首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rates of recombination vary considerably between species. Despite the significance of this observation for evolutionary biology and genetics, the evolutionary mechanisms that contribute to these interspecific differences are unclear. On fine physical scales, recombination rates appear to evolve rapidly between closely related species, but the mode and tempo of recombination rate evolution on the broader scale is poorly understood. Here, we use phylogenetic comparative methods to begin to characterize the evolutionary processes underlying average genomic recombination rates in mammals. We document a strong phylogenetic effect in recombination rates, indicating that more closely related species tend to have more similar average rates of recombination. We demonstrate that this phylogenetic signal is not an artifact of errors in recombination rate estimation and show that it is robust to uncertainty in the mammalian phylogeny. Neutral evolutionary models present good fits to the data and we find no evidence for heterogeneity in the rate of evolution in recombination across the mammalian tree. These results suggest that observed interspecific variation in average genomic rates of recombination is largely attributable to the steady accumulation of neutral mutations over evolutionary time. Although single recombination hotspots may live and die on short evolutionary time scales, the strong phylogenetic signal in genomic recombination rates indicates that the pace of evolution on this scale may be considerably slower.  相似文献   

2.
Meiotic recombination shapes evolution and helps to ensure proper chromosome segregation in most species that reproduce sexually. Recombination itself evolves, with species showing considerable divergence in the rate of crossing‐over. However, the genetic basis of this divergence is poorly understood. Recombination events are produced via a complicated, but increasingly well‐described, cellular pathway. We apply a phylogenetic comparative approach to a carefully selected panel of genes involved in the processes leading to crossovers—spanning double‐strand break formation, strand invasion, the crossover/non‐crossover decision, and resolution—to reconstruct the evolution of the recombination pathway in eutherian mammals and identify components of the pathway likely to contribute to divergence between species. Eleven recombination genes, predominantly involved in the stabilization of homologous pairing and the crossover/non‐crossover decision, show evidence of rapid evolution and positive selection across mammals. We highlight TEX11 and associated genes involved in the synaptonemal complex and the early stages of the crossover/non‐crossover decision as candidates for the evolution of recombination rate. Evolutionary comparisons to MLH1 count, a surrogate for the number of crossovers, reveal a positive correlation between genome‐wide recombination rate and the rate of evolution at TEX11 across the mammalian phylogeny. Our results illustrate the power of viewing the evolution of recombination from a pathway perspective.  相似文献   

3.
The number and placement of meiotic crossover events during meiosis have important implications for the fidelity of chromosome segregation as well as patterns of inheritance. Despite the functional importance of recombination, recombination landscapes vary widely among and within species, and this can have a strong impact on evolutionary processes. A good knowledge of recombination landscapes is important for model systems in evolutionary and ecological genetics, since it can improve interpretation of genomic patterns of differentiation and genome evolution, and provides an important starting point for understanding the causes and consequences of recombination rate variation. Arabidopsis arenosa is a powerful evolutionary genetic model for studying the molecular basis of adaptation and recombination rate evolution. Here, we generate genetic maps for 2 diploid A. arenosa individuals from distinct genetic lineages where we have prior knowledge that meiotic genes show evidence of selection. We complement the genetic maps with cytological approaches to map and quantify recombination rates, and test the idea that these populations might have distinct patterns of recombination. We explore how recombination differs at the level of populations, individuals, sexes and genomic regions. We show that the positioning of crossovers along a chromosome correlates with their number, presumably a consequence of crossover interference, and discuss how this effect can cause differences in recombination landscape among sexes or species. We identify several instances of female segregation distortion. We found that averaged genome-wide recombination rate is lower and sex differences subtler in A. arenosa than in Arabidopsis thaliana.  相似文献   

4.
Throughout the living world, genetic recombination and nucleotide substitution are the primary processes that create the genetic variation upon which natural selection acts. Just as analyses of substitution patterns can reveal a great deal about evolution, so too can analyses of recombination. Evidence of genetic recombination within the genomes of apparently asexual species can equate with evidence of cryptic sexuality. In sexually reproducing species, nonrandom patterns of sequence exchange can provide direct evidence of population subdivisions that prevent certain individuals from mating. Although an interesting topic in its own right, an important reason for analysing recombination is to account for its potentially disruptive influences on various phylogenetic-based molecular evolution analyses. Specifically, the evolutionary histories of recombinant sequences cannot be accurately described by standard bifurcating phylogenetic trees. Taking recombination into account can therefore be pivotal to the success of selection, molecular clock and various other analyses that require adequate modelling of shared ancestry and draw increased power from accurately inferred phylogenetic trees. Here, we review various computational approaches to studying recombination and provide guidelines both on how to gain insights into this important evolutionary process and on how it can be properly accounted for during molecular evolution studies.  相似文献   

5.
Enteroviruses are members of the family Picornaviridae that cause widespread infections in human and other mammalian populations. Enteroviruses are genetically and antigenically highly variable, and recombination within and between serotypes contributes to their genetic diversity. To investigate the dynamics of the recombination process, sequence phylogenies between three regions of the genome (VP4, VP1, and 3Dpol) were compared among species A and B enterovirus variants detected in a human population-based survey in Scotland between 2000 and 2001, along with contemporary virus isolates collected in the same geographical region. This analysis used novel bioinformatic methods to quantify phylogenetic compatibility and correlations with serotype assignments of evolutionary trees constructed for different regions of the enterovirus genome. Species B enteroviruses showed much more frequent, time-correlated recombination events than those found for species A, despite the equivalence in population sampling, concordant with a linkage analysis of previously characterized enterovirus sequences obtained over longer collection periods. An analysis of recombination among complete genome sequences by computation of a phylogenetic compatibility matrix (PCM) demonstrated sharply defined boundaries between the VP2/VP3/VP1 block and sequences to either side in phylogenetic compatibility. The PCM also revealed equivalent or frequently greater degrees of incompatibility between different parts within the nonstructural region (2A-3D), indicating the occurrence of extensive recombination events in the past evolution of this part of the genome. Together, these findings provide new insights into the dynamics of species A and B enterovirus recombination and evolution and into the contribution of structured sampling to documenting reservoirs, emergence, and spread of novel recombinant forms in human populations.  相似文献   

6.
Environmental seasonality is a potent evolutionary force, capable of maintaining polymorphism, promoting phenotypic plasticity and causing bet-hedging. In Drosophila, environmental seasonality has been reported to affect life-history traits, tolerance to abiotic stressors and immunity. Oscillations in frequencies of alleles underlying fitness-related traits were also documented alongside SNPs across the genome. Here, we test for seasonal changes in two recombination characteristics, crossover rate and crossover interference, in a natural D. melanogaster population from India using morphological markers of the three major chromosomes. We show that winter flies, collected after the dry season, have significantly higher desiccation tolerance than their autumn counterparts. This difference proved to hold also for hybrids with three independent marker stocks, suggesting its genetic rather than plastic nature. Significant between-season changes are documented for crossover rate (in 9 of 13 studied intervals) and crossover interference (in four of eight studied pairs of intervals); both single and double crossovers were usually more frequent in the winter cohort. The winter flies also display weaker plasticity of both recombination characteristics to desiccation. We ascribe the observed differences to indirect selection on recombination caused by directional selection on desiccation tolerance. Our findings suggest that changes in recombination characteristics can arise even after a short period of seasonal adaptation (~8–10 generations).Subject terms: Structural variation, Evolutionary biology, Evolutionary genetics  相似文献   

7.
Perfect phylogenetic networks with recombination.   总被引:1,自引:0,他引:1  
The perfect phylogeny problem is a classical problem in evolutionary tree construction. In this paper, we propose a new model called phylogenetic network with recombination that takes recombination events into account. We show that the problem of finding a perfect phylogenetic network with the minimum number of recombination events is NP-hard; we also present an efficient polynomial time algorithm for an interesting restricted version of the problem.  相似文献   

8.
Recombination's omnipresence in nature is one of the most intriguing problems in evolutionary biology. The question of why recombination exhibits certain general features is no less interesting than that of why it exists at all. One such feature is recombination's fitness dependence (FD). The so far developed population genetics models have focused on the evolution of FD recombination mainly in haploids, although the empirical evidence for this phenomenon comes mostly from diploids. Using numerical analysis of modifier models for infinite panmictic populations, we show here that FD recombination can be evolutionarily advantageous in diploids subjected to purifying selection. We ascribe this advantage to the differential rate of disruption of lower‐ versus higher‐fitness genotypes, which can be manifested in selected systems with at least three loci. We also show that if the modifier is linked to such selected system, it can additionally benefit from modifying this linkage in a fitness‐dependent manner. The revealed evolutionary advantage of FD recombination appeared robust to crossover interference within the selected system, either positive or negative. Remarkably, FD recombination was often favored in situations where any constant nonzero recombination was evolutionarily disfavored, implying a relaxation of the rather strict constraints on major parameters (e.g., selection intensity and epistasis) required for the evolutionary advantage of nonzero recombination formulated by classical models.  相似文献   

9.
《Fly》2013,7(5):255-256
The association between recombination rate and nucleotide diversity provides compelling evidence for the action of natural selection across much of the Drosophila melanogaster genome. This conclusion is further supported by the lack of association between recombination rate and nucleotide divergence between species. However, studies of other species, including other Drosophila, have not always yielded the same results. Our recent study measured these parameters within the D. pseudoobscura species group using next-generation sequencing and high-throughput genotyping technologies. We documented fine-scale variation in crossover rate within D. pseudoobscura, and we observed that crossover variation was strongly associated with nucleotide diversity only when measured at a fine-scale. We also observed associations between crossover rate and sequence differences between D. pseudoobscura and its close relatives. These latter associations could have been driven in part by mutagenic effects associated with double-strand break repair, but we cannot exclude the possibility that it results primarily from shared ancestral polymorphisms. Overall, this work strongly underscores the importance of scale in testing for associations of recombination rate with other parameters, and it brings us one small step closer to understanding the role of natural selection and other evolutionary forces in shaping divergence among genomes.  相似文献   

10.
Recombination has essential functions in mammalian meiosis, which impose several constraints on the recombination process. However, recent studies have shown that, in spite of these roles, recombination rates vary tremendously among humans, and show marked differences between humans and closely related species. These findings provide important insights into the determinants of recombination rates and raise new questions about the selective pressures that affect recombination over different genomic scales, with implications for human genetics and evolutionary biology.  相似文献   

11.
Recombination hotspots are small chromosomal regions, where meiotic crossover events happen with high frequency. Recombination is initiated by a double‐strand break (DSB) that requires the intervention of the molecular repair mechanism. The DSB repair mechanism may result in the exchange of homologous chromosomes (crossover) and the conversion of the allelic sequence that breaks into the one that does not break (biased gene conversion). Biased gene conversion results in a transmission advantage for the allele that does not break, thus preventing recombination and rendering recombination hotspots transient. How is it possible that recombination hotspots persist over evolutionary time (maintaining the average chromosomal crossover rate) when they are self‐destructive? This fundamental question is known as the recombination hotspot paradox and has attracted much attention in recent years. Yet, that attention has not translated into a fully satisfactory answer. No existing model adequately explains all aspects of the recombination hotspot paradox. Here, we formulate an intragenomic conflict model resulting in Red Queen dynamics that fully accounts for all empirical observations regarding the molecular mechanisms of recombination hotspots, the nonrandom targeting of the recombination machinery to hotspots and the evolutionary dynamics of hotspot turnover.  相似文献   

12.
Despite dramatic differences in genome size--and thus space for recombination to occur--previous workers found no correlation between recombination rate and genome size in flowering plants. Here I re-investigate these claims using phylogenetic comparative methods to test a large data set of recombination data in angiosperms. I show that genome size is significantly correlated with recombination rate across a wide sampling of species and that change in genome size explains a meaningful proportion ( approximately 20%) of variation in recombination rate. I show that the strength of this correlation is comparable with that of several characters previously linked to evolutionary change in recombination rate, but argue that consideration of processes of genome size change likely make the observed correlation a conservative estimate. And finally, although I find that recombination rate increases less than proportionally to change in genome size, several mechanistic and theoretical arguments suggest that this result is not unexpected.  相似文献   

13.
The mammalian tick-borne flavivirus group (MTBFG) contains viruses associated with important human and animal diseases such as encephalitis and hemorrhagic fever. In contrast to mosquito-borne flaviviruses where recombination events are frequent, the evolutionary dynamic within the MTBFG was believed to be essentially clonal. This assumption was challenged with the recent report of several homologous recombinations within the Tick-borne encephalitis virus (TBEV). We performed a thorough analysis of publicly available genomes in this group and found no compelling evidence for the previously identified recombinations. However, our results show for the first time that demonstrable recombination (i.e., with large statistical support and strong phylogenetic evidences) has occurred in the MTBFG, more specifically within the Louping ill virus lineage. Putative parents, recombinant strains and breakpoints were further tested for statistical significance using phylogenetic methods. We investigated the time of divergence between the recombinant and parental strains in a Bayesian framework. The recombination was estimated to have occurred during a window of 282 to 76 years before the present. By unravelling the temporal setting of the event, we adduce hypotheses about the ecological conditions that could account for the observed recombination.  相似文献   

14.

Background

Population genetics predicts that tight linkage between new and/or pre-existing beneficial and deleterious alleles should decrease the efficiency of natural selection in finite populations. By decoupling beneficial and deleterious alleles and facilitating the combination of beneficial alleles, recombination accelerates the formation of high-fitness genotypes. This may impose indirect selection for increased recombination. Despite the progress in theoretical understanding, interplay between recombination and selection remains a controversial issue in evolutionary biology. Even less satisfactory is the situation with crossover interference, which is a deviation of double-crossover frequency in a pair of adjacent intervals from the product of recombination rates in the two intervals expected on the assumption of crossover independence. Here, we report substantial changes in recombination and interference in three long-term directional selection experiments with Drosophila melanogaster: for desiccation (~50 generations), hypoxia, and hyperoxia tolerance (>200 generations each).

Results

For all three experiments, we found a high interval-specific increase of recombination frequencies in selection lines (up to 40–50 % per interval) compared to the control lines. We also discovered a profound effect of selection on interference as expressed by an increased frequency of double crossovers in selection lines. Our results show that changes in interference are not necessarily coupled with increased recombination.

Conclusions

Our results support the theoretical predictions that adaptation to a new environment can promote evolution toward higher recombination. Moreover, this is the first evidence of selection for different recombination-unrelated traits potentially leading, not only to evolution toward increased crossover rates, but also to changes in crossover interference, one of the fundamental features of recombination.
  相似文献   

15.
Humans suffer from high rates of fetal aneuploidy, often arising from the absence of meiotic crossover recombination between homologous chromosomes. Meiotic recombination is initiated by double-strand breaks (DSBs) generated by the SPO11 transesterase. In yeast and worms, at least one buffering mechanism, crossover homeostasis, maintains crossover numbers despite variation in DSB numbers. We show here that mammals exhibit progressive homeostatic control of recombination. In wild-type mouse spermatocytes, focus numbers for early recombination proteins (RAD51, DMC1) were highly variable from cell to cell, whereas foci of the crossover marker MLH1 showed little variability. Furthermore, mice with greater or fewer copies of the Spo11 gene--with correspondingly greater or fewer numbers of early recombination foci--exhibited relatively invariant crossover numbers. Homeostatic control is enforced during at least two stages, after the formation of early recombination intermediates and later while these intermediates mature towards crossovers. Thus, variability within the mammalian meiotic program is robustly managed by homeostatic mechanisms to control crossover formation, probably to suppress aneuploidy. Meiotic recombination exemplifies how order can be progressively implemented in a self-organizing system despite natural cell-to-cell disparities in the underlying biochemical processes.  相似文献   

16.
Consequences of recombination on traditional phylogenetic analysis   总被引:38,自引:0,他引:38  
Schierup MH  Hein J 《Genetics》2000,156(2):879-891
We investigate the shape of a phylogenetic tree reconstructed from sequences evolving under the coalescent with recombination. The motivation is that evolutionary inferences are often made from phylogenetic trees reconstructed from population data even though recombination may well occur (mtDNA or viral sequences) or does occur (nuclear sequences). We investigate the size and direction of biases when a single tree is reconstructed ignoring recombination. Standard software (PHYLIP) was used to construct the best phylogenetic tree from sequences simulated under the coalescent with recombination. With recombination present, the length of terminal branches and the total branch length are larger, and the time to the most recent common ancestor smaller, than for a tree reconstructed from sequences evolving with no recombination. The effects are pronounced even for small levels of recombination that may not be immediately detectable in a data set. The phylogenies when recombination is present superficially resemble phylogenies for sequences from an exponentially growing population. However, exponential growth has a different effect on statistics such as Tajima's D. Furthermore, ignoring recombination leads to a large overestimation of the substitution rate heterogeneity and the loss of the molecular clock. These results are discussed in relation to viral and mtDNA data sets.  相似文献   

17.
The recent mapping of recombination hot spots in the human genome has demonstrated that crossover is a nonrandom process that occurs at well-defined positions along chromosomes. However, the mechanisms that direct hot-spot turnover in complex mammalian genomes are poorly understood. Analyses of the human genome are impaired by the inability to genetically dissect and molecularly manipulate recombinogenic regions to test their roles in regulating hot spots. Here, using the BXD recombinant inbred strains as a crossover library, three new recombination hot spots have been identified on mouse chromosome 19. Analyses of a highly polymorphic recombination hot spot (HS22) revealed that approximately 4% of recombinant molecules display complex and incomplete repair with discontinuous conversion tracts, as well as persistent heteroduplex DNA at crossover sites in mature spermatozoa. Also, sequence analysis of the wild house mouse revealed instability at the center of this hot spot. This suggests that complete repair is not required for completion of mammalian meiosis, a scenario that leaves duplex DNA containing mismatches at crossover sites.  相似文献   

18.
Local rates of recombination positively correlate with DNA sequence diversity in many species. To test whether this relationship stems from mutagenicity of meiotic recombination, studies often look for a similar association between local rates of recombination and sequence "divergence" between species. Because recombination is mutagenic in yeast, I evaluate this assay by testing whether noncoding DNA sequence divergence between Saccharomyces species is related to measures of meiotic double-strand DNA breaks or crossover rates derived from Saccharomyces cerevisiae. Contrary to expectation, I find that sequence divergence is either uncorrelated or negatively correlated with rates of both double-strand break and crossover. Several caveats are mentioned, but these results suggest that mutagenesis from meiotic recombination is not the primary driver of sequence divergence between Saccharomyces species. This study demonstrates that the association between interspecies nucleotide divergence and local recombination rates is not always a reliable indicator of recombination's mutagenicity.  相似文献   

19.
Absence of the TAP2 human recombination hotspot in chimpanzees   总被引:2,自引:1,他引:1       下载免费PDF全文
Recent experiments using sperm typing have demonstrated that, in several regions of the human genome, recombination does not occur uniformly but instead is concentrated in “hotspots” of 1–2 kb. Moreover, the crossover asymmetry observed in a subset of these has led to the suggestion that hotspots may be short-lived on an evolutionary time scale. To test this possibility, we focused on a region known to contain a recombination hotspot in humans, TAP2, and asked whether chimpanzees, the closest living evolutionary relatives of humans, harbor a hotspot in a similar location. Specifically, we used a new statistical approach to estimate recombination rate variation from patterns of linkage disequilibrium in a sample of 24 western chimpanzees (Pan troglodytes verus). This method has been shown to produce reliable results on simulated data and on human data from the TAP2 region. Strikingly, however, it finds very little support for recombination rate variation at TAP2 in the western chimpanzee data. Moreover, simulations suggest that there should be stronger support if there were a hotspot similar to the one characterized in humans. Thus, it appears that the human TAP2 recombination hotspot is not shared by western chimpanzees. These findings demonstrate that fine-scale recombination rates can change between very closely related species and raise the possibility that rates differ among human populations, with important implications for linkage-disequilibrium based association studies.  相似文献   

20.
Ancient asexuals have been considered to be a contradiction of the basic tenets of evolutionary theory. Barred from rearranging genetic variation by recombination, their reduced number of gene arrangements is thought to hamper their response to changing environments. For the same reason, it should be difficult for them to avoid the build-up of deleterious mutations. Several groups of taxonomically diverse organisms are thought to be ancient asexuals, although clear evidence for or against the existence of recombination events is scarce. Several methods have recently been developed for predicting recombination events by analyzing aligned sequences of a given region of DNA that all originate from one species. The methods are based on phylogenetic, substitution, and compatibility analyses. Here we present the results of analyses of sequence data from different loci studied in several groups of evolutionarily distant species that are considered to be ancient asexuals, using seven different types of analysis. The groups of organisms were the arbuscular mycorrhizal fungi (Glomales), Darwinula stevensoni (Darwinuloidea crustacean ostracods) and the bdelloid rotifers (Bdelloidea), which are thought to have been asexual for the last 400, 25-100, and 35-40 Myr, respectively. The seven different analytical methods evaluated the evolutionary relationships among haplotypes, and these methods had previously been shown to be reliable for predicting the occurrence of recombination events. Despite the different degree of genetic variation among the different groups of organisms, at least some evidence for recombination was found in all species groups. In particular, predictions of recombination events in the arbuscular mycorrhizal fungi were frequent. Predictions of recombination were also found for sequence data that have previously been used to infer the absence of recombination in bdelloid rotifers. Although our results have to be taken with some caution because they could signal very ancient recombination events or possibly other genetic variation of nonrecombinant origin, they suggest that some cryptic recombination events may exist in these organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号