首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distinct forms of memory can be highlighted using different training protocols. In Drosophila olfactory aversive learning, one conditioning session triggers memory formation independently of protein synthesis, while five spaced conditioning sessions lead to the formation of long‐term memory (LTM), a long‐lasting memory dependent on de novo protein synthesis. In contrast, one session of odour–sugar association appeared sufficient for the fly to form LTM. We designed and tuned an apparatus that facilitates repeated discriminative conditioning by alternate presentations of two odours, one being associated with sugar, as well as a new paradigm to test sugar responsiveness (SR). Our results show that both SR and short‐term memory (STM) scores increase with starvation length before conditioning. The protein dependency of appetitive LTM is independent of the repetition and the spacing of training sessions, on the starvation duration and on the strength of the unconditioned stimulus. In contrast to a recent report, our test measures an abnormal SR of radish mutant flies, which might initiate their STM and LTM phenotypes. In addition, our work shows that crammer and tequila mutants, which are deficient for aversive LTM, present both an SR and an appetitive STM defect. Using the MB247‐P[switch] system, we further show that tequila is required in the adult mushroom bodies for normal sugar motivation.  相似文献   

2.
It is broadly accepted that long-term memory (LTM) is formed sequentially after learning and short-term memory (STM) formation, but the nature of the relationship between early and late memory traces remains heavily debated [1-5]. To shed light on this issue, we used an olfactory appetitive conditioning in Drosophila, wherein starved flies learned to associate an odor with the presence of sugar [6]. We took advantage of the fact that both STM and LTM are generated after a unique conditioning cycle [7, 8] to demonstrate that appetitive LTM is able to form independently of STM. More specifically, we show that (1) STM retrieval involves output from γ neurons of the mushroom body (MB), i.e., the olfactory memory center [9, 10], whereas LTM retrieval involves output from αβ MB neurons; (2) STM information is not transferred from γ neurons to αβ neurons for LTM formation; and (3) the adenylyl cyclase RUT, which is thought to operate as a coincidence detector between the olfactory stimulus and the sugar stimulus [11-14], is required independently in γ neurons to form appetitive STM and in αβ neurons to form LTM. Taken together, these results demonstrate that appetitive short- and long-term memories are formed and processed in parallel.  相似文献   

3.
One-trial step-down inhibitory (passive) avoidance training is followed by two peaks of cAMP-dependent protein kinase (PKA) activity in rat CA1: one immediately after training and the other 3 h later. The second peak relies on the first: Immediate posttraining infusion into CA1 of the inhibitor of the regulatory subunit of PKA, Rp-cAMPS, at a dose that reduces PKA activity during less than 90 min, cancelled both peaks. Long-term memory (LTM) of this task measured at 24 h depends on the two peaks: Rp-cAMPS given into CA1 0 or 175 min posttraining, but not between those times, blocked LTM. However, the effect of immediate posttraining Rp-cAMPS on LTM could not be reversed by the activator of the regulatory subunit of PKA, Sp-cAMPS, given at 180 min, which suggests that, for LTM, the first peak may be more important than the second. When given at 0, 22, 45, or 90, but not at 175 min from training, Rp-cAMPS blocked short-term memory (STM) measured at 90 or 180 min. This effect of immediate posttraining Rp-cAMPS infusion on STM but not that on LTM was readily reversed by Sp-cAMPS infused 22 min later. On its own, Sp-cAMPS had effects exactly opposite to those of the inhibitor. It enhanced LTM when given at 0 or 175 min from training, and it enhanced STM when given at 0, 22, 45, or 90 min from training. These findings show that STM and LTM formation require separate PKA-dependent processes in CA1. STM relies on the continued activity of the enzyme during the first 90 min. LTM relies on the two peaks of PKA activity that occur immediately and 180 min posttraining.  相似文献   

4.
Brain metabolic activity associated with long-term memory consolidation   总被引:1,自引:0,他引:1  
The use of day-old chickens trained on a single-trial passive avoidance task provides a useful paradigm for investigations into cellular mechanisms underlying memory formation. Pharmacological intervention studies indicate that there are three temporally identifiable stages of memory processing leading to the consolidation of information for this task. These stages, designated as short-term (STM; up to 15 min), intermediate-term (ITM; 15-55 min), and long-term (LTM; more than 55 min) memory, have been found to be sequentially dependent (Ng and Gibbs, 1989). In addition, ITM appears to consist of two physiologically distinguishable phases, A and B. Evidence in this laboratory suggests that the crossover between these ITM phases (at 30 min after training) represents a critical time-point for the triggering of LTM.  相似文献   

5.
Effects of protein synthesis inhibitors on reactivation processes of food aversion conditioning were inverstigated in snail Helix lucorum. Protein synthesis inhibitor (PSI, anisomycin, 0.4 mg, or cycloheximede, 0.6 mg) was injected into snail body cavity 24 hours after 3-day training; then conditioned stimulus (banana) was presented and memory was tested. It was found that 2.5-3 hours after first reminding, associative food conditioning was suppressed, recovering of the conditioning was observed 4.5-5.5 hours after first reminding. In other group of snails, PSI injections were single (1.8 mg) or triple (0.6 mg with 2-hour interval). Reminding stimulus was presented after each injection. In this case, suppression of food aversion conditioning was also observed 2.5-3 hours after first reminding, while amnesia in this case lasted over 30 days. Repeated training of the group of snails recovered the food aversion conditioning only partially. In control snails (saline instead of PSI or 3 injections of PSI without reminding), foot aversion conditioning was detected 30 days after first training. Thus we found that PSI effects during reminding of food aversion conditioning produced two phases amnesia: (1) the easily suppressed by PSI transient phase lasted 2-3 hours, and (2) irreversible phase, its suppression by high doses of PSI-initiated amnesia lasting over 1 month. Second phase of amnesia was not recovered after repeated training. It was suggested that reminding induced reconsolidation of initial memory. Its suppression by protein synthesis inhibitors results in erasing of memory trace and disturbs repeated consolidation.  相似文献   

6.
Hermissenda CNS, immunolabeled for the memory protein calexcitin showed significant immunostaining over background in the B-photoreceptor cells of the eye. The degree of staining correlated positively with the number of Pavlovian training events experienced by the animals and the degree of Pavlovian conditioning induced. The training regime consisted of exposing animals to light (conditioned stimulus, CS) paired with orbital rotation (unconditioned stimulus, US). In animals that exhibited the conditioned response, calexcitin immunolabeling was more intense than was found for naive (unconditioned) animals or animals given the CS and US in random sequence. Animals exposed to lead (maintained in 1.2 ppm lead acetate) at a dosage known to impair learning in children, showed reduced learning and less intense calexcitin staining whether the CS and US were paired or given randomly. However, the levels were still higher than that of naive animals. Immuno-electron microscopy indicated that the labeling was predominantly within calcium sequestering organelles such as the endoplasmic reticulum, and to lesser extent within mitochondria, and photopigments. The calexcitin density after a short-term memory (STM) regime was the same whether measured 5 minutes after conditioning (when STM was evidenced by foot contraction) or 90 minutes later when no recall was detected. The staining density was also similar to the levels found 5 minutes after long-term memory (LTM) conditioning. However, the LTM regime produced a greater calexcitin intensity at 90 minutes when the memory had been consolidated. This learning-specific increase in calexcitin is consistent with the previously implicated sequence of molecular events that are associated with progressively longer time domains of memory storage.  相似文献   

7.
Many insects exhibit excellent capability of visual learning, but the molecular and neural mechanisms are poorly understood. This is in contrast to accumulation of information on molecular and neural mechanisms of olfactory learning in insects. In olfactory learning in insects, it has been shown that cyclic AMP (cAMP) signaling critically participates in the formation of protein synthesis-dependent long-term memory (LTM) and, in some insects, nitric oxide (NO)-cyclic GMP (cGMP) signaling also plays roles in LTM formation. In this study, we examined the possible contribution of NO-cGMP signaling and cAMP signaling to LTM formation in visual pattern learning in crickets. Crickets that had been subjected to 8-trial conditioning to associate a visual pattern with water reward exhibited memory retention 1 day after conditioning, whereas those subjected to 4-trial conditioning exhibited 30-min memory retention but not 1-day retention. Injection of cycloheximide, a protein synthesis inhibitor, into the hemolymph prior to 8-trial conditioning blocked formation of 1-day memory, whereas it had no effect on 30-min memory formation, indicating that 1-day memory can be characterized as protein synthesis-dependent long-term memory (LTM). Injection of an inhibitor of the enzyme producing an NO or cAMP prior to 8-trial visual conditioning blocked LTM formation, whereas it had no effect on 30-min memory formation. Moreover, injection of an NO donor, cGMP analogue or cAMP analogue prior to 4-trial conditioning induced LTM. Induction of LTM by an NO donor was blocked by DDA, an inhibitor of adenylyl cyclase, an enzyme producing cAMP, but LTM induction by a cAMP analogue was not impaired by L-NAME, an inhibitor of NO synthase. The results indicate that cAMP signaling is downstream of NO signaling for visual LTM formation. We conclude that visual learning and olfactory learning share common biochemical cascades for LTM formation.  相似文献   

8.
Extensive investigations show several molecular and neuroanatomical mechanisms underlying short‐lived and long‐lasting memory in Drosophila. At the molecular level, the genetic pathway of memory formation, which was obtained through mutant research, seems to occur sequentially. So far, studies of Drosophila mutants appear to support the idea that mutants defective in short‐term memory (STM) are always associated with long‐term memory (LTM) impairment. At the neuroanatomical level, distinct memory traces are partially independently distributed. However, whether memory phase dissociation also exists at the molecular level remains unclear. Here, we report on molecular separation of STM and consolidated memory through genetic dissection of rugose mutants. Mutants in the rugose gene, which encodes an evolutionarily conserved A‐kinase anchor protein, show immediate memory defects as assayed through aversive olfactory conditioning. Intriguingly, two well‐defined consolidated memory components, anesthesia‐resistant memory and protein synthesis‐dependent LTM, are both normal in spite of the defective immediate memory after 10‐session massed and spaced training. Moreover, rugose genetically interacts with cyclic AMP‐protein kinase A signaling during STM formation. Considering our previous study that AKAP Yu specifically participates in LTM formation, these results suggest that there exists a molecular level of memory phase dissociation with distinct AKAPs in Drosophila.  相似文献   

9.
Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a key molecule in many systems of learning and memory in vertebrates, but roles of CaMKII in invertebrates have not been characterized in detail. We have suggested that serial activation of NO/cGMP signaling, cyclic nucleotide-gated channel, Ca2+/CaM and cAMP signaling participates in long-term memory (LTM) formation in olfactory conditioning in crickets, and here we show participation of CaMKII in LTM formation and propose its site of action in the biochemical cascades. Crickets subjected to 3-trial conditioning to associate an odor with reward exhibited memory that lasts for a few days, which is characterized as protein synthesis-dependent LTM. In contrast, animals subjected to 1-trial conditioning exhibited memory that lasts for only several hours (mid-term memory, MTM). Injection of a CaMKII inhibitor prior to 3-trial conditioning impaired 1-day memory retention but not 1-hour memory retention, suggesting that CaMKII participates in LTM formation but not in MTM formation. Animals injected with a cGMP analogue, calcium ionophore or cAMP analogue prior to 1-trial conditioning exhibited 1-day retention, and co-injection of a CaMKII inhibitor impaired induction of LTM by the cGMP analogue or that by the calcium ionophore but not that by the cAMP analogue, suggesting that CaMKII is downstream of cGMP production and Ca2+ influx and upstream of cAMP production in biochemical cascades for LTM formation. Animals injected with an adenylyl cyclase (AC) activator prior to 1-trial conditioning exhibited 1-day retention. Interestingly, a CaMKII inhibitor impaired LTM induction by the AC activator, although AC is expected to be a downstream target of CaMKII. The results suggest that CaMKII interacts with AC to facilitate cAMP production for LTM formation. We propose that CaMKII serves as a key molecule for interplay between Ca2+ signaling and cAMP signaling for LTM formation, a new role of CaMKII in learning and memory.  相似文献   

10.
Dalesman S  Lukowiak K 《PloS one》2012,7(2):e32334
Cognitive ability varies within species, but whether this variation alters the manner in which memory formation is affected by environmental stress is unclear. The great pond snail, Lymnaea stagnalis, is commonly used as model species in studies of learning and memory. The majority of those studies used a single laboratory strain (i.e. the Dutch strain) originating from a wild population in the Netherlands. However, our recent work has identified natural populations that demonstrate significantly enhanced long-term memory (LTM) formation relative to the Dutch strain following operant conditioning of aerial respiratory behaviour. Here we assess how two populations with enhanced memory formation (i.e. 'smart' snails), one from Canada (Trans Canada 1: TC1) and one from the U.K. (Chilton Moor: CM) respond to ecologically relevant stressors. In control conditions the Dutch strain forms memory lasting 1-3 h following a single 0.5 h training session in our standard calcium pond water (80 mg/l [Ca(2+)]), whereas the TC1 and CM populations formed LTM lasting 5+ days following this training regime. Exposure to low environmental calcium pond water (20 mg/l [Ca(2+)]), which blocks LTM in the Dutch strain, reduced LTM retention to 24 h in the TC1 and CM populations. Crowding (20 snails in 100 ml) immediately prior to training blocks LTM in the Dutch strain, and also did so in TC1 and CM populations. Therefore, snails with enhanced cognitive ability respond to these ecologically relevant stressors in a similar manner to the Dutch strain, but are more robust at forming LTM in a low calcium environment. Despite the two populations (CM and TC1) originating from different continents, LTM formation was indistinguishable in both control and stressed conditions. This indicates that the underlying mechanisms controlling cognitive differences among populations may be highly conserved in L. stagnalis.  相似文献   

11.
1.) Three types of training experiments (a complex motor task, avoidance conditioning and classical conditioning) in the goldfish and one in the mouse (T-maze learning) indicate that the brain extracellular glycoprotein (ependymin) has a role in the consolidation process of long-term memory formation. 2.) Direct ELISA measures of the concentration of ependymin in the brain extracellular fluid (ECF) indicate that its level decreases after goldfish learn to associate a light stimulus (cs) with the subsequent arrival of a shock (US): paired CS-US gave changes whereas an unpaired presentation of CS-US gave no changes in comparison to unstimulated controls. 3.) Ependymin is released into ECF and CSF as mixtures of three types of disulfide-linked dimers of two acidic polypeptide chains (M. W. 37 kDa and 31 kDa). It contains 10% carbohydrate as an N-linked glycan. 4.) Ependymin has the capacity to polymerize in response to events that deplete Ca2+ from the brain extracellular environment. A molecular hypothesis relating polymerization properties to the process of formation of long-lasting synaptic changes is proposed. 5.) Investigations of the pattern of regeneration of goldfish optic nerve and the mechanisms of long-term potentiation (LTP) of rat brain hippocampal slices suggest that ependymin has a role in the formation of long-lasting synaptic changes. The E.M. data show that polymerized products which stain with anti-ependymin sera accumulate at synapses and in new spines after LTP.  相似文献   

12.
1. It has been discussed for over 100 years whether short-term memory (STM) is separate from, or just an early phase of, long-term memory (LTM). The only way to solve this dilemma is to find out at least one treatment that blocks STM while keeping LTM intact for the same task in the same animal.2. The effect of a large number of treatments infused into the hippocampus, amygdala, and entorhinal, posterior parietal or prefrontal cortex on STM and LTM of a one-trial step-down inhibitory avoidance task was studied. The animals were tested at 1.5 h for STM, and again at 24 h for LTM. The treatments were given after training.3. Eleven different treatments blocked STM without affecting LTM. Eighteen treatments affected the two memory types differentially, either blocking or enhancing LTM alone. Thus, STM is separate from, and parallel to the first hours of processing of, LTM of that task.4. The mechanisms of STM are different from those of LTM. The former do not include gene expression or protein synthesis; the latter include a double peak of cAMP-dependent protein kinase activity, accompanied by the phosphorylation of CREB, and both gene expression and protein synthesis.5. Possible cellular and molecular events that do not require mRNA or protein synthesis should account for STM. These might include a hyperactivation of glutamate AMPA receptors, ribosome changes, or the exocytosis of glycoproteins that participate in cell addition.  相似文献   

13.
In conditioned taste aversion (CTA) training performed on the pond snail Lymnaea stagnalis, a stimulus (the conditional stimulus, CS; e.g., sucrose) that elicits a feeding response is paired with an aversive stimulus (the unconditional stimulus, US) that elicits the whole-body withdrawal response and inhibits feeding. After CTA training and memory formation, the CS no longer elicits feeding. We hypothesize that one reason for this result is that after CTA training the CS now elicits a fear response. Consistent with this hypothesis, we predict the CS will cause (1) the heart to skip a beat and (2) a significant change in the heart rate. Such changes are seen in mammalian preparations exposed to fearful stimuli. We found that in snails exhibiting long-term memory for one-trial CTA (i.e., good learners) the CS significantly increased the probability of a skipped heartbeat, but did not significantly change the heart rate. The probability of a skipped heartbeat was unaltered in control snails given backward conditioning (US followed by CS) or in snails that did not acquire associative learning (i.e., poor learners) after the one-trial CTA training. These results suggest that as a consequence of acquiring CTA, the CS evokes conditioned fear in the conditioned snails, as evidenced by a change in the nervous system control of cardiac activity.  相似文献   

14.
15.
Rats were implanted with cannulae in the CA1 area of the dorsal hippocampus and trained in one-trial step-down inhibitory avoidance. Two retention tests were carried out in each animal, one at 1.5 h to measure short-term memory (STM) and another at 24 h to measure long-term memory (LTM). The purpose of the present study was to evaluate the modulation on hippocampal nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) on short- and long-term memory. Immediately after training, animals received 5 l of NGF (0.05, 0.5 or 5.0 ng), bFGF (1.25, 12.5 or 125 ng) or saline per side. At the higher dose, NGF blocked STM. In contrast, NGF at dose of 0.5 and 5.0 ng improved LTM. The bFGF infusion at a dose of 125 ng enhanced LTM. However, bFGF did not alter STM. These findings indicate that hippocampal NGF and bFGF modulate STM and LTM in a different manner.  相似文献   

16.
Adult Lepidoptera are capable of associative learning. This helps them to forage flowers or to find suitable oviposition sites. Larval learning has never been seriously considered because they have limited foraging capabilities and usually depend on adults as concerns their food choices. We tested if Spodoptera littoralis larvae can learn to associate an odor with a tastant using a new classical conditioning paradigm. Groups of larvae were exposed to an unconditioned stimulus (US: fructose or quinine mixed with agar) paired with a conditioned stimulus (CS: hexanol, geraniol or pentyl acetate) in a petri dish. Their reaction to CS was subsequently tested in a petri dish at different time intervals after conditioning. Trained larvae showed a significant preference or avoidance to CS when paired with US depending on the reinforcer used. The training was more efficient when larvae were given a choice between an area where CS-US was paired and an area with no CS (or another odor). In these conditions, the memory formed could be recalled at least 24 h after pairing with an aversive stimulus and only 5 min after pairing with an appetitive stimulus. This learning was specific to CS because trained larvae were able to discriminate CS from another odor that was present during the training but unrewarded. These results suggest that Lepidoptera larvae exhibit more behavioral plasticity than previously appreciated.  相似文献   

17.
The effects of stress on memory are typically assessed individually; however, in reality different stressors are often experienced simultaneously. Here we determined the effect that two environmentally relevant stressors, crowding and low calcium availability, have on memory and neural activity following operant conditioning of aerial respiration in the pond snail, Lymnaea stagnalis. We measured aerial breathing behaviour and activity of a neuron necessary for memory formation, right pedal dorsal 1 (RPeD1), in the central pattern generator (CPG) that drives aerial respiration in untrained animals, and assessed how these traits changed following training. In naïve animals both crowding and combined stressors significantly depressed burst activity in RPeD1 which correlated with a depression in aerial breathing behaviour, whereas low calcium availability had no effect on RPeD1 activity. Following training, changes in burst activity in RPeD1 correlated with behavioural changes, decreasing relative to their naïve state at 3 h and 24 h in control conditions when both intermediate-term memory (ITM: 3 h) and long-term memory (LTM: 24 h) are formed, at 3 h but not 24 h when exposed to individual stressors when only ITM is formed, and did not change in combined stressors (i.e. when no memory is formed). Additionally, we also found that Lymnaea formed short-term memory (STM: 10 min) in the presence of individual stressors or under control conditions, but failed to do so in the presence of combined stressors. Our data demonstrate that by combining stressors that individually block LTM only we can block all memory processes. Therefore the effects of two stressors with similar individual affects on memory phenotype may be additive when experienced in combination.  相似文献   

18.
1. According to its duration there are, at least, two major forms of memory in mammals: short term memory (STM) which develops in a few seconds and lasts several hours and long-term memory (LTM) lasting days, weeks and even a lifetime. In contrast to LTM, very little is known about the neural, cellular and molecular requirements for mammalian STM formation.2. Here we show that early activation of extracellular signal-regulated kinases 1/2 (ERK1/2) in the hippocampus is required for the establishment of STM for a one-trial inhibitory avoidance task in the rat. Immediate posttraining infusion of U0126 (a selective inhibitor of ERK kinase) into the CA1 region of the dorsal hippocampus blocked STM formation.3. Reversible inactivation of the entorhinal cortex through muscimol infusion produced deficits in STM and a selective and rapid decrease in hippocampal ERK2 activation.4. Together with our previous findings showing a rapid decrease in ERK2 activation and impaired STM after blocking BDNF function, the present results strongly suggest that ERK2 signaling in the hippocampus is a critical step in STM processing.Lionel Muller Igaz and Milena Winograd contributed equally to this work  相似文献   

19.
To study the potential associations between fetal brain functions and the early essential polyunsaturated fatty acid (ePUFA) status, fetal learning and memory were assessed by repeated habituation rate measurements (HR) in fetuses of 30, 32, 34 or 36 weeks gestational age (GA). HR tests were repeated 10 min later. Both measurements were replicated in a second session at GA 38. Fetal short-term memory (STM) and long-term memory (LTM) were calculated from these habituation rates and related to concentrations of ePUFAs and their status markers, measured in umbilical artery wall phospholipids. The only relevant associations observed were positive trends (0.010<p<0.050) between STM measured before 38 weeks GA and concentrations of the ePUFA status markers Mead acid and Mead acid+dihomo-Mead acid, and between LTM and levels of Osbond acid, a marker of the n-3 LCPUFA status. Although these weak associations may imply some negative relationships between fetal brain functions and the early ePUFA status, we concluded that physiological differences in the availability of these fatty acids may probably not determine the differences in these primitive brain functions during the third trimester of fetal development.  相似文献   

20.
This paper describes simulations of two context-dependence phenomena in Pavlovian conditioning, using a neural-network model that draws on knowledge from neuroscience and makes no distinction between operant and respondent learning mechanisms. One phenomenon is context specificity or the context-shift effect, the decrease of conditioned responding (CR) when the conditioned stimulus (CS) is tested in a context different from the one in which it had been paired with the unconditioned stimulus (US). The other effect is renewal, the recovery of CR in the training context after extinction in another context. For specificity (simulation 1), two neural networks were first given 200 CS-US pairings in a context. Then, the CS was tested either in the training context or a new context. Output activations in the new context were substantially lower. For renewal (simulation 2), two networks were first given 200 CS-US pairings in a context, then 100 extinction trials in either the same context or a new one, and then tested back in the training context. Output activations during the test phase were substantially higher after extinction in a new context. The results are interpreted in terms of the dynamics of activations and weights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号