首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signal transduction proteins are organized into sensor (input) domains that perceive a signal and, in response, regulate the biological activity of effector (output) domains. We reprogrammed the input signal specificity of a normally oxygen-sensitive, light-inert histidine kinase by replacing its chemosensor domain by a light-oxygen-voltage photosensor domain. Illumination of the resultant fusion kinase YF1 reduced net kinase activity by ∼ 1000-fold in vitro. YF1 also controls gene expression in a light-dependent manner in vivo. Signals are transmitted from the light-oxygen-voltage sensor domain to the histidine kinase domain via a 40°-60° rotational movement within an α-helical coiled-coil linker; light is acting as a rotary switch. These signaling principles are broadly applicable to domains linked by α-helices and to chemo- and photosensors. Conserved sequence motifs guide the rational design of light-regulated variants of histidine kinases and other proteins.  相似文献   

2.
3.
For single-cell and multicellular systems to survive, they must accurately sense and respond to their cellular and extracellular environment. Light is a nearly ubiquitous environmental factor, and many species have evolved the capability to respond to this extracellular stimulus. Numerous photoreceptors underlie the activation of light-sensitive signal transduction cascades controlling these responses. Here, we review the properties of the light, oxygen, or voltage (LOV) family of blue-light photoreceptor domains, a subset of the Per-ARNT-Sim (PAS) superfamily. These flavin-binding domains, first identified in the higher-plant phototropins, are now shown to be present in plants, fungi, and bacteria. Notably, LOV domains are coupled to a wide array of other domains, including kinases, phosphodiesterases, F-box domains, STAS domains, and zinc fingers, which suggests that the absorption of blue light by LOV domains regulates the activity of these structurally and functionally diverse domains. LOV domains contain a conserved molecular volume extending from the flavin cofactor, which is the locus for light-driven structural change, to the molecular surface. We discuss the role of this conserved volume of structure in LOV-regulated processes.  相似文献   

4.
5.
Light control over enzyme function represents a novel and exciting field of biocatalysis research. Blue-light photoreceptors of the L ight, O xygen, V oltage (LOV) family have recently been investigated for their applicability as photoactive switches. We discuss here the primary photochemical events leading to light activation of LOV domains as well as the proposed signal propagation mechanism to the respective effector domain. Furthermore, we describe the construction of LOV fusions to different effector domains, namely a dihydrofolate reductase from Escherichia coli and a lipase from Bacillus subtilis. Both fusion partners retained functionality, and alteration of enzyme activity by light was also demonstrated. Hence, it appears that fusion of LOV photoreceptors to functional enzyme target sites via appropriate linker structures may represent a straightforward strategy to design light controllable biocatalysts.  相似文献   

6.
Progress in understanding primary mechanisms of light reception in photoregulatory processes is achieved through discovering new biological photoreceptors, chiefly the regulatory sensors of blue/UV-A light. Among them are LOV domain-containing proteins and DNA photolyase-like cryptochromes, which constitute two widespread groups of photoreceptors that use flavin cofactors (FMN or FAD) as the photoactive chromophores. Bacterial LOV domain modules are connected in photoreceptor proteins with regulatory domains such as diguanylate cyclases/phosphodiesterases, histidine kinases, and DNA-binding domains that are activated by photoconversions of flavin. Identification of red/far-red light sensors in chemotrophic bacteria (bacteriophytochromes) and crystal structures of their photosensor module with bilin chromophore are significant for decoding the mechanisms of phytochrome receptor photoconversion and early step mechanisms of phytochrome-mediated signaling. The only UV-B regulatory photon sensor, UVR8, recently identified in plants, unlike other photoreceptors functions without a prosthetic chromophore: tryptophans of the unique UVR8 protein structure provide a “UV-B antenna”. Our analysis of new data on photosensory properties of the identified photoreceptors in conjunction with their structure opens insight on the influence of the molecular microenvironment on light-induced chromophore reactions, the mechanisms by which the photoactivated chromophores trigger conformational changes in the surrounding protein structure, and structural bases of propagation of these changes to the interacting effector domains/proteins.  相似文献   

7.
Receptor tyrosine kinases (RTKs) occupy a separate functional niche among membrane receptors, which is determined by the special features of mechanisms of the signal transduction through a cellular membrane. RTKs are involved in the regulation of development and homeostasis of all the tissues of a human organism, playing a central role in cell proliferation, differentiation, and adhesion. A necessary condition of the biochemical signal transduction through a plasmatic membrane is a ligand-dependent or a ligand-independent dimerization (and/or an oligomerization) of RTKs which is accompanied by conformational rearrangements of all the RTK domains, including the α-helical transmembrane segments. In this review, the main aspects of structure-function relationship for RTKs from various receptor subfamilies are briefly discussed. It is shown in the light of the recently obtained biophysical and biochemical data that functioning of RTK receptors is mediated not only by protein–protein interactions, but by the state of the lipid environment as one of the main components of a self-consistent signal transduction system as well. The new principles of intercellular signal transduction through a membrane replenish the molecular mechanisms of the RTK functioning that have been earlier proposed and explain a number of paradoxes which are observed upon activation of wild-type receptors and the receptors with pathogenic transmembrane mutations. Understanding of the complex mechanisms of the signaling processes can facilitate the successful search for new opportunities of influence on the RTK biological functions with potential therapeutic consequences.  相似文献   

8.
The phototropins phot1 and phot2 are plant blue-light receptors that mediate phototropism, chloroplast movements, stomatal opening, leaf expansion, the rapid Inhibition of hypocotyl growth in etiolated seedlings, and possibly solar tracking by leaves in those species in which It occurs. The phototroplns are plasma membrane-associated hydrophilic proteins with two chromophore domains (designated LOV1 and LOV2 for their resemblance to domains In other signaling proteins that detect light, oxygen, or voltage) in their Nterminal half and a classic serine/threonlne kinase domain in their C-terminal half. Both chromophore domains bind flavin mononucleotide (FMN) and both undergo light-activated formation of a covalent bond between a nearby cystelne and the C(4a) carbon of the FMN to form the signaling state. LOV2-cystelnyl adduct formation leads to the release downstream of a tightly bound amphlpathlc α-helix, a step required for activation of the klnase function. This cysteinyl adduct then slowly decays over a matter of seconds or minutes to return the photoreceptor chromophore modules to their ground state. Functional LOV2 is required for light-activated phosphorylation and for various blue-light responses mediated by the phototroplns. The function of LOV1 is still unknown, although It may serve to modulate the signal generated by LOV2. The LOV domain Is an ancient chromophore module found In a wide range of otherwise unrelated proteins In fungi and prokaryotes, the latter Including cyanobacterla, eubacterla, and archaea. Further general reviews on the phototropins are those by Celaya and Liscum (2005) and Christie and Briggs (2005).  相似文献   

9.
Harper SM  Christie JM  Gardner KH 《Biochemistry》2004,43(51):16184-16192
Light plays a crucial role in activating phototropins, a class of plant photoreceptors that are sensitive to blue and UV-A wavelengths. Previous studies indicated that phototropin uses a bound flavin mononucleotide (FMN) within its light-oxygen-voltage (LOV) domain to generate a protein-flavin covalent bond under illumination. In the C-terminal LOV2 domain of Avena sativa phototropin 1, formation of this bond triggers a conformational change that results in unfolding of a helix external to this domain called Jalpha [Harper, S. M., et al. (2003) Science 301, 1541-1545]. Though the structural effects of illumination were characterized, it was unknown how these changes are coupled to kinase activation. To examine this, we made a series of point mutations along the Jalpha helix to disrupt its interaction with the LOV domain in a manner analogous to light activation. Using NMR spectroscopy and limited proteolysis, we demonstrate that several of these mutations displace the Jalpha helix from the LOV domain independently of illumination. When placed into the full-length phototropin protein, these point mutations display constitutive kinase activation, without illumination of the sample. These results indicate that unfolding of the Jalpha helix is the critical event in regulation of kinase signaling for the phototropin proteins.  相似文献   

10.
Plant scientists have long recognized the complexity of responses to environmental and hormonal signals that provide the basis for plant growth and development. The systematic isolation and analysis of mutations that disrupt signal transduction and prevent the appropriate physiological response provides an important resource for studying these processes and, ultimately, for describing the molecular events that control growth and developmental responses in plants.  相似文献   

11.
植物具备一套复杂的由3种蓝光受体和多种信号转导下游组分组成的蓝光感应系统,通过感受光照强度、光的方向和光周期,调节自身对蓝光的应答。本文综述了植物蓝光反应突变体分子生物学研究进展,探讨蓝光受体及信号转导下游组分在植物发育中的作用及蓝光诱发植物作出反应的分子机制。  相似文献   

12.
R. Clifford  T. Schupbach 《Genetics》1994,137(2):531-550
Mutations in the torpedo gene, which encodes the fruitfly homolog of the epidermal growth factor receptor (DER), disrupt a variety of developmental processes in Drosophila. These include the survival of certain embryonic ectodermal tissues, the proliferation of the imaginal discs, the morphogenesis of several adult ectodermal structures and oogenesis. torpedo is genetically complex: a number of alleles of the gene differentially affect the development of specific tissues, such as the eye, wing, bristles and ovary. In addition, torpedo mutations exhibit interallelic complementation. Molecular analysis of 24 loss-of-function mutations in the torpedo gene provides insights into the mechanistic basis of its genetic complexity. We observe an intriguing correlation between molecular lesions and mutant phenotypes. Alleles that differentially affect specific developmental processes encode receptors with altered extracellular domains. Alleles that fully or partially complement a wide range of embryonic and postembryonic torpedo mutations encode receptors with altered intracellular domains. From these findings we conclude the following. First, the torpedo protein may be activated by tissue-specific ligands. Second, the torpedo receptor tyrosine kinase may phosphorylate multiple substrates. Third, signal transduction by torpedo appears to require the physical association of receptors. Finally, the extracellular domain of the Torpedo protein may play an essential role in mediating receptor-receptor interactions.  相似文献   

13.
Crosson S  Moffat K 《The Plant cell》2002,14(5):1067-1075
The phototropins are flavoprotein kinases that control phototropic bending, light-induced chloroplast movement, and stomatal opening in plants. Two flavin mononucleotide binding light, oxygen, or voltage (LOV) domains are the sites for initial photochemistry in these blue light photoreceptors. We have determined the steady state, photoexcited crystal structure of a flavin-bound LOV domain. The structure reveals a unique photochemical switch in the flavin binding pocket in which the absorption of light drives the formation of a reversible covalent bond between a highly conserved Cys residue and the flavin cofactor. This provides a molecular picture of a cysteinyl-flavin covalent adduct, the presumed signaling species that leads to phototropin kinase activation and subsequent signal transduction. We identify closely related LOV domains in two eubacterial proteins that suggests the light-induced conformational change evident in this structure is an ancient biomolecular response to light, arising before the appearance of plants.  相似文献   

14.
In Arabidopsis thaliana, the Light-Oxygen-Voltage (LOV) domain containing protein ZEITLUPE (ZTL) integrates light quality, intensity, and duration into regulation of the circadian clock. Recent structural and biochemical studies of ZTL indicate that the protein diverges from other members of the LOV superfamily in its allosteric mechanism, and that the divergent allosteric mechanism hinges upon conservation of two signaling residues G46 and V48 that alter dynamic motions of a Gln residue implicated in signal transduction in all LOV proteins. Here, we delineate the allosteric mechanism of ZTL via an integrated computational approach that employs atomistic simulations of wild type and allosteric variants of ZTL in the functional dark and light states, together with Markov state and supervised machine learning classification models. This approach has unveiled key factors of the ZTL allosteric mechanisms, and identified specific interactions and residues implicated in functional allosteric changes. The final results reveal atomic level insights into allosteric mechanisms of ZTL function that operate via a non-trivial combination of population-shift and dynamics-driven allosteric pathways.  相似文献   

15.
Survival of organisms in dynamic environments requires accurate perception and integration of signals. At the molecular level, signal detection is mediated by signal receptor proteins that largely are of modular composition. Sensor modules, such as the widespread Per-ARNT-Sim (PAS) domains, detect signals and, in response, regulate the biological activity of effector modules. Here, we exploit the modularity of signal receptors to design and engineer synthetic receptors that comprise two PAS sensor domains responsive to different signals, and we use these signals to control the activity of a histidine kinase effector. Designed two-input PAS receptors detected oxygen and blue light in a positive cooperative manner. The extent of the response to the signals was dictated by domain topology: the dominant regulatory effect was exerted by the PAS domain proximal to the effector domain. The presence of one sensor domain modulated the signal response function of the other. Sequence and structural data on natural receptors with tandem PAS domains show that these are predominantly linked by short amphipathic α-helices. Signals from multiple sensor domains could be integrated and propagated to the effector domain as torques. Our results inform the rational design of receptors that integrate multiple signals to modulate cellular behavior.  相似文献   

16.
LOV domains are the light-sensitive protein domains of plant phototropins and bacteria. They photochemically form a covalent bond between a flavin mononucleotide (FMN) chromophore and a cysteine, attached to the apo-protein, upon irradiation with blue light, which triggers a signal in the adjacent kinase. Although their signaling state has been well characterized through experimental means, their signal transduction pathway as well as dark-state activity are generally only poorly understood. Here we show results from molecular dynamics simulations where we investigated the effect of thermostating and long-range electrostatics on the solution structure and dynamical behavior of the wild-type LOV1 domain from the green algae Chlamydomonas reinhardtii in the dark. We demonstrate that these computational issues can dramatically affect the conformational fluctuations of such protein domains by suppressing configurations far from equilibrium or destabilizing local configurations, leading to artificial changes of the protein secondary structure as well as the H-bond network formed by the amino acids and the FMN. By comparing our calculation results with recent experimental data, we show that the non-invasive thermostating strategy, where the protein solute is only indirectly coupled to the thermostat via the solvent, in conjunction with the particle-mesh Ewald technique, provides dark-state conformers, which are in consistency with experimental observations. Moreover, our calculations indicate that the LOV1 domains can alter the intersystem crossing rate and rate of adduct formation by adjusting the population distribution of these dark-state conformers. This might permit them to function as a modulator of the signal intensity under low light conditions.  相似文献   

17.
To infect plants, Pseudomonas syringae pv. tomato delivers ~30 type III effector proteins into host cells, many of which interfere with PAMP-triggered immunity (PTI). One effector, AvrPtoB, suppresses PTI using a central domain to bind host BAK1, a kinase that acts with several pattern recognition receptors to activate defense signaling. A second AvrPtoB domain binds and suppresses the PTI-associated kinase Bti9 but is conversely recognized by the protein kinase Pto to activate effector-triggered immunity. We report the crystal structure of the AvrPtoB-BAK1 complex, which revealed structural similarity between these two AvrPtoB domains, suggesting that they arose by intragenic duplication. The BAK1 kinase domain is structurally similar to Pto, and a conserved region within both BAK1 and Pto interacts with AvrPtoB. BAK1 kinase activity is inhibited by AvrPtoB, and mutations at the interaction interface disrupt AvrPtoB virulence activity. These results shed light on a structural mechanism underlying host-pathogen coevolution.  相似文献   

18.
Phototropins (phot1 and phot2) are blue light receptor kinases that control a range of photoresponses that serve to optimize the photosynthetic efficiency of plants. Light sensing by the phototropins is mediated by a repeated motif at the N-terminal region of the protein known as the LOV domain. Bacterially expressed LOV domains bind flavin mononucleotide noncovalently and are photochemically active in solution. Irradiation of the LOV domain results in the formation of a flavin-cysteinyl adduct (LOV390) which thermally relaxes back to the ground state in the dark, effectively completing a photocycle that serves as a molecular switch to control receptor kinase activity. We have employed a random mutagenesis approach to identify further amino acid residues involved in LOV-domain photochemistry. Escherichia coli colonies expressing a mutagenized population of LOV2 derived from Avena sativa (oat) phot1 were screened for variants that showed altered photochemical reactivity in response to blue light excitation. One variant showed slower rates of LOV390 formation but exhibited adduct decay times 1 order of magnitude faster than wild type. A single Ile --> Val substitution was responsible for the effects observed, which removes a single methyl group found in van der Waals contact with the cysteine sulfur involved in adduct formation. A kinetic acceleration trend was observed for adduct decay by decreasing the size of the isoleucine side chain. Our findings therefore indicate that the steric nature of this amino acid side chain contributes to stabilization of the C-S cysteinyl adduct.  相似文献   

19.

Background  

Important biological processes require selective and orderly protein-protein interactions at every level of the signalling cascades. G proteins are a family of heterotrimeric GTPases that effect eukaryotic signal transduction through the coupling of cell surface receptors to cytoplasmic effector proteins. They have been associated with growth and pathogenicity in many fungi through gene knock-out studies. In Sporothrix schenckii, a pathogenic, dimorphic fungus, we previously identified a pertussis sensitive G alpha subunit, SSG-1. In this work we inquire into its interactions with other proteins.  相似文献   

20.
LOV (light, oxygen or voltage) domains are protein photosensors that are conserved in bacteria, archaea, plants and fungi, and detect blue light via a flavin cofactor. LOV domains are present in both chemotrophic and phototrophic bacterial species, in which they are found amino-terminally of signalling and regulatory domains such as sensor histidine kinases, diguanylate cyclases-phosphodiesterases, DNA-binding domains and regulators of RNA polymerase σ-factors. In this Review, we describe the current state of knowledge about the function of bacterial LOV proteins, the structural basis of LOV domain-mediated signal transduction, and the use of LOV domains as genetically encoded photoswitches in synthetic biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号