Zhang Q 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2007,362(1482):1009-1021
Rice functional genomics is a scientific approach that seeks to identify and define the function of rice genes, and uncover when and how genes work together to produce phenotypic traits. Rapid progress in rice genome sequencing has facilitated research in rice functional genomics in China. The Ministry of Science and Technology of China has funded two major rice functional genomics research programmes for building up the infrastructures of the functional genomics study such as developing rice functional genomics tools and resources. The programmes were also aimed at cloning and functional analyses of a number of genes controlling important agronomic traits from rice. National and international collaborations on rice functional genomics study are accelerating rice gene discovery and application. 相似文献
20.
Patrick Linder 《Antonie van Leeuwenhoek》1992,62(1-2):47-62
The combination of genetic, molecular and biochemical approaches have made the yeastSaccharomyces cerevisiae a convenient organism to study translation. The sequence similarity of translation factors from yeast and other organisms suggests a high degree of conservation in the translational machineries. This view is also strengthened by a functional analogy of some proteins implicated in translation. Beautiful genetic experiments have confirmed existing models and added new insights in the mechanism of translation. This review summarizes recent experiments using yeast as a model system for the analysis of this complex process. 相似文献