首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Of the many pathogens that infect humans and animals, a large number use cells of the host organism as protected sites for replication. To reach the relevant intracellular compartments, they take advantage of the endocytosis machinery and exploit the network of endocytic organelles for penetration into the cytosol or as sites of replication. In this review, we discuss the endocytic entry processes used by viruses and bacteria and compare the strategies used by these dissimilar classes of pathogens.Many of the most widespread and devastating diseases in humans and livestock are caused by viruses and bacteria that enter cells for replication. Being obligate intracellular parasites, viruses have no choice. They must transport their genome to the cytosol or nucleus of infected cells to multiply and generate progeny. Bacteria and eukaryotic parasites do have other options; most of them can replicate on their own. However, some have evolved to take advantage of the protected environment in the cytosol or in cytoplasmic vacuoles of animal cells as a niche favorable for growth and multiplication. In both cases (viruses and intracellular bacteria), the outcome is often destructive for the host cell and host organism. The mortality and morbidity caused by infectious diseases worldwide provide a strong rationale for research into pathogen–host cell interactions and for pursuing the detailed mechanisms of transmission and dissemination. The study of viruses and bacteria can, moreover, provide invaluable insights into fundamental aspects of cell biology.Here, we focus on the mechanisms by which viral and bacterial pathogens exploit the endocytosis machinery for host cell entry and replication. Among recent reviews on this topic, dedicated uniquely to either mammalian viruses or bacterial pathogens, we recommend the following: Cossart and Sansonetti (2004); Pizarro-Cerda and Cossart (2006); Kumar and Valdivia (2009); Cossart and Roy (2010); Mercer et al. (2010b); Grove and Marsh (2011); Kubo et al. (2012); Vazquez-Calvo et al. (2012a); Sun et al. (2013).The term “endocytosis” is used herein in its widest sense, that is, to cover all processes whereby fluid, solutes, ligands, and components of the plasma membrane as well as particles (including pathogenic agents) are internalized by cells through the invagination of the plasma membrane and the scission of membrane vesicles or vacuoles. This differs from current practice in the bacterial pathogenesis field, where the term “endocytosis” is generally reserved for the internalization of molecules or small objects, whereas the uptake of bacteria into nonprofessional phagocytes is called “internalization” or “bacterial-induced phagocytosis.” In addition, the term “phagocytosis” is reserved for internalization of bacteria by professional phagocytes (macrophages, polymorphonuclear leucocytes, dendritic cells, and amoebae), a process that generally but not always leads to the destruction of the ingested bacteria (Swanson et al. 1999; May and Machesky 2001; Henry et al. 2004; Zhang et al. 2010). With a few exceptions, we will not discuss phagocytosis of bacteria or the endocytosis of protozoan parasites such as Toxoplasma and Plasmodium (Robibaro et al. 2001).  相似文献   

4.
5.
The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing “active gel,” the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming.The eukaryotic cytoskeleton organizes space on the cellular scale and this organization influences almost every process in the cell. Organization depends on the mechanochemical properties of the cytoskeleton that dynamically maintain cell shape, position organelles, and macromolecules by trafficking, and drive locomotion via actin-rich cellular protrusions, ciliary beating, or ciliary gliding. The eukaryotic cytoskeleton is best described as an “active gel,” a cross-linked network of polymers (gel) in which many of the links are active motors that can move the polymers relative to each other (Karsenti et al. 2006). Because prokaryotes have only cytoskeletal polymers but lack motor proteins, this “active gel” property clearly sets the eukaryotic cytoskeleton apart from prokaryotic filament systems.Prokaryotes contain elaborate systems of several cytomotive filaments (Löwe and Amos 2009) that share many structural and dynamic features with eukaryotic actin filaments and microtubules (Löwe and Amos 1998; van den Ent et al. 2001). Prokaryotic cytoskeletal filaments may trace back to the first cells and may have originated as higher-order assemblies of enzymes (Noree et al. 2010; Barry and Gitai 2011). These cytomotive filaments are required for the segregation of low copy number plasmids, cell rigidity and cell-wall synthesis, cell division, and occasionally the organization of membranous organelles (Komeili et al. 2006; Thanbichler and Shapiro 2008; Löwe and Amos 2009). These functions are performed by dynamic filament-forming systems that harness the energy from nucleotide hydrolysis to generate forces either via bending or polymerization (Löwe and Amos 2009; Pilhofer and Jensen 2013). Although the identification of actin and tubulin homologs in prokaryotes is a major breakthrough, we are far from understanding the origin of the structural and dynamic complexity of the eukaryotic cytoskeleton.Advances in genome sequencing and comparative genomics now allow a detailed reconstruction of the cytoskeletal components present in the last common ancestor of eukaryotes. These studies all point to an ancestrally complex cytoskeleton, with several families of motors (Wickstead and Gull 2007; Wickstead et al. 2010) and filament-associated proteins and other regulators in place (Jékely 2003; Richards and Cavalier-Smith 2005; Rivero and Cvrcková 2007; Chalkia et al. 2008; Eme et al. 2009; Fritz-Laylin et al. 2010; Eckert et al. 2011; Hammesfahr and Kollmar 2012). Genomic reconstructions and comparative cell biology of single-celled eukaryotes (Raikov 1994; Cavalier-Smith 2013) allow us to infer the cellular features of the ancestral eukaryote. These analyses indicate that amoeboid motility (Fritz-Laylin et al. 2010; although, see Cavalier-Smith 2013), cilia (Cavalier-Smith 2002; Mitchell 2004; Jékely and Arendt 2006; Satir et al. 2008), centrioles (Carvalho-Santos et al. 2010), phagocytosis (Cavalier-Smith 2002; Jékely 2007; Yutin et al. 2009), a midbody during cell division (Eme et al. 2009), mitosis (Raikov 1994), and meiosis (Ramesh et al. 2005) were all ancestral eukaryotic cellular features. The availability of functional information from organisms other than animals and yeasts (e.g., Chlamydomonas, Tetrahymena, Trypanosoma) also allow more reliable inferences about the ancestral functions of cytoskeletal components (i.e., not only their ancestral presence or absence) and their regulation (Demonchy et al. 2009; Lechtreck et al. 2009; Suryavanshi et al. 2010).The ancestral complexity of the cytoskeleton in eukaryotes leaves a huge gap between prokaryotes and the earliest eukaryote we can reconstruct (provided that our rooting of the tree is correct) (Cavalier-Smith 2013). Nevertheless, we can attempt to infer the series of events that happened along the stem lineage, leading to the last common ancestor of eukaryotes. Meaningful answers will require the use of a combination of gene family history reconstructions (Wickstead and Gull 2007; Wickstead et al. 2010), transition analyses (Cavalier-Smith 2002), and computer simulations relevant to cell evolution (Jékely 2008).  相似文献   

6.
7.
The Wnt pathway is a major embryonic signaling pathway that controls cell proliferation, cell fate, and body-axis determination in vertebrate embryos. Soon after egg fertilization, Wnt pathway components play a role in microtubule-dependent dorsoventral axis specification. Later in embryogenesis, another conserved function of the pathway is to specify the anteroposterior axis. The dual role of Wnt signaling in Xenopus and zebrafish embryos is regulated at different developmental stages by distinct sets of Wnt target genes. This review highlights recent progress in the discrimination of different signaling branches and the identification of specific pathway targets during vertebrate axial development.Wnt pathways play major roles in cell-fate specification, proliferation and differentiation, cell polarity, and morphogenesis (Clevers 2006; van Amerongen and Nusse 2009). Signaling is initiated in the responding cell by the interaction of Wnt ligands with different receptors and coreceptors, including Frizzled, LRP5/6, ROR1/2, RYK, PTK7, and proteoglycans (Angers and Moon 2009; Kikuchi et al. 2009; MacDonald et al. 2009). Receptor activation is accompanied by the phosphorylation of Dishev-elled (Yanagawa et al. 1995), which appears to transduce the signal to both the cell membrane and the nucleus (Cliffe et al. 2003; Itoh et al. 2005; Bilic et al. 2007). Another common pathway component is β-catenin, an abundant component of adherens junctions (Nelson and Nusse 2004; Grigoryan et al. 2008). In response to signaling, β-catenin associates with T-cell factors (TCFs) and translocates to the nucleus to stimulate Wnt target gene expression (Behrens et al. 1996; Huber et al. 1996; Molenaar et al. 1996).This β-catenin-dependent activation of specific genes is often referred to as the “canonical” pathway. In the absence of Wnt signaling, β-catenin is destroyed by the protein complex that includes Axin, GSK3, and the tumor suppressor APC (Clevers 2006; MacDonald et al. 2009). Wnt proteins, such as Wnt1, Wnt3, and Wnt8, stimulate Frizzled and LRP5/6 receptors to inactivate this β-catenin destruction complex, and, at the same time, trigger the phosphorylation of TCF proteins by homeodomain-interacting protein kinase 2 (HIPK2) (Hikasa et al. 2010; Hikasa and Sokol 2011). Both β-catenin stabilization and the regulation of TCF protein function by phosphorylation appear to represent general strategies that are conserved in multiple systems (Sokol 2011). Thus, the signaling pathway consists of two branches that together regulate target gene expression (Fig. 1).Open in a separate windowFigure 1.Conserved Wnt pathway branches and components. In the absence of Wnt signals, glycogen synthase kinase 3 (GSK3) binds Axin and APC to form the β-catenin destruction complex. Some Wnt proteins, such as Wnt8 and Wnt3a, stimulate Frizzled and LRP5/6 receptors to inhibit GSK3 activity and stabilize β-catenin (β-cat). Stabilized β-cat forms a complex with T-cell factors (e.g., TCF1/LEF1) to activate target genes. Moreover, GSK3 inhibition leads to target gene derepression by promoting TCF3 phosphorylation by homeodomain-interacting protein kinase 2 (HIPK2) through an unknown mechanism, for which β-catenin is required as a scaffold. This phosphorylation results in TCF3 removal from target promoters and gene activation. Other Wnt proteins, such as Wnt5a and Wnt11, use distinct receptors such as ROR2 and RYK, in addition to Frizzled, to control the the cytoskeletal organization through core planar cell polarity (PCP) proteins, small GTPases (Rho/Rac/Cdc42), and c-Jun amino-terminal kinase (JNK).Other Wnt proteins, such as Wnt5a or Wnt11, strongly affect the cytoskeletal organization and morphogenesis without stabilizing β-catenin (Torres et al. 1996; Angers and Moon 2009; Wu and Mlodzik 2009). These “noncanonical” ligands do not influence TCF3 phosphorylation (Hikasa and Sokol 2011), but may use distinct receptors such as ROR1/2 and RYK instead of or in addition to Frizzled (Hikasa et al. 2002; Lu et al. 2004; Mikels and Nusse 2006; Nishita et al. 2006, 2010; Schambony and Wedlich 2007; Grumolato et al. 2010; Lin et al. 2010; Gao et al. 2011). In such cases, signaling mechanisms are likely to include planar cell polarity (PCP) components, such as Vangl2, Flamingo, Prickle, Diversin, Rho GTPases, and c-Jun amino-terminal kinases (JNKs), which do not directly affect β-catenin stability (Fig. 1) (Sokol 2000; Schwarz-Romond et al. 2002; Schambony and Wedlich 2007; Komiya and Habas 2008; Axelrod 2009; Itoh et al. 2009; Tada and Kai 2009; Sato et al. 2010; Gao et al. 2011). This simplistic dichotomy of the Wnt pathway does not preclude some Wnt ligands from using both β-catenin-dependent and -independent routes in a context-specific manner.Despite the existence of many pathway branches, only the β-catenin-dependent branch has been implicated in body-axis specification. Recent experiments in lower vertebrates have identified additional pathway components and targets and provided new insights into the underlying mechanisms.  相似文献   

8.
Since its first visualization in 1898, the Golgi has been a topic of intense morphological research. A typical mammalian Golgi consists of a pile of stapled cisternae, the Golgi stack, which is a key station for modification of newly synthesized proteins and lipids. Distinct stacks are interconnected by tubules to form the Golgi ribbon. At the entrance site of the Golgi, the cis-Golgi, vesicular tubular clusters (VTCs) form the intermediate between the endoplasmic reticulum and the Golgi stack. At the exit site of the Golgi, the trans-Golgi, the trans-Golgi network (TGN) is the major site of sorting proteins to distinct cellular locations. Golgi functioning can only be understood in light of its complex architecture, as was revealed by a range of distinct electron microscopy (EM) approaches. In this article, a general concept of mammalian Golgi architecture, including VTCs and the TGN, is described.In 1898 Camillo Golgi was the first to visualize, describe, and ultimately name the Golgi complex. Using a histochemical impregnation method causing the reduction and deposition of silver, he defined the Golgi in neuronal cells as a reticular apparatus stained by the “black reaction” (Golgi 1898). In the 1950s, the first ultrastructural images of the Golgi were revealed using the then newly developed electron microscope (EM) (Dalton 1954; Farquhar and Rinehart 1954; Sjostrand and Hanzon 1954; Dalton and Felix 1956), reviewed by Farquhar and Palade (1981). In 1961, the thiamine pyrophosphatase reaction developed by Novikoff and Goldfischer allowed cytochemical labeling of Golgi membranes, which revealed the ubiquitous cellular distribution of this organelle (Novikoff and Goldfischer 1961). In the many years of ultrastructural research that have followed, the visualization of the Golgi has gone hand-in-hand with the developing EM techniques.The intriguing structural complexity of the Golgi has made it one of the most photographed organelles in the cell. However, a full understanding of Golgi architecture is hard to deduce from the ultrathin (70–100 nm) sections used in standard transmission EM preparations. Rambourg and Clermont (1974) were the first to investigate the Golgi in three dimensions (3D), using stereoscopy (Rambourg 1974). In this approach a “thick” (150–200 nm), EM section is photographed at two distinct angles, after which the pairs of photographs are viewed with a stereoscope. Over the years, stereoscopy was applied to a variety of cells and has greatly contributed to our current understanding of Golgi architecture (Lindsey and Ellisman 1985; Rambourg and Clermont 1990; Clermont et al. 1994; Clermont et al. 1995). An alternative approach to study 3D structure is serial sectioning, by which a series of adjacent (serial) thin sections are collected. The Golgi can be followed throughout these sections and be constructed into a 3D model (Beams and Kessel 1968; Dylewski et al. 1984; Rambourg and Clermont 1990). In the nineties, 3D-EM was boosted by the introduction of high-voltage, dual axis 3D electron tomography (Ladinsky et al. 1999; Koster and Klumperman 2003; Marsh 2005; Marsh 2007; Noske et al. 2008), which allows the analysis of sections of up to 3–4 µm with a 4–6 nm resolution in the z-axis. The sections are photographed in a tilt series of different angles, which are reconstructed into a 3D tomogram that allows one to “look beyond” a given structure and reveals how it relates to other cellular compartments.Membranes with a similar appearance can differ in protein content and function. These differences are revealed by protein localization techniques. Therefore, in addition to the “classical” EM techniques providing ultrastructural details, EM methods that determine protein localization within the context of the cellular morphology have been crucial to further our understanding on the functional organization of the Golgi. For example, by enzyme-activity-based cytochemical staining the cis-to-trans-polarity in the distribution of Golgi glycosylation enzymes was discovered, reviewed by Farquhar and Palade (1981), which was key to understanding the functional organization of the Golgi stack in protein and lipid glycosylation. With the development of immunoEM methods, using antibodies, the need for enzyme activity for protein localization was overcome. This paved the way for the localization of a wide variety of proteins, such as the cytoplasmic coat complexes associated with the Golgi (Rabouille and Klumperman 2005).A logical next step in EM-based imaging of the Golgi would be to combine protein localization with 3D imaging, but this is technically challenging. A number of protocols enabling protein localization in 3D have recently been described (Trucco et al. 2004; Grabenbauer et al. 2005; Gaietta et al. 2006; Zeuschner et al. 2006; Meiblitzer-Ruppitsch et al. 2008), but these have only been applied in a limited manner to Golgi studies. Another approach that holds great potential for Golgi research is correlative microscopy (CLEM). Live cell imaging of fluorescent proteins has revolutionized cell biology by the real time visualization of dynamic events. However, live cell imaging does not reveal membrane complexity. By CLEM, live cells are first viewed by light microscopy and then prepared for EM (Mironov et al. 2008; van Rijnsoever et al. 2008). When coupled with the recent introduction of super resolution light microscopy techniques for real time imaging, the combination with EM for direct correlation with ultrastructural resolution has great potential (Hell 2009; Lippincott-Schwartz and Manley 2009).The 100th anniversary of the discovery of the Golgi, in 1998, triggered a wave of reviews on this organelle, including those focusing on Golgi architecture (Rambourg 1997; Farquhar and Palade 1998). More recent reviews that describe Golgi structure in great detail are provided by Marsh (2005) and Hua (2009). In this article, the most recent insights in mammalian Golgi architecture as revealed by distinct EM approaches are integrated into a general concept.  相似文献   

9.
Fibroblast growth factors (FGFs) signal in a paracrine or endocrine fashion to mediate a myriad of biological activities, ranging from issuing developmental cues, maintaining tissue homeostasis, and regulating metabolic processes. FGFs carry out their diverse functions by binding and dimerizing FGF receptors (FGFRs) in a heparan sulfate (HS) cofactor- or Klotho coreceptor-assisted manner. The accumulated wealth of structural and biophysical data in the past decade has transformed our understanding of the mechanism of FGF signaling in human health and development, and has provided novel concepts in receptor tyrosine kinase (RTK) signaling. Among these contributions are the elucidation of HS-assisted receptor dimerization, delineation of the molecular determinants of ligand–receptor specificity, tyrosine kinase regulation, receptor cis-autoinhibition, and tyrosine trans-autophosphorylation. These structural studies have also revealed how disease-associated mutations highjack the physiological mechanisms of FGFR regulation to contribute to human diseases. In this paper, we will discuss the structurally and biophysically derived mechanisms of FGF signaling, and how the insights gained may guide the development of therapies for treatment of a diverse array of human diseases.Fibroblast growth factor (FGF) signaling fulfills essential roles in metazoan development and metabolism. A wealth of literature has documented the requirement for FGF signaling in multiple processes during embryogenesis, including implantation (Feldman et al. 1995), gastrulation (Sun et al. 1999), somitogenesis (Dubrulle and Pourquie 2004; Wahl et al. 2007; Lee et al. 2009; Naiche et al. 2011; Niwa et al. 2011), body plan formation (Martin 1998; Rodriguez Esteban et al. 1999; Tanaka et al. 2005; Mariani et al. 2008), morphogenesis (Metzger et al. 2008; Makarenkova et al. 2009), and organogenesis (Goldfarb 1996; Kato and Sekine 1999; Sekine et al. 1999; Sun et al. 1999; Colvin et al. 2001; Serls et al. 2005; Vega-Hernandez et al. 2011). Recent clinical and biochemical data have uncovered unexpected roles for FGF signaling in metabolic processes, including phosphate/vitamin D homeostasis (Consortium 2000; Razzaque and Lanske 2007; Nakatani et al. 2009; Gattineni et al. 2011; Kir et al. 2011), cholesterol/bile acid homeostasis (Yu et al. 2000a; Holt et al. 2003), and glucose/lipid metabolism (Fu et al. 2004; Moyers et al. 2007). Highlighting its diverse biology, deranged FGF signaling contributes to many human diseases, such as congenital craniosynostosis and dwarfism syndromes (Naski et al. 1996; Wilkie et al. 2002, 2005), Kallmann syndrome (Dode et al. 2003; Pitteloud et al. 2006a), hearing loss (Tekin et al. 2007, 2008), and renal phosphate wasting disorders (Shimada et al. 2001; White et al. 2001), as well as many acquired forms of cancers (Rand et al. 2005; Pollock et al. 2007; Gartside et al. 2009; di Martino et al. 2012). Endocrine FGFs have also been implicated in the progression of acquired metabolic disorders, including chronic kidney disease (Fliser et al. 2007), obesity (Inagaki et al. 2007; Moyers et al. 2007; Reinehr et al. 2012), and insulin resistance (Fu et al. 2004; Chen et al. 2008b; Chateau et al. 2010; Huang et al. 2011), giving rise to many opportunities for drug discovery in the field of FGF biology (Beenken and Mohammadi 2012).Based on sequence homology and phylogeny, the 18 mammalian FGFs are grouped into six subfamilies (Ornitz and Itoh 2001; Popovici et al. 2005; Itoh and Ornitz 2011). Five of these subfamilies act in a paracrine fashion, namely, the FGF1 subfamily (FGF1 and FGF2), the FGF4 subfamily (FGF4, FGF5, and FGF6), the FGF7 subfamily (FGF3, FGF7, FGF10, and FGF22), the FGF8 subfamily (FGF8, FGF17, and FGF18), and the FGF9 subfamily (FGF9, FGF16, and FGF20). In contrast, the FGF19 subfamily (FGF19, FGF21, and FGF23) signals in an endocrine manner (Beenken and Mohammadi 2012). FGFs exert their pleiotropic effects by binding and activating the FGF receptor (FGFR) subfamily of receptor tyrosine kinases that are coded by four genes (FGFR1, FGFR2, FGFR3, and FGFR4) in mammals (Johnson and Williams 1993; Mohammadi et al. 2005b). The extracellular domain of FGFRs consists of three immunoglobulin (Ig)-like domains (D1, D2, and D3), and the intracellular domain harbors the conserved tyrosine kinase domain flanked by the flexible amino-terminal juxtamembrane linker and carboxy-terminal tail (Lee et al. 1989; Dionne et al. 1991; Givol and Yayon 1992). A unique feature of FGFRs is the presence of a contiguous segment of glutamic and aspartic acids in the D1–D2 linker, termed the acid box (AB). The two-membrane proximal D2 and D3 and the intervening D2–D3 linker are necessary and sufficient for ligand binding/specificity (Dionne et al. 1990; Johnson et al. 1990), whereas D1 and the D1–D2 linker are implicated in receptor autoinhibition (Wang et al. 1995; Roghani and Moscatelli 2007; Kalinina et al. 2012). Alternative splicing and translational initiation further diversify both ligands and receptors. The amino-terminal regions of FGF8 and FGF17 can be differentially spliced to yield FGF8a, FGF8b, FGF8e, FGF8f (Gemel et al. 1996; Blunt et al. 1997), and FGF17a and FGF17b isoforms (Xu et al. 1999), whereas cytosine-thymine-guanine (CTG)-mediated translational initiation gives rise to multiple high molecular weight isoforms of FGF2 and FGF3 (Florkiewicz and Sommer 1989; Prats et al. 1989; Acland et al. 1990). The tissue-specific alternative splicing in D3 of FGFR1, FGFR2, and FGFR3 yields “b” and “c” receptor isoforms which, along with their temporal and spatial expression patterns, is the major regulator of FGF–FGFR specificity/promiscuity (Orr-Urtreger et al. 1993; Ornitz et al. 1996; Zhang et al. 2006). A large body of structural data on FGF–FGFR complexes has begun to reveal the intricate mechanisms by which different FGFs and FGFRs combine selectively to generate quantitatively and qualitatively different intracellular signals, culminating in distinct biological responses. In addition, these structural data have unveiled how pathogenic mutations hijack the normal physiological mechanisms of FGFR regulation to lead to pathogenesis. We will discuss the current state of the structural biology of the FGF–FGFR system, lessons learned from studying the mechanism of action of pathogenic mutations, and how the structural data are beginning to shape and advance the translational research.  相似文献   

10.
11.
Strict maternal transmission creates an “asymmetric sieve” favoring the spread of mutations in organelle genomes that increase female fitness, but diminish male fitness. This phenomenon, called “Mother''s Curse,” can be viewed as an asymmetrical case of intralocus sexual conflict. The evolutionary logic of Mother''s Curse applies to each member of the offspring microbiome, the community of maternally provisioned microbes, believed to number in the hundreds, if not thousands, of species for host vertebrates, including humans. Taken together, these observations pose a compelling evolutionary paradox: How has maternal transmission of an offspring microbiome become a near universal characteristic of the animal kingdom when the genome of each member of that community poses a potential evolutionary threat to the fitness of host males? I review features that limit or reverse Mother''s Curse and contribute to resolving this paradox. I suggest that the evolution of vertical symbiont transmission requires conditions that mitigate the evolutionary threat to host males.The genomes of mitochondria, chloroplasts, and many symbiotic microbes are transmitted maternally by host females to their offspring. Maternal transmission can be transovariole (intracellular, within the egg) or contagious, during gestation, birth, or feeding (Sonneborn 1950; Smith and Dunn 1991; Gillham 1994; O’Neill et al. 1997). Vertically transmitted (VT) symbiont lineages tend to be genetically homogeneous within hosts (Birky et al. 1983, 1989; Funk et al. 2000). Maternal uniparental transmission creates an “asymmetric sieve” wherein mutations advantageous for females, but harmful for males, can spread through a population (Cosmides and Tooby 1981; Frank and Hurst 1996; Zeh and Zeh 2005; Burt and Trivers 2006). Such mutations spread because deleterious male-specific fitness effects do not affect the response to natural selection of the maternally transmitted entities. This adaptive process favoring the transmitting sex is called Mother''s Curse (MC) (Gemmell et al. 2004) and it has been referred to as an irreconcilable instance of intralocus conflict: “… exclusively maternal transmission of cytoplasmic genes (e.g., in mitochondria) can result in suboptimal mitochondrial function in males … a form of [intralocus sexual conflict] that apparently cannot be resolved, because selection on mitochondria in males cannot produce a response” (Bonduriansky and Chenoweth 2009, p. 285).Mitochondria are ubiquitous in animals and despite the indisputable evolutionary logic of MC (Frank and Hurst 1996) there are no reported cases of sperm-killing or son-killing mitochondria (Burt and Trivers 2006). Moreover, many species of animals possess an offspring microbiome, a community of microbes transmitted uniparentally from mother to offspring at some point in development, whether prefertilization, postfertilization, or postnatal (Funkhouser and Bordenstein 2013). In some vertebrates, including humans, this community is believed to number in the hundreds of species (Funkhouser and Bordenstein 2013). Prolonged periods of maternal care, as in mammals and birds, as well as kin-structured sociality, afford many opportunities for maternal provisioning of microbes to developing offspring. The social insects, in particular, show obligate mutualisms with a microbiome that confers important nutritional benefits for its host (Baumann 2005; Engel and Moran 2013), the termites being a classic example (Ikeda-Ohtsubo and Brune 2009).Together, the evolutionary logic of MC and the widespread existence of maternally transmitted hereditary symbioses pose a paradox for evolutionary biology. The maternally provisioned microbiome (MC) consists of tens to hundreds of genomes affording ample opportunity, along with mitochondrial and organelle genomes, for the occurrence of mutations that benefit females while harming host males. Assembling a VT community as a host nutritional or defensive adaptation requires evading MC not once, but from a continuous siege over evolutionary time. This is the Mother''s Curse–microbiome (MC–MB) paradox. It conceptually affiliated with the “paradox of mutualism,” the persistence of interspecific mutualisms despite the advantages of cheating by one or the other member of the mutualism (Heath and Stinchcombe 2014). Symbiont “cheating” on only half the members of a host species, the males, might offer marginal benefits relative to wholesale cheating on both host sexes. Nevertheless, the MC–MB paradox deserves research attention.In this review, I discuss inbreeding, kin selection, compensatory evolution, and defensive advantages against more virulent pathogens (or predators and herbivores) as means for resolving the MC–MB paradox. First, I review the simple population genetics of MC. I discuss how host inbreeding and kin selection (Unckless and Herren 2009; Wade and Brandvain 2009), alone or in concert, allow for a response to selection on male fertility and viability fitness effects of maternally transmitted genomes. As a result, inbreeding and kin selection can limit or prevent the spread of mutations in a hereditary symbiosis (Cowles 1915) that are harmful to males. I will show that, for both inbreeding and kin selection, there exist conditions that “favor the spread of maternally transmitted mutations harmful to females”; a situation that is the reverse of MC. However, many outbreeding, asocial species harbor maternally provisioned microbiomes and these solutions cannot be applied to them.I also consider the evolution of compensatory nuclear mutations that mitigate or eliminate the harm to males of organelles or symbionts, spreading via MC dynamics. However, I find that the relative rate of compensatory evolution is only 1/4 the rate of evolution of male-harming symbionts. Thus, an evolutionary rescue of host males via compensatory host nuclear mutations requires that there be fourfold or more opportunities for compensation offered by a larger host nuclear genome. The larger the number of species in a host microbiome, the more difficult it is to entertain host nuclear compensatory mutations as a resolution of the MC–MB paradox.Next, I consider the situation in which a deleterious, VT symbiont harms its host but prevents host infection by a more severely deleterious contagiously transmitted pathogen (Lively et al. 2005; see also Clay 1988). This is a case in which absolute harm to a host by a maternally provisioned symbiont becomes a “relative” fitness advantage. This is a scenario that may be common in hosts with speciose microbial communities, especially if each microbial species increases host resistance or outright immunity to infectious, virulent pathogens.Finally, I discuss models of symbiont domestication and capture via the evolution of vertical transmission from an ancestral state of horizontal transmission (Drown et al. 2013). I show that the evolution of vertical transmission requires conditions that tend to restrict the capacity for male harming by symbionts. Each of these scenarios significantly expands the range of evolutionary possibilities permitted for the coevolution of host–symbiont assemblages, especially those microbial communities that are maternally, uniparentally transmitted across host generations. Unfortunately, current data do not permit discriminating among these various evolutionary responses to MC, so none can be definitively considered a resolution of the MC–MB paradox.  相似文献   

12.
Proteins to be secreted are transported from the endoplasmic reticulum (ER) to the Golgi apparatus. The transport of these proteins requires the localization and activity of proteins that create ER exit sites, coat proteins to collect cargo and to reshape the membrane into a transport container, and address labels—SNARE proteins—to target the vesicles specifically to the Golgi apparatus. In addition some proteins may need export chaperones or export receptors to enable their exit into transport vesicles. ER export factors, SNAREs, and misfolded Golgi-resident proteins must all be retrieved from the Golgi to the ER again. This retrieval is also part of the organellar homeostasis pathway essential to maintaining the identity of the ER and of the Golgi apparatus. In this review, I will discuss the different processes in retrograde transport from the Golgi to the ER and highlight the mechanistic insights we have obtained in the last couple of years.Proteins that are exposed at the plasma membrane or populate a membrane-bounded organelle are synthesized into the endoplasmic reticulum (ER). In the ER, the folding of these proteins takes place and posttranslational modifications such as N-glycosylation and disulfide bridge formation occur. Upon adopting a suitable, often correct, conformation, proteins destined to locations beyond the ER are concentrated at so-called ER exit sites (ERES) and incorporated into nascent COPII-coated vesicles. These COPII vesicles eventually bud off the ER membrane and are transported to the Golgi (in yeast, Drosophila, and C. elegans) or the ER-Golgi intermediate compartment (in mammalian cells) (Schweizer et al. 1990; Kondylis and Rabouille 2003; Spang 2009; Witte et al. 2011).It is assumed that the vesicle coat is at least partially destabilized through the hydrolysis of GTP by the small GTPase Sar1 (Oka and Nakano 1994; Springer et al. 1999). However, some of the destabilized coat components have to stay on the vesicle until it has reached the Golgi apparatus because coat components participate in the recognition and the tethering process (Barlowe 1997; Cai et al. 2007; Lord et al. 2011; Zong et al. 2012). Subsequently, SNARE proteins on the vesicles (v-SNAREs) zipper up with cognate SNAREs on the Golgi (target SNAREs, t-SNAREs) to drive membrane fusion (Hay et al. 1998; Cao and Barlowe 2000; Parlati et al. 2002). The content of the ER-derived COPII vesicles is thereby released into the lumen of the cis-cisterna of the Golgi apparatus. Most proteins will continue their journey through the Golgi apparatus and encounter further modifications such as extension of the glycosylation tree or lipidation. However, some proteins, especially those involved in the fusion process, i.e., the v-SNAREs or proteins that act as export factors of the ER, such as Vma21, which is essential for export of the correctly folded and assembled V0 sector of the V-ATPase, need to be recycled back to the ER for another round of transport (Ballensiefen et al. 1998; Malkus et al. 2004). Moreover, cis-Golgi proteins are returned to the ER for quality/functional control (Todorow et al. 2000; Sato et al. 2004; Valkova et al. 2011). Finally, some ER-resident proteins, such as the ER Hsp70 chaperone BiP/Kar2, can escape the ER, but are captured at the cis-Golgi by the H/KDEL receptor Erd2 and returned to the ER (Lewis et al. 1990; Semenza et al. 1990; Aoe et al. 1997).Unfortunately, the retrograde transport route is also hijacked by toxins. For example, endocytosed cholera toxin subunit A contains a KDEL sequence and can thereby exploit the system to access the ER (Majoul et al. 1996, 1998). From there, it is retro-translocated into the cytoplasm where it can exert its detrimental function.  相似文献   

13.
Microglia are the resident macrophages of the central nervous system (CNS), which sit in close proximity to neural structures and are intimately involved in brain homeostasis. The microglial population also plays fundamental roles during neuronal expansion and differentiation, as well as in the perinatal establishment of synaptic circuits. Any change in the normal brain environment results in microglial activation, which can be detrimental if not appropriately regulated. Aberrant microglial function has been linked to the development of several neurological and psychiatric diseases. However, microglia also possess potent immunoregulatory and regenerative capacities, making them attractive targets for therapeutic manipulation. Such rationale manipulations will, however, require in-depth knowledge of their origins and the molecular mechanisms underlying their homeostasis. Here, we discuss the latest advances in our understanding of the origin, differentiation, and homeostasis of microglial cells and their myelomonocytic relatives in the CNS.Microglia are the resident macrophages of the central nervous system (CNS), which are uniformly distributed throughout the brain and spinal cord with increased densities in neuronal nuclei, including the Substantia nigra in the midbrain (Lawson et al. 1990; Perry 1998). They belong to the nonneuronal glial cell compartment and their function is crucial to maintenance of the CNS in both health and disease (Ransohoff and Perry 2009; Perry et al. 2010; Ransohoff and Cardona 2010; Prinz and Priller 2014).Two key functional features define microglia: immune defense and maintenance of CNS homeostasis. As part of the innate immune system, microglia constantly sample their environment, scanning and surveying for signals of external danger (Davalos et al. 2005; Nimmerjahn et al. 2005; Lehnardt 2010), such as those from invading pathogens, or internal danger signals generated locally by damaged or dying cells (Bessis et al. 2007; Hanisch and Kettenmann 2007). Detection of such signals initiates a program of microglial responses that aim to resolve the injury, protect the CNS from the effects of the inflammation, and support tissue repair and remodeling (Minghetti and Levi 1998; Goldmann and Prinz 2013).Microglia are also emerging as crucial contributors to brain homeostasis through control of neuronal proliferation and differentiation, as well as influencing formation of synaptic connections (Lawson et al. 1990; Perry 1998; Hughes 2012; Blank and Prinz 2013). Recent imaging studies revealed dynamic interactions between microglia and synaptic connections in the healthy brain, which contributed to the modification and elimination of synaptic structures (Perry et al. 2010; Tremblay et al. 2010; Bialas and Stevens 2013). In the prenatal brain, microglia regulate the wiring of forebrain circuits, controlling the growth of dopaminergic axons in the forebrain and the laminar positioning of subsets of neocortical interneurons (Squarzoni et al. 2014). In the postnatal brain, microglia-mediated synaptic pruning is similarly required for the remodeling of neural circuits (Paolicelli et al. 2011; Schafer et al. 2012). In summary, microglia occupy a central position in defense and maintenance of the CNS and, as a consequence, are a key target for the treatment of neurological and psychiatric disorders.Although microglia have been studied for decades, a long history of experimental misinterpretation meant that their true origins remained debated until recently. Although we knew that microglial progenitors invaded the brain rudiment at very early stages of embryonic development (Alliot et al. 1999; Ransohoff and Perry 2009), it has now been established that microglia arise from yolk sac (YS)-primitive macrophages, which persist in the CNS into adulthood (Davalos et al. 2005; Nimmerjahn et al. 2005; Ginhoux et al. 2010, 2013; Kierdorf and Prinz 2013; Kierdorf et al. 2013a). Moreover, early embryonic brain colonization by microglia is conserved across vertebrate species, implying that it is essential for early brain development (Herbomel et al. 2001; Bessis et al. 2007; Hanisch and Kettenmann 2007; Verney et al. 2010; Schlegelmilch et al. 2011; Swinnen et al. 2013). In this review, we will present the latest findings in the field of microglial ontogeny, which provide new insights into their roles in health and disease.  相似文献   

14.
Epithelial cell–cell junctions are formed by apical adherens junctions (AJs), which are composed of cadherin adhesion molecules interacting in a dynamic way with the cortical actin cytoskeleton. Regulation of cell–cell junction stability and dynamics is crucial to maintain tissue integrity and allow tissue remodeling throughout development. Actin filament turnover and organization are tightly controlled together with myosin-II activity to produce mechanical forces that drive the assembly, maintenance, and remodeling of AJs. In this review, we will discuss these three distinct stages in the lifespan of cell–cell junctions, using several developmental contexts, which illustrate how mechanical forces are generated and transmitted at junctions, and how they impact on the integrity and the remodeling of cell–cell junctions.Cell–cell junction formation and remodeling occur repeatedly throughout development. Epithelial cells are linked by apical adherens junctions (AJs) that rely on the cadherin-catenin-actin module. Cadherins, of which epithelial E-cadherin (E-cad) is the most studied, are Ca2+-dependent transmembrane adhesion proteins forming homophilic and heterophilic bonds in trans between adjacent cells. Cadherins and the actin cytoskeleton are mutually interdependent (Jaffe et al. 1990; Matsuzaki et al. 1990; Hirano et al. 1992; Oyama et al. 1994; Angres et al. 1996; Orsulic and Peifer 1996; Adams et al. 1998; Zhang et al. 2005; Pilot et al. 2006). This has long been attributed to direct physical interaction of E-cad with β-catenin (β-cat) and of α-catenin (α-cat) with actin filaments (for reviews, see Gumbiner 2005; Leckband and Prakasam 2006; Pokutta and Weis 2007). Recently, biochemical and protein dynamics analyses have shown that such a link may not exist and that instead, a constant shuttling of α-cat between cadherin/β-cat complexes and actin may be key to explain the dynamic aspect of cell–cell adhesion (Drees et al. 2005; Yamada et al. 2005). Regardless of the exact nature of this link, several studies show that AJs are indeed physically attached to actin and that cadherins transmit cortical forces exerted by junctional acto-myosin networks (Costa et al. 1998; Sako et al. 1998; Pettitt et al. 2003; Dawes-Hoang et al. 2005; Cavey et al. 2008; Martin et al. 2008; Rauzi et al. 2008). In addition, physical association depends in part on α-cat (Cavey et al. 2008) and additional intermediates have been proposed to represent alternative missing links (Abe and Takeichi 2008) (reviewed in Gates and Peifer 2005; Weis and Nelson 2006). Although further work is needed to address the molecular nature of cadherin/actin dynamic interactions, association with actin is crucial all throughout the lifespan of AJs. In this article, we will review our current understanding of the molecular mechanisms at work during three different developmental stages of AJs biology: assembly, stabilization, and remodeling, with special emphasis on the mechanical forces controlling AJs integrity and development.  相似文献   

15.
According to the “generic view” of protein aggregation, the ability to self-assemble into stable and highly organized structures such as amyloid fibrils is not an unusual feature exhibited by a small group of peptides and proteins with special sequence or structural properties, but rather a property shared by most proteins. At the same time, through a wide variety of techniques, many of which were originally devised for applications in other disciplines, it has also been established that the maintenance of proteins in a soluble state is a fundamental aspect of protein homeostasis. Taken together, these advances offer a unified framework for understanding the molecular basis of protein aggregation and for the rational development of therapeutic strategies based on the biological and chemical regulation of protein solubility.Virtually every complex biochemical process taking place in living cells depends on the ability of the molecules involved to self-assemble into functional structures (Dobson 2003; Robinson et al. 2007; Russel et al. 2009), and a sophisticated quality control system is responsible for regulating the reactions leading to this organization within the cellular environment (Dobson 2003; Balch et al. 2008; Hartl and Hayer-Hartl 2009; Powers et al. 2009; Vendruscolo and Dobson 2009). Proteins are the molecules that are essential for enabling, regulating, and controlling almost all the tasks necessary to maintain such a balance. To function, the majority of our proteins need to fold into specific three-dimensional structures following their biosynthesis in the ribosome (Hartl and Hayer-Hartl 2002). The wide variety of highly specific structures that results from protein folding, and which serve to bring key functional groups into close proximity, has enabled living systems to develop an astonishing diversity and selectivity in their underlying chemical processes by using a common set of just 20 basic molecular components, the amino acids (Dobson 2003). Given the central importance of protein folding, it is not surprising that the failure of proteins to fold correctly, or to remain correctly folded, is at the origin of a wide variety of pathological conditions, including late-onset diabetes, cystic fibrosis, and Alzheimer’s and Parkinson’s diseases (Dobson 2003; Chiti and Dobson 2006; Haass and Selkoe 2007). In many of these disorders proteins self-assemble in an aberrant manner into large molecular aggregates, notably amyloid fibrils (Chiti and Dobson 2006; Ramirez-Alvarado et al. 2010).  相似文献   

16.
The spatial pattern of branches within axonal or dendritic arbors and the relative arrangement of neighboring arbors with respect to one another impact a neuron''s potential connectivity. Although arbors can adopt diverse branching patterns to suit their functions, evenly spread branches that avoid clumping or overlap are a common feature of many axonal and dendritic arbors. The degree of overlap between neighboring arbors innervating a surface is also characteristic within particular neuron types. The arbors of some populations of neurons innervate a target with a comprehensive and nonoverlapping “tiled” arrangement, whereas those of others show substantial territory overlap. This review focuses on cellular and molecular studies that have provided insight into the regulation of spatial arrangements of neurite branches within and between arbors. These studies have revealed principles that govern arbor arrangements in dendrites and axons in both vertebrates and invertebrates. Diverse molecular mechanisms controlling the spatial patterning of sister branches and neighboring arbors have begun to be elucidated.Axonal and dendritic arbors adopt complex and morphologically diverse shapes that influence neural connectivity and information processing. In this article we review anatomical and molecular studies that elucidate how the arrangements of branches within neuronal arbors are established during development (isoneuronal spacing) and how the relative spacing of arbors is determined when multiple neurons together innervate a defined territory (heteroneuronal spacing). Together these mechanisms ensure that arbors achieve functionally appropriate coverage of input or output territories.Isoneuronal and heteroneuronal processes display a variety of spacing arrangements, suggesting a diversity of underlying molecular mechanisms. Self-avoidance can occur between branches that arise from a single soma (Yau 1976; Kramer and Kuwada 1983; Kramer and Stent 1985), implying that neurons are able to discriminate “self,” which they avoid, from “nonself” arbors, with which they coexist (Kramer and Kuwada 1983). Similarly, arbors from different cells that share the same function and together innervate a defined territory can create a pattern of minimally overlapping neighboring dendritic or axonal fields, known as tiling. Such spacing mechanisms ensure that arbors maximize their spread across a territory while minimizing the redundancy with which the territory is innervated. In contrast, adhesive interactions between arbors can operate to maintain coherence of dendrites at specific targets (Zhu and Luo 2004), or to bundle functionally similar processes and possibly coordinate their activity (Campbell et al. 2009). Understanding how processes are patterned relative to one another can help to uncover the functional logic of neural circuit organization.Here we focus primarily on mechanisms of isoneuronal and heteroneuronal avoidance that result in complete and nonredundant innervation of sensory or synaptic space. Such mechanisms have been studied extensively in systems where neuronal arbors innervate a two-dimensional plane, such as the retina or body wall (Wassle et al. 1981; Perry and Linden 1982; Hitchcock 1989; Lin and Masland 2004; Fuerst et al. 2009; Kramer and Stent 1985; Grueber et al. 2003; Sugimura et al. 2003; Sagasti et al. 2005). However, the principles regulating process spacing in these regions likely also apply in three dimensions, most prominently where processes are segregated into nonoverlapping domains or columns (Huckfeldt et al. 2009). It is also notable that nonneuronal cell types might similarly engage in self-avoidance and form tiling arrangements, including leech comb cells (Jellies and Kristan 1991) and mammalian astrocytes (Bushong et al. 2002; Ogata and Kosaka 2002; Livet et al. 2007). Elucidating the mechanisms of process spacing during development is therefore relevant for understanding principles of tissue organization inside and outside of the nervous system.  相似文献   

17.
The TAM receptors—Tyro3, Axl, and Mer—comprise a unique family of receptor tyrosine kinases, in that as a group they play no essential role in embryonic development. Instead, they function as homeostatic regulators in adult tissues and organ systems that are subject to continuous challenge and renewal throughout life. Their regulatory roles are prominent in the mature immune, reproductive, hematopoietic, vascular, and nervous systems. The TAMs and their ligands—Gas6 and Protein S—are essential for the efficient phagocytosis of apoptotic cells and membranes in these tissues; and in the immune system, they act as pleiotropic inhibitors of the innate inflammatory response to pathogens. Deficiencies in TAM signaling are thought to contribute to chronic inflammatory and autoimmune disease in humans, and aberrantly elevated TAM signaling is strongly associated with cancer progression, metastasis, and resistance to targeted therapies.The name of the TAM family is derived from the first letter of its three constituents—Tyro3, Axl, and Mer (Prasad et al. 2006). As detailed in Figure 1, members of this receptor tyrosine kinase (RTK) family were independently identified by several different groups and appear in the early literature under multiple alternative names. However, Tyro3, Axl, and Mer (officially c-Mer or MerTK for the protein, Mertk for the gene) have now been adopted as the NCBI designations. The TAMs were first grouped into a distinct RTK family (the Tyro3/7/12 cluster) in 1991, through PCR cloning of their kinase domains (Lai and Lemke 1991). The isolation of full-length cDNAs for Axl (O''Bryan et al. 1991), Mer (Graham et al. 1994), and Tyro3 (Lai et al. 1994) confirmed their segregation into a structurally distinctive family of orphan RTKs (Manning et al. 2002b). The two ligands that bind and activate the TAMs—Gas6 and Protein S (Pros1)—were identified shortly thereafter (Ohashi et al. 1995; Stitt et al. 1995; Mark et al. 1996; Nagata et al. 1996).Open in a separate windowFigure 1.TAM receptors and ligands. The TAM receptors (red) are Tyro3 (Lai and Lemke 1991; Lai et al. 1994)—also designated Brt (Fujimoto and Yamamoto 1994), Dtk (Crosier et al. 1994), Rse (Mark et al. 1994), Sky (Ohashi et al. 1994), and Tif (Dai et al. 1994); Axl (O''Bryan et al. 1991)—also designated Ark (Rescigno et al. 1991), Tyro7 (Lai and Lemke 1991), and Ufo (Janssen et al. 1991); and Mer (Graham et al. 1994)—also designated Eyk (Jia and Hanafusa 1994), Nyk (Ling and Kung 1995), and Tyro12 (Lai and Lemke 1991). The TAMs are widely expressed by cells of the mature immune, nervous, vascular, and reproductive systems. The TAM ligands (blue) are Gas6 and Protein S (Pros1). The carboxy-terminal SHBG domains of the ligands bind to the immunoglobulin (Ig) domains of the receptors, induce dimerization, and activate the TAM tyrosine kinases. When γ-carboxylated in a vitamin-K-dependent reaction, the amino-terminal Gla domains of the dimeric ligands bind to the phospholipid phosphatidylserine expressed on the surface on an apposed apoptotic cell or enveloped virus. See text for details. (From Lemke and Burstyn-Cohen 2010; adapted, with permission, from the authors.)Subsequent progress on elucidating the biological roles of the TAM receptors was considerably slower and ultimately required the derivation of mouse loss-of-function mutants (Camenisch et al. 1999; Lu et al. 1999). The fact that Tyro3−/−, Axl−/−, and Mer−/− mice are all viable and fertile permitted the generation of a complete TAM mutant series that included all possible double mutants and even triple mutants that lack all three receptors (Lu et al. 1999). Remarkably, these Tyro3−/−Axl−/−Mer−/− triple knockouts (TAM TKOs) are viable, and for the first 2–3 wk after birth, superficially indistinguishable from their wild-type counterparts (Lu et al. 1999). Because many RTKs play essential roles in embryonic development, even single loss-of-function mutations in RTK genes often result in an embryonic-lethal phenotype (Gassmann et al. 1995; Lee et al. 1995; Soriano 1997; Arman et al. 1998). The postnatal viability of mice in which an entire RTK family is ablated completely—the TAM TKOs can survive for more than a year (Lu et al. 1999)—is therefore highly unusual. Their viability notwithstanding, the TAM mutants go on to develop a plethora of phenotypes, some of them debilitating (Camenisch et al. 1999; Lu et al. 1999; Lu and Lemke 2001; Scott et al. 2001; Duncan et al. 2003; Prasad et al. 2006). Almost without exception, these phenotypes are degenerative in nature and reflect the loss of TAM signaling activities in adult tissues that are subject to regular challenge, renewal, and remodeling. These activities are the subject of this review.  相似文献   

18.
Self-assembled vesicles are essential components of primitive cells. We review the importance of vesicles during the origins of life, fundamental thermodynamics and kinetics of self-assembly, and experimental models of simple vesicles, focusing on prebiotically plausible fatty acids and their derivatives. We review recent work on interactions of simple vesicles with RNA and other studies of the transition from vesicles to protocells. Finally we discuss current challenges in understanding the biophysics of protocells, as well as conceptual questions in information transmission and self-replication.For synthetic biologists, a useful operational definition of life is “a self-sustaining chemical system capable of Darwinian evolution,” which was adopted by the Exobiology program of NASA (Joyce 1994). In the quest to build a simple living system, much recent interest has focused on encapsulating a genetic or metabolic system inside membrane vesicles (Deamer and Dworkin 2005; Luisi et al. 1999; Morowitz et al. 1988; Ourisson and Nakatani 1994; Szostak et al. 2001). Vesicles are supramolecular aggregates containing an aqueous interior that is separated from the bulk solution by one or more bilayers of amphiphiles.Why use vesicles? Although they are not strictly required in this definition of life, there are two major reasons why vesicle membranes are thought to be important. The first is that the membrane forms a semipermeable barrier that permits small molecules to pass into the cellular space and traps modified (e.g., phosphorylated or polymerized) products. The second reason is evolutionary: The membrane separates different genomes from one another and reduces the problem of inactive parasites (Szathmary and Demeter 1987; Szostak et al. 2001). During the origin of life, physical grouping is a plausible way for replicator enzymes (replicases) to interact nonrandomly. For example, replicases encapsulated in growing and dividing membrane vesicles would tend to be trapped with sequences related to their own sequence, and thus would preferentially copy those sequences. Because the vesicles separate different genomes from each other, poor replicases would not have access to active replicases, whereas mutants with improved replicase activity would benefit directly themselves, as their descendants remain in the same vesicle and copy each other. An occasional parasitic sequence would be separated from most of the active polymerases during vesicle division and could not poison the entire system (the “stochastic corrector” model) (Smith and Szathmary 1995; Szathmary and Demeter 1987). Thus, a higher level of population organization, the cell, greatly facilitates the evolution of more efficient replicases (Cavalier-Smith 2001; Koch 1984; Matsuura et al. 2002; Szathmary and Demeter 1987; Szostak et al. 2001).Membrane vesicles are not the only way to segregate different genomes. The attachment of molecules onto surfaces also creates a heterogeneous distribution of interactions based on spatial proximity, a scenario that has been investigated theoretically using cellular automata models (Szabo et al. 2002). Although they may not have been the initial means of achieving genomic segregation during the origin of life, membranes are the dominant means of separating cells today. Membranes presumably assumed this function very long ago, at least three to four billion years ago, at some time before the diversification from the last common ancestor.Vesicle morphologies and topologies can cover a rich and diverse landscape (Fig. 1, top), although experimentalists tend to prefer unilamellar vesicles because data can be more easily interpreted in this context, and because these vesicles resemble contemporary cells, which use the plasma membrane to separate the cell’s interior from the outside environment. The plasma membrane is composed of roughly equal parts protein and lipid amphiphiles, so one might assume that a protocell membrane was also composed of amphiphilic lipids and/or peptides. However, for simplicity, most experimental work thus far has focused on vesicles made of only one or two prebiotically plausible components (e.g., fatty acid). Vesicles can be made using many different types of amphiphiles, either naturally occurring or synthetic (Fig. 1, bottom). Because of the general robustness of the formation of vesicles, this process has been called an “archetype of self-assembly” (Antonietti and Foerster 2003).Open in a separate windowFigure 1.Diversity of morphology and composition of self-assembled vesicles. Top: Schematic representation of possible morphologies and shape changes. Vesicles may be multi-, oligo-, or unilamellar. They may also be multivesicular (containing smaller vesicles inside a large vesicle). Under certain conditions and for certain amphiphiles, vesicle shape changes can be induced (e.g., leading to vesicle budding and fission). Vesicles may also be nonspherical (e.g., tubular). The diameter of vesicles may vary between about 30 nm and more than 100 µm. Bottom: Vesicle formation occurs for a large number of chemically diverse amphiphiles, including those naturally occurring in biomembranes as well as completely synthetic amphiphiles. Of particular interest are single-chain amphiphiles (or mixtures of amphiphiles) that are potentially prebiotic.In this article, we first review some fundamentals of self-assembly and focus on important features of vesicles made from single chain amphiphiles. For further discussion of vesicles as model prebiotic experimental systems, we refer the reader to reviews already in the literature (Mansy 2009; Monnard and Deamer 2003; Walde and Ichikawa 2001; Walde et al. 2006) and references contained within these reviews. We then turn to recent results and current challenges in research related to vesicles in the origins of life.  相似文献   

19.
20.
Growth factors and oncogenic kinases play important roles in stimulating cell growth during development and transformation. These processes have significant energetic and synthetic requirements and it is apparent that a central function of growth signals is to promote glucose metabolism to support these demands. Because metabolic pathways represent a fundamental aspect of cell proliferation and survival, there is considerable interest in targeting metabolism as a means to eliminate cancer. A challenge, however, is that molecular links between metabolic stress and cell death are poorly understood. Here we review current literature on how cells cope with metabolic stress and how autophagy, apoptosis, and necrosis are tightly linked to cell metabolism. Ultimately, understanding of the interplay between nutrients, autophagy, and cell death will be a key component in development of new treatment strategies to exploit the altered metabolism of cancer cells.Although single-celled organisms grow and proliferate based on nutrient availability, metazoan cells rely on growth factor input to promote nutrient uptake, regulate growth and proliferation, and survive (Raff 1992; Rathmell et al. 2000). Access and competition for these signals are critical in developmental patterning and to maintain homeostasis of mature tissues. Cells that do not receive proper growth factor signals typically atrophy, lose the ability to uptake and use extracellular nutrients, and instead induce the self-digestive process of autophagy as an intracellular energy source before ultimately undergoing programmed cell death. Cancer cells, in contrast, often become independent of extracellular growth signals by gaining mutations or expressing oncogenic kinases to drive intrinsic growth signals that mimic growth factor input, which can be the source of oncogene addiction. Growth factor input or oncogenic signals often drive highly elevated glucose uptake and metabolism (Rathmell et al. 2000; DeBerardinis et al. 2008; Michalek and Rathmell 2010). First described in cancer by Warburg in the 1920s, this highly glycolytic metabolic program is termed aerobic glycolysis and is a general feature of many nontransformed proliferative cells (Warburg 1956; DeBerardinis et al. 2008).Nutrient uptake and aerobic glycolysis induced by growth signals play key roles in cell survival (Vander Heiden et al. 2001). Manipulating cell metabolism as a means to promote the death of inappropriately dividing cells, therefore, is a promising new avenue to treat disease. Targeting the altered metabolism of cancer cells in particular is of great interest. It is still unclear at the molecular level, however, how inhibiting or modulating cell metabolism leads to apoptosis, and how these pathways may best be exploited (Dang et al. 2009; Wise and Thompson 2010).Growth factor or oncogenic kinases promote multiple metabolic pathways that are essential to prevent metabolic stress and may be targets in efforts to link metabolism and cell death (Vander Heiden et al. 2001). Decreased glucose metabolism on loss of growth signals leads to decreased ATP generation as well as loss in generation of many biosynthetic precursor molecules, including nucleic acids, fatty acids, and acetyl-CoA for acetylation (Zhao et al. 2007; Wellen et al. 2009; Coloff et al. 2011). Glucose is also important as a precursor for the hexosamine pathway, to allow proper glycosylation and protein folding in the endoplasmic reticulum (Dennis et al. 2009; Kaufman et al. 2010). If glucose metabolism remains insufficient or disrupted, the cells can switch to rely on mitochondrial oxidation of fatty acids and amino acids, which are energy rich but do not readily support cell growth and can lead to potentially dangerous levels of reactive oxygen species (Wellen and Thompson 2010). Amino acid deficiency can directly inhibit components of the signaling pathways downstream from growth factors and activate autophagy (Lynch 2001; Beugnet et al. 2003; Byfield et al. 2005; Nobukuni et al. 2005). Finally, hypoxia induces a specific pathway to increase nutrient uptake and metabolism via the hypoxia-inducible factor (HIF1/2α) that promotes adaptation to anaerobic conditions, but may lead to apoptosis if hypoxia is severe (Saikumar et al. 1998; Suzuki et al. 2001; Fulda and Debatin 2007).Typically a combination of metabolic stresses rather than loss of a single nutrient input occur at a given time (Degenhardt et al. 2006) and autophagy is activated to mitigate damage and provide nutrients for short-term survival (Bernales et al. 2006; Tracy et al. 2007; Altman et al. 2011; Guo et al. 2011). Autophagy is a cellular process of bulk cytoplasmic and organelle degradation common to nearly all eukaryotes. Unique double-membraned vesicles known as autophagosomes engulf cellular material and fuse with lysosomes to promote degradation of the contents (Kelekar 2005). Described in greater detail below, autophagy can reduce sources of stress, such as protein aggregates and damaged or dysfunctional intracellular organelles, and provide nutrients during times of transient and acute nutrient withdrawal.Despite the protective effects of autophagy, cells deprived of growth signals, nutrients, or oxygen for prolonged times will eventually succumb to cell death. Apoptosis is the initial death response on metabolic stress and is regulated by Bcl-2 family proteins. In healthy cells, antiapoptotic Bcl-2 family proteins, such as Bcl-2, Bcl-xl, and Mcl-1, bind and inhibit the multidomain proapoptotic proteins Bax and Bak (van Delft and Huang 2006; Walensky 2006; Chipuk et al. 2010). In metabolic stress, proapoptotic “BH3-only” proteins of the Bcl-2 family are induced or activated and bind to and inhibit the antiapoptotic Bcl-2 family proteins to allow activation of the proapoptotic Bax and Bak (Galonek and Hardwick 2006). The BH3-only proteins Bim, Bid, and Puma can also directly bind and activate Bax and Bak (Letai et al. 2002; Ren et al. 2010). Active Bax and Bak disrupt the outer mitochondrial membrane (termed mitochondrial outer-membrane permeabilization, or MOMP) and release several proapoptotic factors including cytochrome-C that activate the apoptosome that in turn activates effector caspases to cleave a variety of cellular proteins and drive apoptosis (Schafer and Kornbluth 2006). In cases in which these apoptotic pathways are suppressed, metabolic stress can instead lead to necrotic cell death (Jin et al. 2007).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号