首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The deep ocean supports a highly diverse and mostly endemic fauna, yet little is known about how or where new species form in this remote ecosystem. How speciation occurs is especially intriguing in the deep sea because few obvious barriers exist that would disrupt gene flow. Geographic and bathymetric patterns of genetic variation can provide key insights into how and where new species form. We quantified the population genetic structure of a protobranch bivalve, Neilonella salicensis, along a depth gradient (2200–3800 m) in the western North Atlantic using both nuclear (28S and calmodulin intron) and mitochondrial (cytochrome c oxidase subunit I) loci. A sharp genetic break occurred for each locus between populations above 2800 m and below 3200 m, defining two distinct clades with no nuclear or mitochondrial haplotypes shared between depth regimes. Bayesian phylogenetic analyses provided strong support for two clades, separated by depth, within N. salicensis. Although no morphological divergence was apparent, we suggest that the depth‐related population genetic and phylogenetic divergence is indicative of a cryptic species. The frequent occurrence of various stages of divergence associated with species formation along bathymetric gradients suggests that depth, and the environmental gradients that attend changes in depth, probably play a fundamental role in the diversification of marine organisms, especially in deep water. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 897–913.  相似文献   

2.
Dispersal modulates gene flow throughout a population's spatial range. Gene flow affects adaptation at local spatial scales, and consequently impacts the evolution of reproductive isolation. A recent theoretical investigation has demonstrated that local adaptation along an environmental gradient, facilitated by the evolution of limited dispersal, can lead to parapatric speciation even in the absence of assortative mating. This and other studies assumed unconditional dispersal, so individuals start dispersing without regard to local environmental conditions. However, many species disperse conditionally; their propensity to disperse is contingent upon environmental cues, such as the degree of local crowding or the availability of suitable mates. Here, we use an individual-based model in continuous space to investigate by numerical simulation the relationship between the evolution of threshold-based conditional dispersal and parapatric speciation driven by frequency-dependent competition along environmental gradients. We find that, as with unconditional dispersal, parapatric speciation occurs under a broad range of conditions when reproduction is asexual, and under a more restricted range of conditions when reproduction is sexual. In both the asexual and sexual cases, the evolution of conditional dispersal is strongly influenced by the slope of the environmental gradient: shallow environmental gradients result in low dispersal thresholds and high dispersal distances, while steep environmental gradients result in high dispersal thresholds and low dispersal distances. The latter, however, remain higher than under unconditional dispersal, thus undermining isolation by distance, and hindering speciation in sexual populations. Consequently, the speciation of sexual populations under conditional dispersal is triggered by a steeper gradient than under unconditional dispersal. Enhancing the disruptiveness of frequency-dependent selection, more box-shaped competition kernels dramatically lower the speciation-enabling slope of the environmental gradient.  相似文献   

3.
Much of the world's insect and plant biodiversity is found in tropical and subtropical ‘hotspots’, which often include long elevational gradients. These gradients may function as ‘diversity pumps’ and contribute to both regional and local species richness. Climactic conditions on such gradients often change rapidly along short vertical distances and may result in local adaptation and high levels of population genetic structure in plants and insects. We investigated the population genetic structure of two species of Ficus (Moraceae) along a continuously forested elevational gradient in Papua New Guinea. This speciose plant genus is pollinated by tiny, species‐specific and highly coevolved chalcid wasps (Agaonidae) and represented by at least 73 species at our study gradient. We present results from two species of Ficus sampled from six elevations between 200 m and 2700 m a.s.l. (almost the entire elevational range of the genus) and 10 polymorphic microsatellite loci. These results show that strong barriers to gene flow exist between 1200 m and 1700 m a.s.l. Whereas lowland populations are panmictic across distances over 70 km, montane populations can be disjunct over 4 km, despite continuous forest cover. We suggest that the limited gene flow between populations of these two species of montane Ficus may be driven by environmental limitations on pollinator or seed dispersal in combination with local adaptation of Ficus populations. Such a mechanism may have wider implications for plant and pollinator speciation across long and continuously forested elevational gradients if generalist insect pollinators and vertebrate seed dispersers also form populations based on elevation.  相似文献   

4.
We analyze the joint evolution of an ecological character and of dispersal distance in asexual and sexual populations inhabiting an environmental gradient. Several interesting phenomena resulting from the evolutionary interplay of these characters are revealed. First, asexual and sexual populations exhibit two analogous evolutionary regimes, in which either speciation in the ecological character occurs in conjunction with evolution of short-range dispersal, or dispersal distance remains high and speciation does not occur. Second, transitions between these two regimes qualitatively differ between asexual and sexual populations, with the former showing speciation with long-range dispersal and the latter showing no speciation with short-range dispersal. Third, a phenotypic gradient following the environmental gradient occurs only in the last case, i.e., for non-speciating sexual populations evolving towards short-range dispersal. Fourth, the transition between the evolutionary regimes of long-range dispersal with no speciation and short-range dispersal with speciation is typically abrupt, mediated by a positive feedback between incipient speciation and the evolution of short-range dispersal. Fifth, even though the model of sexual evolution analyzed here does not permit assortative mating preferences, speciation occurs for a surprisingly wide range of conditions. This illustrates that dispersal evolution is a powerful alternative to preference evolution in enabling spatially distributed sexual populations to respond to frequency-dependent disruptive selection.  相似文献   

5.
Ecological gradients have long been recognized as important regions for diversification and speciation. However, little attention has been paid to the evolutionary consequences or conservation implications of human activities that fundamentally change the environmental features of such gradients. Here we show that recent deforestation in West Africa has homogenized the rainforest-savanna gradient, causing a loss of adaptive phenotypic diversity in a common rainforest bird, the little greenbul (Andropadus virens). Previously, this species was shown to exhibit morphological and song divergence along this gradient in Central Africa. Using satellite-based estimates of forest cover, recent morphological data, and historical data from museum specimens collected prior to widespread deforestation, we show that the gradient has become shallower in West Africa and that A. virens populations there have lost morphological variation in traits important to fitness. In contrast, we find no loss of morphological variation in Central Africa where there has been less deforestation and gradients have remained more intact. While rainforest deforestation is a leading cause of species extinction, the potential of deforestation to flatten gradients and inhibit rainforest diversification has not been previously recognized. More deforestation will likely lead to further flattening of the gradient and loss of diversity, and may limit the ability of species to persist under future environmental conditions.  相似文献   

6.
The cosmopolitan genus Fraxinus, which comprises about 40 species of temperate trees and shrubs occupying various habitats in the Northern Hemisphere, represents a useful model to study speciation in long-lived angiosperms. We used nuclear external transcribed spacers (nETS), phantastica gene sequences, and two chloroplast loci (trnH-psbA and rpl32-trnL) in combination with previously published and newly obtained nITS sequences to produce a time-calibrated multi-locus phylogeny of the genus. We then inferred the biogeographic history and evolution of floral morphology. An early dispersal event could be inferred from North America to Asia during the Oligocene, leading to the diversification of the section Melioides sensus lato. Another intercontinental dispersal originating from the Eurasian section of Fraxinus could be dated from the Miocene and resulted in the speciation of F. nigra in North America. In addition, vicariance was inferred to account for the distribution of the other Old World species (sections Sciadanthus, Fraxinus and Ornus). Geographic speciation likely involving dispersal and vicariance could also be inferred from the phylogenetic grouping of geographically close taxa. Molecular dating suggested that the initial divergence of the taxonomical sections occurred during the middle and late Eocene and Oligocene periods, whereas diversification within sections occurred mostly during the late Oligocene and Miocene, which is consistent with the climate warming and accompanying large distributional changes observed during these periods. These various results underline the importance of dispersal and vicariance in promoting geographic speciation and diversification in Fraxinus. Similarities in life history, reproductive and demographic attributes as well as geographical distribution patterns suggest that many other temperate trees should exhibit similar speciation patterns. On the other hand, the observed parallel evolution and reversions in floral morphology would imply a major influence of environmental pressure. The phylogeny obtained and its biogeographical implications should facilitate future studies on the evolution of complex adaptive characters, such as habitat preference, and their possible roles in promoting divergent evolution in trees.  相似文献   

7.
Identifying the ecological factors that shape parasite distributions remains a central goal in disease ecology. These factors include dispersal capability, environmental filters and geographic distance. Using 520 haemosporidian parasite genetic lineages recovered from 7,534 birds sampled across tropical and temperate South America, we tested (a) the latitudinal diversity gradient hypothesis and (b) the distance–decay relationship (decreasing proportion of shared species between communities with increasing geographic distance) for this host–parasite system. We then inferred the biogeographic processes influencing the diversity and distributions of this cosmopolitan group of parasites across South America. We found support for a latitudinal gradient in diversity for avian haemosporidian parasites, potentially mediated through higher avian host diversity towards the equator. Parasite similarity was correlated with climate similarity, geographic distance and host composition. Local diversification in Amazonian lineages followed by dispersal was the most frequent biogeographic events reconstructed for haemosporidian parasites. Combining macroecological patterns and biogeographic processes, our study reveals that haemosporidian parasites are capable of circumventing geographic barriers and dispersing across biomes, although constrained by environmental filtering. The contemporary diversity and distributions of haemosporidian parasites are mainly driven by historical (speciation) and ecological (dispersal) processes, whereas the parasite community assembly is largely governed by host composition and to a lesser extent by environmental conditions.  相似文献   

8.
Otolith shape analysis of Atlantic herring (Clupea harengus) in Norwegian waters shows significant differentiation among fjords and a latitudinal gradient along the coast where neighbouring populations are more similar to each other than to those sampled at larger distances. The otolith shape was obtained using quantitative shape analysis, the outlines were transformed with Wavelet and analysed with multivariate methods. The observed morphological differences are likely to reflect environmental differences but indicate low dispersal among the local herring populations. Otolith shape variation suggests also limited exchange between the local populations and their oceanic counterparts, which could be due to differences in spawning behaviour. Herring from the most northerly location (69°N) in Balsfjord, which is genetically more similar to Pacific herring (Clupea pallasii), differed in otolith shape from all the other populations. Our results suggest that the semi-enclosed systems, where the local populations live and breed, are efficient barriers for dispersal. Otolith shape can thus serve as a marker to identify the origin of herring along the coast of Norway.  相似文献   

9.
Latitude is correlated with environmental components that determine the distribution of biodiversity. In combination with geographic factors, latitude‐associated environmental variables are expected to influence speciation, but empirical evidence on how those factors interplay is scarce. We evaluated the genetic and environmental variation among populations in the pair of sister species Dioon sonorense–D. vovidesii, two cycads distributed along a latitudinal environmental gradient in northwestern Mexico, to reveal their demographic histories and the environmental factors involved in their divergence. Using genome‐wide loci data, we determined the species delimitation, estimated the gene flow, and compared multiple demographic scenarios of divergence. Also, we estimated the variation of climatic variables among populations and used ecological niche models to test niche overlap between species. The effect of geographic and environmental variables on the genetic variation among populations was evaluated using linear models. Our results suggest the existence of a widespread ancestral population that split into the two species ~829 ky ago. The geographic delimitation along the environmental gradient occurs in the absence of major geographic barriers, near the 28th parallel north, where a zonation of environmental seasonality exists. The northern species, D. vovidesii, occurs in more seasonal environments but retains the same niche of the southern species, D. sonorense. The genetic variation throughout populations cannot be solely explained by stochastic processes; the latitudinal‐associated seasonality has been an additive factor that strengthened the species divergence. This study represents an example of how speciation can be achieved by the effect of the latitude‐associated factors on the genetic divergence among populations.  相似文献   

10.
A D Twyford  C A Kidner  R A Ennos 《Heredity》2014,112(4):382-390
Begonia is one of the ten largest plant genera, with over 1500 species. This high species richness may in part be explained by weak species cohesion, which has allowed speciation by divergence in allopatry. In this study, we investigate species cohesion in the widespread Central American Begonia heracleifolia and Begonia nelumbiifolia, by genotyping populations at microsatellite loci. We then test for post-zygotic reproductive barriers using experimental crosses, and assess whether sterility barriers are related to intraspecific changes in genome size, indicating major genome restructuring between isolated populations. Strong population substructure was found for B. heracleifolia (FST=0.364, FST=0.506) and B. nelumbiifolia (FST=0.277, FST=0.439), and Bayesian admixture analysis supports the division of most populations into discrete genetic clusters. Moderate levels of inferred selfing (B. heracleifolia s=0.40, B. nelumbiifolia s=0.62) and dispersal limitation are likely to have contributed to significant genetic differentiation (B. heracleifolia Jost''s D=0.274; B. nelumbiifolia D=0.294). Interpopulation crosses involving a divergent B. heracleifolia population with a genome size ∼10% larger than the species mean had a ∼20% reduction in pollen viability compared with other outcrosses, supporting reproductive isolation being polymorphic within the species. The population genetic data suggest that Begonia populations are only weakly connected by gene flow, allowing reproductive barriers to accumulate between the most isolated populations. This supports allopatric divergence in situ being the precursor of speciation in Begonia, and may also be a common speciation mechanism in other tropical herbaceous plant groups.  相似文献   

11.
We used landscape genetics and statistical models to test how landscape features influence connectivity or create barriers to dispersal for a mountain riparian tree species, Euptelea pleiospermum. Young leaves from 1078 individuals belonging to 36 populations at elevations of 900–2000 m along upper reaches of four rivers were genotyped using eight nuclear microsatellite markers. We found no evidence for the unidirectional dispersal hypothesis in E. pleiospermum within each river. The linear dispersal pattern along each river valley is mostly consistent with the “classical metapopulaton” model. Mountain ridges separating rivers were genetic barriers for this wind-pollinated tree species with anemochorous seeds, whereas river valleys provided important corridors for dispersal. Gene flow among populations along elevational gradients within each river prevails over gene flow among populations at similar elevations but from different rivers. This pattern of gene flow is likely to promote elevational range shifts of plant populations and to hinder local adaptation along elevational gradients. This study provides a paradigm to determine which of the two strategies (migration or adaptation) will be adopted by mountain riparian plants under climate warming.  相似文献   

12.
The release of anthropogenic pollution into freshwater ecosystems has largely transformed biodiversity and its geographical distribution patterns globally. However, for many communities including ecologically crucial ones such as zooplankton, it is largely unknown how different communities respond to environmental pollution. Collectively, dispersal and species sorting are two competing processes in determining the structure and geographical distribution of zooplankton communities in running water ecosystems such as rivers. At fine geographical scales, dispersal is usually considered as the dominant factor; however, the relative role of species sorting has not been evaluated well, mainly because significant environmental gradients rarely exist along continuously flowing rivers. The Chaobai River in northern China represents a rare system, where a significant environmental gradient exists at fine scales. Here, we employed high‐throughput sequencing to characterize complex zooplankton communities collected from the Chaobai River, and tested the relative roles of dispersal and species sorting in determining zooplankton community structure along the pollution gradient. Our results showed distinct patterns of zooplankton communities along the environmental gradient, and chemical pollutant‐related factors such as total phosphorus and chlorophyll‐a were identified as the major drivers for the observed patterns. Further partial redundancy analyses showed that species sorting overrode the effect of dispersal to shape local zooplankton community structure. Thus, our results reject the dispersal hypothesis and support the concept that species sorting caused by local pollution can largely determine the zooplankton community structure when significant environmental gradients exist at fine geographical scales in highly polluted running water ecosystems.  相似文献   

13.
Despite the enormous advances in genetics, links between phenotypes and genotypes have been made for only a few nonmodel organisms. However, such links can be essential to understand mechanisms of ecological speciation. The Costa Rican endemic Mangrove Warbler subspecies provides an excellent subject to study differentiation with gene flow, as it is distributed along a strong precipitation gradient on the Pacific coast with no strong geographic barriers to isolate populations. Mangrove Warbler populations could be subject to divergent selection driven by precipitation, which influences soil salinity levels, which in turn influences forest structure and food resources. We used single nucleotide polymorphisms (SNPs) and morphological traits to examine the balance between neutral genetic and phenotypic divergence to determine whether selection has acted on traits and genes with functions related to specific environmental variables. We present evidence showing: (a) associations between environmental variables and SNPs, identifying candidate genes related to bill morphology (BMP) and osmoregulation, (b) absence of population genetic structure in neutrally evolving markers, (c) divergence in bill size across the precipitation gradient, and (d) strong phenotypic differentiation (PST) which largely exceeds neutral genetic differentiation (FST) in bill size. Our results indicate an important role for salinity, forest structure, and resource availability in maintaining phenotypic divergence of Mangrove Warblers through natural selection. Our findings add to the growing body of literature identifying the processes involved in phenotypic differentiation along environmental gradients in the face of gene flow.  相似文献   

14.

Background

Sky islands, formed by the highest reaches of mountain tracts physically isolated from one another, represent one of the biodiversity-rich regions of the world. Comparative studies of geographically isolated populations on such islands can provide valuable insights into the biogeography and evolution of species on these islands. The Western Ghats mountains of southern India form a sky island system, where the relationship between the island structure and the evolution of its species remains virtually unknown despite a few population genetic studies.

Methods and Principal Findings

We investigated how ancient geographic gaps and glacial cycles have partitioned genetic variation in modern populations of a threatened endemic bird, the White-bellied Shortwing Brachypteryx major, across the montane Shola forests on these islands and also inferred its evolutionary history. We used Bayesian and maximum likelihood-based phylogenetic and population-genetic analyses on data from three mitochondrial markers and one nuclear marker (totally 2594 bp) obtained from 33 White-bellied Shortwing individuals across five islands. Genetic differentiation between populations of the species correlated with the locations of deep valleys in the Western Ghats but not with geographical distance between these populations. All populations revealed demographic histories consistent with population founding and expansion during the Last Glacial Maximum. Given the level of genetic differentiation north and south of the Palghat Gap, we suggest that these populations be considered two different taxonomic species.

Conclusions and Significance

Our results show that the physiography and paleo-climate of this region historically resulted in multiple glacial refugia that may have subsequently driven the evolutionary history and current population structure of this bird. The first avian genetic study from this biodiversity hotspot, our results provide insights into processes that may have impacted the speciation and evolution of the endemic fauna of this region.  相似文献   

15.
On humans and wildlife in Mediterranean islands   总被引:1,自引:1,他引:0  
Aim To investigate the effects of human‐induced landscape changes in Mediterranean islands on the ecological and evolutionary responses of bird communities and populations. The combination of mass extinction of large mammals and massive deforestation by humans was hypothesized to produce new selection regimes to which organisms were likely to respond. Habitat selection and niche breadth have been investigated at the scale of species, and phenotypic variation at the scale of local populations. Location The study was carried out along habitat gradients and in habitat mosaics at different spatial scales on the island of Corsica and in areas of similar size and structure in continental France. Methods Two sets of gradients have been used for investigating habitat selection and niche breadth: gradients of altitude, and gradients of vegetation structure. Population studies focused on the blue tit, Cyanistes caeruleus. Large samples of breeding attempts by this species in 10 habitats provided detailed data on phenotypic variation of fitness‐related traits both on Corsica and on the mainland. Results The extent of niche space used by birds differed substantially depending on which habitat gradient was considered. Many species have been found to contract their habitat niche along the elevation gradient on Corsica compared with the mainland, whereas all species in the vegetation gradient broadened their niche on the island. Breeding patterns of the blue tit differed considerably depending on whether they settle in deciduous oaks (Quercus humilis) or in evergreen sclerophyllous oaks (Quercus ilex). Phenotypic variation of breeding traits was much higher on the island, where more populations were correctly timed for the best breeding period than on the mainland, a pattern that is likely to result from lower dispersal of organisms on the island. Main conclusions The differences in observed niche breadth between the two series of habitat gradients is explained both by the species‐specific ecology of the species and the human‐induced environmental history of Corsica. Large‐scale landscape changes provided new opportunities for island colonization by non‐forest species, which are isolated as small, ‘fugitive’ local populations. In both gradients, forest species that are typical components of the Corsican bird fauna definitely expanded their niche and occupied a wider range of habitats on Corsica than on the mainland. At the population scale, landscapes included habitat patches with contrasted selection regimes, which resulted in high phenotypic variation for many fitness‐related traits. Reduced dispersal of birds on the island resulted in a much higher degree of local differentiation on Corsica than on the mainland.  相似文献   

16.
Aim Free‐ranging benthopelagic fishes often have large population sizes and high rates of dispersal. These traits can act to homogenize population structure across the distributional range of a species and to reduce the likelihood of allopatric speciation. The apparent absence of any barriers to gene flow among populations, together with prior molecular evidence for panmixia across the ranges of three species, has resulted in Diplotaxodon, a genus of benthopelagic cichlid fishes of Lake Malawi, being proposed as a candidate case of sympatric speciation. Our aim was to further investigate this possibility by testing for intraspecific genetic subdivision among breeding populations, and intraspecific differences in breeding habitat. Location Lake Malawi, central‐east Africa. Methods We analysed eight microsatellite DNA loci to test for spatial genetic differences among populations on breeding grounds of eight Diplotaxodon species. We also tested for temporal population genetic differences within breeding grounds of three species. Records of ripe Diplotaxodon encountered during sampling were analysed to test if spatial variation in assemblage structure was linked to nearshore water depth and geographic proximity of sampling sites. Results Consistent with previous molecular evidence, within four of the eight species tested we found no evidence of spatial genetic structuring among breeding populations. However, within the other four species we found slight yet significant spatial genetic differences, indicating restricted gene flow among breeding grounds. There was no evidence of temporal genetic differences within sites. Analyses of the distributions of ripe Diplotaxodon revealed differences in assemblage structure linked to nearshore water depth. Main conclusions Together, these results demonstrate both the evolution of fidelity to deep‐water breeding locations in some Diplotaxodon species, and differences in breeding habitat among species. These findings are consistent with a role for divergence of breeding habitat in speciation of these cichlids, possibly promoted by dispersal limitation among geographically segregated spawning aggregations.  相似文献   

17.
Investigating diversity gradients helps to understand biodiversity drivers and threats. However, one diversity gradient is rarely assessed, namely how plant species distribute along the depth gradient of lakes. Here, we provide the first comprehensive characterization of depth diversity gradient (DDG) of alpha, beta, and gamma species richness of submerged macrophytes across multiple lakes. We characterize the DDG for additive richness components (alpha, beta, gamma), assess environmental drivers, and address temporal change over recent years. We take advantage of yet the largest dataset of macrophyte occurrence along lake depth (274 depth transects across 28 deep lakes) as well as of physiochemical measurements (12 deep lakes from 2006 to 2017 across Bavaria), provided publicly online by the Bavarian State Office for the Environment. We found a high variability in DDG shapes across the study lakes. The DDGs for alpha and gamma richness are predominantly hump‐shaped, while beta richness shows a decreasing DDG. Generalized additive mixed‐effect models indicate that the depth of the maximum richness (D max) is influenced by light quality, light quantity, and layering depth, whereas the respective maximum alpha richness within the depth gradient (R max) is significantly influenced by lake area only. Most observed DDGs seem generally stable over recent years. However, for single lakes we found significant linear trends for R max and D max going into different directions. The observed hump‐shaped DDGs agree with three competing hypotheses: the mid‐domain effect, the mean–disturbance hypothesis, and the mean–productivity hypothesis. The DDG amplitude seems driven by lake area (thus following known species–area relationships), whereas skewness depends on physiochemical factors, mainly water transparency and layering depth. Our results provide insights for conservation strategies and for mechanistic frameworks to disentangle competing explanatory hypotheses for the DDG.  相似文献   

18.
Climatic and geological processes associated with glaciation cycles during the Pleistocene have been implicated in influencing patterns of genetic variation and promoting speciation of temperate flora and fauna. However, determining the factors promoting divergence and speciation is often difficult in many groups because of our limited understanding of potential vicariant barriers and connectivity between populations. Pleistocene glacial cycles are thought to have significantly influenced the distribution and diversity of subterranean invertebrates; however, impacts on subterranean aquatic vertebrates are less clear. We employed several hypothesis‐driven approaches to assess the impacts of Pleistocene climatic and geological changes on the Northern Cavefish, Amblyopsis spelaea, whose current distribution occurs near the southern extent of glacial advances in North America. Our results show that the modern Ohio River has been a significant barrier to dispersal and is correlated with patterns of genetic divergence. We infer that populations were isolated in two refugia located north and south of the Ohio River during the most recent two glacial cycles with evidence of demographic expansion in the northern isolate. Finally, we conclude that climatic and geological processes have resulted in the formation of cryptic forms and advocate recognition of two distinct phylogenetic lineages currently recognized as A. spelaea.  相似文献   

19.
Ancient Lake Ohrid is characterized by vertical (bathymetrical) zones within the lake, presumably promoting allopatric speciation due to barriers or parapatric speciation along gradients. Examples within the lake include the belt of Chara algae as well as the shell zone, both presumably impeding migrations of benthic invertebrates. Three potential cases of vertical differentiation leading to distinct depth forms have been reported for the gastropod subfamily Pyrgulinae (Caenogastropoda: Hydrobiidae): Ginaia munda ssp., Macedopyrgula spp. and Ochridopyrgula macedonica ssp. Based on DNA data of the COI gene from a total of 145 specimens, this article aims at investigating the vertical differentiation within these depth forms and thus patterns of speciation in Lake Ohrid. An initial morphometric analysis showed a clear correlation of shell shape and collecting depth for Ginaia munda ssp. and Macedopyrgula spp. This morphological trend is largely reflected in the genetic structure of the respective taxa. The data presented here indicate the existence of strong gradients of abiotic and biotic factors in Lake Ohrid rather than distinct barriers. Therefore, parapatric speciation may be the predominant form of differentiation of benthic invertebrates in the lake. Incomplete lineage sorting, hybridization and phenotypic plasticity possibly caused by epigenetic mechanisms are discussed as possible reasons for the incongruence between geno- and phenotype observed in few specimens of Ginaia munda ssp. and Macedopyrgula spp. For the third taxon, Ochridopyrgula macedonica ssp., morphometric and genetic analyses revealed only weak support for the previously proposed depth forms. However, a horizontal differentiation of lake and spring populations was revealed instead, and parapatric and allopatric differentiations are discussed in this taxon.  相似文献   

20.
Oceans are home to much of the world''s biodiversity, but we know little about the processes driving speciation in marine ecosystems with few geographical barriers to gene flow. Ecological speciation resulting from divergent natural selection between ecological niches can occur in the face of gene flow. Sister species in the young and ecologically diverse rockfish genus Sebastes coexist in the northeast Pacific, implying that speciation may not require geographical isolation. Here, I use a novel phylogenetic comparative analysis to show that rockfish speciation is instead associated with divergence in habitat depth and depth-associated morphology, consistent with models of parapatric speciation. Using the same analysis, I find no support for alternative hypotheses that speciation involves divergence in diet or life history, or that speciation involves geographic isolation by latitude. These findings support the hypothesis that rockfishes undergo ecological speciation on an environmental gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号