首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change and invasive species are two of the most serious threats of biodiversity. A general concern is that these threats interact, and that a globally warming climate could favour invasive species. In this study we investigate the invasive potential of one of the “100 of the world’s worst invasive species”, the big-headed ant Pheidole megacephala. Using ecological niche models, we estimated the species’ potential suitable habitat in 2020, 2050 and 2080. With an ensemble forecast obtained from five different modelling techniques, 3 Global Circulation Models and 2 CO2 emission scenarios, we generated world maps with suitable climatic conditions and assessed changes, both qualitatively and quantitatively. Almost one-fifth (18.5 %) of the landmass currently presents suitable climatic conditions for P. megacephala. Surprisingly, our results also indicate that the invasion of big-headed ants is not only unlikely to benefit from climate change, but may even suffer from it. Our projections show a global decrease in the invasive potential of big-headed ants as early as 2020 and becoming even stronger by 2080 reaching a global loss of 19.4 % of area with favourable climate. The decrease is observable in all 6 broad regions, being greatest in the Oceania and lowest in Europe.  相似文献   

2.
《Journal of Asia》2020,23(1):219-223
The bluegrass webworm moth Parapediasia teterrella (Zincken, 1821) is a notorious pest that is native to North America. However, it has invaded East Asia and has caused serious economic losses in China and Japan. The objective of this paper is to analyse the potential geographic distribution of P. teterrella in East Asia with MaxEnt, using predictor variables related to temperature and precipitation. It is suggested that this species has potential to establish in Southeast China, most areas of Jeollanam-do, eastern coastal region of South Korea, and most areas of Japan. Furthermore, we applied the Jackknife test to evaluate the significance of climatic variables in modelling the potential distribution of P. teterrella. The result indicates that annual mean temperature (Bio1), mean temperature of the coldest quarter (Bio11) and precipitation of the coldest quarter (Bio19) mainly affect its geographical distribution. A map showing the potential distribution of P. teterrella in East Asia is provided, and morphological diagnosis of the species is also given.  相似文献   

3.
  1. Invasive alien species and climate change are two of the most serious global environmental threats. In particular, it is of great interest to understand how changing climates could impact the distribution of invaders that pose serious threats to ecosystems and human activities.
  2. In this study, we developed ensemble species distribution models for predicting the current and future global distribution of the signal crayfish Pacifastacus leniusculus and the red swamp crayfish Procambarus clarkii, two of the most highly problematic invaders of freshwater ecosystems worldwide. We collected occurrence records of the species, from native and alien established ranges worldwide. These records in combination with averaged observations of current climatic conditions were used to calibrate a set of 10 distinct correlative models for estimating the climatic niche of each species. We next projected the estimated niches into the geographical space for the current climate conditions and for the 2050s and 2070s under representative concentration pathway 2.6 and 8.5 scenarios.
  3. Our species distribution models had high predictive abilities and suggest that annual mean temperature is the main driver of the distribution of both species. Model predictions indicated that the two crayfish species have not fully occupied their suitable climates and will respond differently to future climate scenarios in different geographic regions. Suitable climate for P. leniusculus was predicted to shift poleward and to increase in extent in North America and Europe but decrease in Asia. Regions with suitable climate for P. clarkii are predicted to widen in Europe but contract in North America and Asia.
  4. This study highlights that invasive species with different thermal preference are likely to respond differently to future climate changes. Our results provide important information for policy makers to design and implement anticipated measures for the prevention and control of these two problematic species.
  相似文献   

4.
【目的】分析核桃黑斑蚜与核桃全斑蚜在全球范围内的潜在分布,比较气候变化对其分布的影响,为核桃有害生物综合管理策略的制定提供依据。【方法】基于实验室和野外试验,结合CLIMEX软件对核桃黑斑蚜与核桃全斑蚜在目前及未来气候条件下的潜在地理分布进行了模拟和系统评估。【结果】2种核桃蚜虫适生区十分相似,在世界范围内主要分布区集中在欧洲、北美洲、亚洲等区域,核桃黑斑蚜适生区范围大于核桃全斑蚜,但在我国,核桃黑斑蚜适生区范围小于核桃全斑蚜。气候变化将决定2种蚜虫分布的差异性,未来气候情景下,2种蚜虫适生区将发生变化,在欧洲、北美洲和亚洲适生区范围向高纬度延伸;在我国适生区范围逐渐减小。【结论】在世界范围内,核桃黑斑蚜与核桃全斑蚜适生区域主要分布在25°N-75°N内的亚洲、欧洲、北美洲的部分地区;在我国,其适生区域主要分布在东部季风区内的东北的南部、西北东南部、西南中部、华中北部以及华北地区。  相似文献   

5.
Light brown apple moth Epiphyas postvittana is a significant horticultural pest native to Australia that currently has a limited global distribution. However, this pest can tolerate very heterogeneous climates and has a wide host range. It has recently established in California with considerable consequences for US international and domestic trade. It has resulted in increasing calls for targeted risk assessment so that appropriate quarantine measures can be put in place to prevent its entry into new regions and further spread. Potential global distribution has been predicted by comparing the climatic conditions of its native (Australia) and long-established (New Zealand) ranges to the rest of the world using CLIMEX. It was suggested that E. postvittana has potential to establish mainly in countries in Central and South America, southern Africa, Western Europe and Southeast Asia. The study provides basic information for further assessment of the establishment capacity of this species in new habitats, and adds to the knowledge required to make science-based decisions in biosecurity.  相似文献   

6.

Background

The tiger mosquito, Aedes albopictus, is one of the 100 most invasive species in the world and a vector of human diseases. In the last 30 years, it has spread from its native range in East Asia to Africa, Europe, and the Americas. Although this modern invasion has been the focus of many studies, the history of the species’ native populations remains poorly understood. Here, we aimed to assess the role of Pleistocene climatic changes in shaping the current distribution of the species in its native range.

Methodology/Principal Findings

We investigated the phylogeography, historical demography, and species distribution of Ae. albopictus native populations at the Last Glacial Maximum (LGM). Individuals from 16 localities from East Asia were analyzed for sequence variation at two mitochondrial genes. No phylogeographic structure was observed across the study area. Demographic analyses showed a signature of population expansion that started roughly 70,000 years BP. The occurrence of a continuous and climatically suitable area comprising Southeast China, Indochinese Peninsula, and Sundaland during LGM was indicated by species distribution modelling.

Conclusions/Significance

Our results suggest an evolutionary scenario in which, during the last glacial phase, Ae. albopictus did not experience a fragmentation phase but rather persisted in interconnected populations and experienced demographic growth. The wide ecological flexibility of the species probably played a crucial role in its response to glacial-induced environmental changes. Currently, there is little information on the impact of Pleistocene climatic changes on animal species in East Asia. Most of the studies focused on forest-associated species and suggested cycles of glacial fragmentation and post-glacial expansion. The case of Ae. albopictus, which exhibits a pattern not previously observed in the study area, adds an important piece to our understanding of the Pleistocene history of East Asian biota.  相似文献   

7.
Understanding the historical dynamics of animal species is critical for accurate prediction of their response to climate changes. During the late Quaternary period, Southeast Asia had a larger land area than today due to lower sea levels, and its terrestrial landscape was covered by extensive forests and savanna. To date, however, the distribution fluctuation of vegetation and its impacts on genetic structure and demographic history of local animals during the Last Glacial Maximum (LGM) are still disputed. In addition, the responses of animal species on Hainan Island, located in northern Southeast Asia, to climate changes during the LGM are poorly understood. Here, we combined phylogeographic analysis, paleoclimatic evidence, and species distribution models to examine the response of the flightless Hainan Partridge (Arborophila ardens) to climate change. We concluded that A. ardens survived through LGM climate changes, and its current distribution on Hainan Island was its in situ refuge. Range model results indicated that A. ardens once covered a much larger area than its current distribution. Demographic history described a relatively stable pattern during and following the LGM. In addition, weak population genetic structure suggests a role in promoting gene flow between populations with climate-induced elevation shifts. Human activities must be considered in conservation planning due to their impact on fragmented habitats. These first combined data for Hainan Partridge demonstrate the value of paired genetic and SDMs study. More related works that might deepen our understanding of the responses of the species in Southeast Asia to late Quaternary Climate are needed.  相似文献   

8.
Thespesia consists of 16 species of trees and shrubs from Southeast Asia–Oceania, Africa and America, the most well known being T. populnea, a small tree of tropical coastal areas around the world. Phylogenetic relationships in the genus and among its allies in tribe Gossypieae were inferred using three plastid and two nuclear regions to ascertain its generic delimitation and explore its biogeographical history. Maximum‐likelihood and Bayesian analyses confirmed that Thespesia is not monophyletic and, based on these results, Azanza is reinstated to accommodate the two species previously placed in Thespesia section Lampas. Dating analyses and ancestral range estimation indicated that Thespesia s.s. most likely originated in Southeast Asia–Oceania c. 30 Mya, but extant species did not begin to differentiate until the late Miocene. Two dispersal events, one into Africa c. 11 Mya and another into America (Antilles) c. 9 Mya, gave rise to the African and the Greater Antillean endemics, respectively. The two most widespread hydrochorous species, T. populnea and T. populneoides, originated in Southeast Asia–Oceania from where they spread to other parts of the world. Our analysis also indicated a much earlier origin than previously reported for the eumalvoid clade and its tribes Gossypieae, Malveae and Hibisceae suggesting that vicariance might have had an important role early in the history of these groups.  相似文献   

9.

Aim

The ectomycorrhizal genus Strobilomyces is widely distributed throughout many parts of the world, but its origin, divergence and distribution patterns remain largely unresolved. In this study, we aim to explore the species diversity, distribution and evolutionary patterns of Strobilomyces on a global scale by establishing a general phylogenetic framework with extensive sampling.

Location

Africa, Australasia, East Asia, Europe, North America, Central America and Southeast Asia.

Methods

The genealogical concordance phylogenetic species recognition method was used to delimit phylogenetic species. Divergence times were estimated using a Bayesian uncorrelated lognormal relaxed molecular clock. The ancestral area and host of Strobilomyces were inferred via the programs rasp and mesquite . The change of diversification rate over time was estimated using Ape, Laser and Bammtools software packages.

Results

We recognize a novel African clade and 49 phylogenetic species with morphological evidence, including 18 new phylogenetic species and 23 previously described ones. Strobilomyces probably originated in Africa, in association with Detarioideae/Phyllanthaceae/Monotoideae during the early Eocene. The dispersal to Southeast Asia can be explained by Wolfe's “Boreotropical migration” hypothesis. East Asia, Australasia, Europe and North/Central America are primarily the recipients of immigrant taxa during the Oligocene or later. A rapid radiation implied by one diversification shift was inferred within Strobilomyces during the Miocene.

Main conclusions

An unexpected phylogenetic species diversity within Strobilomyces was uncovered. The highest diversity, resulting probably from a rapid radiation, was found in East Asia. Dispersal played an important role in the current distribution pattern of Strobilomyces. The Palaeotropical disjunction is explained by species dispersal from Africa to Southeast Asia through boreotropical forests during the early Eocene. Species from the Northern Hemisphere and Australasia are largely derived from immigrant ancestors from Southeast Asia.  相似文献   

10.
We present the first extensive and integrative analysis of niche evolution based on climatic variables and a dated molecular phylogeny of a heterogeneous avian group of Southeast Asian scimitar babblers of the genus Pomatorhinus. The four main clades of scimitar babblers have species that co-occur in similar areas across southern Asia but some have diverged at different timeframes, with the most recently evolved clade harboring the highest number of species. Ecological niche models and analysis of contributing variables within a phylogenetic framework indicate instances of convergent evolution of members of different clades onto similar ecological parameter space, as well as divergent evolution of members from within clades. Pomatorhinus species from different clades occupying Himalayan foothills show convergence towards similar climatic tolerances, whereas within a clade, allopatric sister-species occurring in the Himalayas have diverged to occupy different climatic parameter spaces. Comparisons of climatic tolerances of Himalayan foothills taxa with species distributed further south in Assam/Burma and Burma/Thailand indicate convergence towards similar parameter spaces in several climatic variables. Niche overlap was observed to be lower among species of the youngest clade (ruficollis) and higher among species of older clades (ferruginosus). Analysis of accumulation of ecological disparity through time indicates rapid divergence within recent time frames. As a result, Himalayan taxa originating at different temporal scales within the four main scimitar babbler clades have differentiated ecologically only in recently diverged taxa. Our study suggests that the repeated orogenic and climatic fluctuations of the Pliocene and Pleistocene within mainland Southeast Asia served as an important ecological speciation driver within scimitar babblers, by providing opportunities for rapid geographic expansion and filling of novel environmental niches.  相似文献   

11.
Aim Niche‐based distribution models are often used to predict the spread of invasive species. These models assume niche conservation during invasion, but invasive species can have different requirements from populations in their native range for many reasons, including niche evolution. I used distribution modelling to investigate niche conservatism for the Asian tiger mosquito (Aedes albopictus Skuse) during its invasion of three continents. I also used this approach to predict areas at risk of invasion from propagules originating from invasive populations. Location Models were created for Southeast Asia, North and South America, and Europe. Methods I used maximum entropy (Maxent ) to create distribution models using occurrence data and 18 environmental datasets. One native model was created for Southeast Asia; this model was projected onto North America, South America and Europe. Three models were created independently for the non‐native ranges and projected onto the native range. Niche overlap between native and non‐native predictions was evaluated by comparing probability surfaces between models using real data and random models generated using a permutation approach. Results The native model failed to predict an entire region of occurrences in South America, approximately 20% of occurrences in North America and nearly all Italian occurrences of A. albopictus. Non‐native models poorly predict the native range, but predict additional areas at risk for invasion globally. Niche overlap metrics indicate that non‐native distributions are more similar to the native niche than a random prediction, but they are not equivalent. Multivariate analyses support modelled differences in niche characteristics among continents, and reveal important variables explaining these differences. Main conclusions The niche of A. albopictus has shifted on invaded continents relative to its native range (Southeast Asia). Statistical comparisons reveal that the niche for introduced distributions is not equivalent to the native niche. Furthermore, reciprocal models highlight the importance of controlling bi‐directional dispersal between native and non‐native distributions.  相似文献   

12.
Summaries of recent rapid range expansions shown by the house crow Corvus splendens have provided insights into the global nature of this invasion process, but its long-term potential has not yet been evaluated. To explore the potential dimensions of this geographic expansion, we used ecological niche modeling based on known occurrences of the species on its native distributional area, in the context of GIS data sets describing climatic variables, topographic information, and human presence. Our models provided predictions of areas already invaded that were statistically significantly more coincident than expected under random (null) models. The predicted potential range of the species includes areas already affected, as well as potentially suitable areas in Central America, the Caribbean, equatorial and West Africa, and mainland and insular Southeast Asia, not yet colonized.  相似文献   

13.
Zhu G  Bu W  Gao Y  Liu G 《PloS one》2012,7(2):e31246

Background

The Brown Marmorated Stink Bug (BMSB), Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), native to Asia, is becoming an invasive species with a rapidly expanding range in North America and Europe. In the US, it is a household pest and also caused unprecedented damage to agriculture crops. Exploring its climatic limits and estimating its potential geographic distribution can provide critical information for management strategies.

Methodology/Principals

We used direct climate comparisons to explore the climatic niche occupied by native and invasive populations of BMSB. Ecological niche modelings based on the native range were used to anticipate the potential distribution of BMSB worldwide. Conversely, niche models based on the introduced range were used to locate the original invasive propagates in Asia. Areas with high invasion potential were identified by two niche modeling algorithms (i.e., Maxent and GARP).

Conclusions/Significance

Reduced dimensionality of environmental space improves native model transferability in the invade area. Projecting models from invasive population back to native distributional areas offers valuable information on the potential source regions of the invasive populations. Our models anticipated successfully the current disjunct distribution of BMSB in the US. The original propagates are hypothesized to have come from northern Japan or western Korea. High climate suitable areas at risk of invasion include latitudes between 30°–50° including northern Europe, northeastern North America, southern Australia and the North Island of New Zealand. Angola in Africa and Uruguay in South America also showed high climate suitability.  相似文献   

14.
The squids Uroteuthis (Photololigo) edulis and Uroteuthis (Photololigo) chinensis (family Loliginidae) are commercially important fishery species in many coastal regions of Asia. The morphologies of these two squids are very similar, and identification based on morphology has been inadequate. The occurrence of cryptic species in the family Loliginidae has been reported. The widely distributed U. (P.) chinensis and U. (P.) edulis are believed to comprise several cryptic species. In this study, the taxonomic status of the two species in East Asia was elucidated by morphological and genetic analyses. Analysis of U. (P.) chinensis from Hong Kong and Xiamen (China) and U. (P.) edulis from Yamaguchi (Japan) and Shanghai (China) was performed in order to determine the effectiveness of different morphometric variables in discriminating between the two species. Multivariate analysis of 27 morphometric indices revealed no new morphological characters for the taxonomic identification of the two taxa, which can be distinguished by the teeth shape and number on arm sucker rings, and the percentage of hectocotylized part of left arm IV of males. The morphometric differences between U. (P.) edulis individuals from the two localities is most probably due to differences in the maturity stages of the sampled individuals between the two localities. Genetic analysis based on the mitochondrial COI and 16S rRNA genes revealed a high divergence of 15.5% and 7.5% respectively, indicating that U. (P.) edulis and U. (P.) chinensis are distinct species.  相似文献   

15.
【背景】白花鬼针草为农区恶性杂草,原产于美洲,现已广泛分布于世界热带及亚热带地区,但其在全球和中国的适生区域及适生等级还不明确。【方法】利用MaxEnt生态位模型对白花鬼针草在全球以及中国的潜在适生区进行预测。【结果】白花鬼针草在全球的分布更多受到温度因素的影响。白花鬼针草的适生区主要集中在北半球和南半球15°~30°之间的热带和亚热带地区。其中,北美南部、南美中南部、非洲南部、东南亚北部以及大洋洲中南部沿海地区为白花鬼针草中、高度适生区。白花鬼针草在中国的适生区主要位于广东、广西、海南、云南、福建、台湾。到2070年,白花鬼针草在全球的适生区面积与当前相似,但在中国的适生区有所增大。【结论】白花鬼针草在我国有进一步扩张的风险。  相似文献   

16.
Biological invasions represent a serious threat for the conservation of biodiversity in many ecosystems. While many social insect species and in particular ant species have been introduced outside their native ranges, few species have been successful at invading temperate forests. In this study, we document for the first time the relationship between the abundance of the introduced ant, Pachycondyla chinensis, in mature forests of North Carolina and the composition, abundance and diversity of native ant species using both a matched pair approach and generalized linear models. Where present, P. chinensis was more abundant than all native species combined. The diversity and abundance of native ants in general and many individual species were negatively associated with the presence and abundance of P. chinensis. These patterns held regardless of our statistical approach and across spatial scales. Interestingly, while the majority of ant species was strongly and negatively correlated with the abundance and presence of P. chinensis, a small subset of ant species larger than P. chinensis was either as abundant or even more abundant in invaded than in uninvaded sites. The large geographic range of this ant species combined with its apparent impact on native species make it likely to have cascading consequences on eastern forests in years to come, effects mediated by the specifics of its life history which is very different from those of other invasive ants. The apparent ecological impacts of P. chinensis are in addition to public health concerns associated with this species due to its sometimes, deadly sting.  相似文献   

17.
The Indo‐Pacific humpback dolphin (Sousa chinensis) is a vulnerable marine mammal species that inhabits shallow, coastal waters from Southeast China, southward throughout Southeast Asia, and westward around the Bay of Bengal to eastern India. Polymorphic microsatellites are useful for elucidating ecological and population genetics‐related questions. Here, 18 new polymorphic microsatellites were developed from Schinensis genomic DNA by Illumina MiSeq sequencing. Population genetic analyses were conducted on 42 Schinensis individuals from three geographic locations, including the Xiamen Bay of China, the Western Gulf of Thailand, and Andaman Sea. Our microsatellite data revealed a strong and significant population structure among the three sampling regions (overall F ST = 0.371, p = .001). Pairwise mutual information index also demonstrated high levels of genetic differentiation between different region pairs (values range from 0.272 to 0.339, p < .001). Moreover, Structure analysis inferred three genetic clusters, with the high assignment probabilities of 95.92%, 99.47%, and 99.68%, respectively. Principal coordinate analysis plots of individuals divided entire genotypes into three clusters, indicating high level of genetic differentiation. Our results indicated the strong genetic structure in Schinensis populations is a result of geographic distances. Other factors such as environmental variables, anthropogenic interference, and social behavior may also have contributed to population differentiation.  相似文献   

18.
冯慧喆  严克俭  黄云峰 《广西植物》2016,36(8):1014-1018
在第四次中药资源普查中采集了大量标本,经过对这些标本进行仔细鉴定并查阅相关资料,确定其中两号标本为香茜属(Carlemannia Benth.)和粘腺果属(Commicarpus Standl.)植物。这两属植物在广西尚无报道,为首次记录。香茜属植物叶对生,子房下位,无托叶,雄蕊仅有2枚,这和茜草科相似但又不同,系统位置较混乱,以前曾放于茜草科( Rubiaceae)和忍冬科( Caprifoliaceae)中,最近该属和蜘蛛花属独立成香茜科( Car-lemanniaceae)。该属植物共有3种,沿喜马拉雅山脉向东一直分布到缅甸、越南北部。我国西藏东南、云南南部、广西西北部分布一种即香茜( Carlenannia chinenesis Hook. f.)。粘腺果属是紫茉莉科( Nyctaginaceae)主产热带地区的1个属,全世界约25种分布于热带非洲和阿拉伯半岛南部,在南亚、东南亚和墨西哥至热带美洲也有少量分布。中国产2种,其中广西产1种即中华粘腺果[ Commiaicarpus chinensis ( L.) Heim.]。该种植物分布广泛,从南亚次大陆向东至中南半岛、马来半岛,向北到我国西沙群岛、海南岛以及广州附近,在广西首次记录,产凤山县和凌云县。  相似文献   

19.
Identifying mechanisms governing the establishment and spread of invasive species is a fundamental challenge in invasion biology. Because species invasions are frequently observed only after the species presents an environmental threat, research identifying the contributing agents to dispersal and subsequent spread are confined to retrograde observations. Here, we use a combination of seasonal surveys and experimental approaches to test the relative importance of behavioral and abiotic factors in determining the local co-occurrence of two invasive ant species, the established Argentine ant (Linepithema humile Mayr) and the newly invasive Asian needle ant (Pachycondyla chinensis Emery). We show that the broader climatic envelope of P. chinensis enables it to establish earlier in the year than L. humile. We also demonstrate that increased P. chinensis propagule pressure during periods of L. humile scarcity contributes to successful P. chinensis early season establishment. Furthermore, we show that, although L. humile is the numerically superior and behaviorally dominant species at baits, P. chinensis is currently displacing L. humile across the invaded landscape. By identifying the features promoting the displacement of one invasive ant by another we can better understand both early determinants in the invasion process and factors limiting colony expansion and survival.  相似文献   

20.
Stolephorus continentalis sp. nov. is described from 36 specimens from Hong Kong and northern Vietnam. The new species is closely related to the endemic Chinese anchovy S. chinensis (Günther 1880), which is redescribed with a lectotype designated, with both species having a long upper jaw with the posterior tip just reaching to the posterior border of the preopercle; no predorsal scute; the posterior preopercular border rounded, convex; the posterior tip of the depressed pelvic fin not reaching to vertical through dorsal-fin origin; a pair of dark patches behind the occiput without a following pair of dark lines; and no black spots below the eye and lower-jaw tip. However, the new species is distinguished from S. chinensis in having higher total gill-raker counts on the first, second, third, and fourth gill arches (43–48, 33–40, 23–26, and 18–21, respectively vs. 35–41, 29–34, 19–24, and 16–19), and longer pectoral (16.5–19.2 % SL vs. 15.8–16.4 %) and pelvic fins (9.1–11.6 % SL vs. 8.2–8.3 %). Examination of the specimens previously considered as S. chinensis from Southeast Asia revealed that they differed from true S. chinensis and S. continentalis in having eight transverse scales (vs. 10 in the latter two species). The applicable scientific name for the Southeast Asian species is suggested here as Stolephorus oceanicus Hardenberg 1933.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号