共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
4.
5.
6.
David Jesse Sanchez Daniel Miranda Jr. Matthew D. Marsden Thomas Michael A. Dizon Johnny R. Bontemps Sergio J. Davila Lara E. Del Mundo Thai Ha Ashkon Senaati Jerome A. Zack Genhong Cheng 《PloS one》2015,10(9)
Our main objective of this study was to determine how Human Immunodeficiency Virus (HIV) avoids induction of the antiviral Type I Interferon (IFN) system. To limit viral infection, the innate immune system produces important antiviral cytokines such as the IFN. IFN set up a critical roadblock to virus infection by limiting further replication of a virus. Usually, IFN production is induced by the recognition of viral nucleic acids by innate immune receptors and subsequent downstream signaling. However, the importance of IFN in the defense against viruses has lead most pathogenic viruses to evolve strategies to inhibit host IFN induction or responses allowing for increased pathogenicity and persistence of the virus. While the adaptive immune responses to HIV infection have been extensively studied, less is known about the balance between induction and inhibition of innate immune defenses, including the antiviral IFN response, by HIV infection. Here we show that HIV infection of T cells does not induce significant IFN production even IFN I Interferon production. To explain this paradox, we screened HIV proteins and found that two HIV encoded proteins, Vpu and Nef, strongly antagonize IFN induction, with expression of these proteins leading to loss of expression of the innate immune viral RNA sensing adaptor protein, IPS-1 (IFN-β promoter stimulator-1). We hypothesize that with lower levels of IPS-1 present, infected cells are defective in mounting antiviral responses allowing HIV to replicate without the normal antiviral actions of the host IFN response. Using cell lines as well as primary human derived cells, we show that HIV targeting of IPS-1 is key to limiting IFN induction. These findings describe how HIV infection modulates IFN induction providing insight into the mechanisms by which HIV establishes infection and persistence in a host. 相似文献
7.
Yukako Ohshiro Tsutomu Murakami Kazuhiro Matsuda Kiyoshi Nishioka Keiichi Yoshida Naoki Yamamoto 《Microbiology and immunology》1996,40(11):827-835
To investigate the role of cell surface glycosaminoglycans (GAGs), including heparan sulfate (HS), on HIV-1 infection in human T cells, HIV-1 binding and infection were determined after treatment of T-cell lines and CD4 + T cells from normal peripheral blood mononuclear cells (PBMC) with GAG-degrading enzyme or a GAG metabolic sulfation inhibitor. Heparitinase I (hep I) and sodium chlorate prevented binding of HIV-1/IIIB to MT-4 cells as revealed by indirect immunofluorescence procedures, thereby inhibiting infection. Hep I was less effective in the binding inhibition of the macrophage-tropic strain HIV-1/SF162 than that of the T-cell line-tropic strain HIV-1/IIIB. The binding of HIV-1/SF162 was about 100-fold less dependent on cell surface HS than HIV-1/IIIB. Human HTLV-I positive T-cell lines expressed more HS than HTLV-I negative T-cell lines or normal CD4 + T cells when stained with anti-HS mAbs against either native or heparitinase-treated HS. With the exception of endo-β-galactosidase (endo-β-gal), GAG-degrading enzymes, including hep I, chondroitinase ABC (chon ABC), chondroitinase AC II (chon AC II) and keratanase, did not prevent the binding of HIV-1/IIIB to CD4+ T cells from normal PBMC. These results indicate that the cell surface HS of human T cells participates in HIV-1 infection by facilitating HIV-1/IIIB binding to MT-4 cells. In particular, the sulfation of HS chains is critical. Since the expression of cell surface HS varies among T cells, which are not consistently sensitive to hep I treatment in HIV-1 binding inhibition, other GAG-like molecules may also be involved. 相似文献
8.
9.
Yi Liu Amanda Woodward Haiying Zhu Thomas Andrus John McNevin Jean Lee James I. Mullins Lawrence Corey M. Juliana McElrath Tuofu Zhu 《Journal of virology》2009,83(20):10821-10829
Understanding the mechanisms underlying potential altered susceptibility to human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) individuals and the later clinical consequences of breakthrough infection can provide insight into strategies to control HIV-1 with an effective vaccine. From our Seattle ES cohort, we identified one individual (LSC63) who seroconverted after over 2 years of repeated unprotected sexual contact with his HIV-1-infected partner (P63) and other sexual partners of unknown HIV-1 serostatus. The HIV-1 variants infecting LSC63 were genetically unrelated to those sequenced from P63. This may not be surprising, since viral load measurements in P63 were repeatedly below 50 copies/ml, making him an unlikely transmitter. However, broad HIV-1-specific cytotoxic T-lymphocyte (CTL) responses were detected in LSC63 before seroconversion. Compared to those detected after seroconversion, these responses were of lower magnitude and half of them targeted different regions of the viral proteome. Strong HLA-B27-restricted CTLs, which have been associated with disease control, were detected in LSC63 after but not before seroconversion. Furthermore, for the majority of the protein-coding regions of the HIV-1 variants in LSC63 (except gp41, nef, and the 3′ half of pol), the genetic distances between the infecting viruses and the viruses to which he was exposed through P63 (termed the exposed virus) were comparable to the distances between random subtype B HIV-1 sequences and the exposed viruses. These results suggest that broad preinfection immune responses were not able to prevent the acquisition of HIV-1 infection in LSC63, even though the infecting viruses were not particularly distant from the viruses that may have elicited these responses.Understanding the mechanisms of altered susceptibility or control of human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) persons may provide invaluable information aiding the design of HIV-1 vaccines and therapy (9, 14, 15, 33, 45, 57, 58). In a cohort of female commercial sex workers in Nairobi, Kenya, a small proportion of individuals remained seronegative for over 3 years despite the continued practice of unprotected sex (12, 28, 55, 56). Similarly, resistance to HIV-1 infection has been reported in homosexual men who frequently practiced unprotected sex with infected partners (1, 15, 17, 21, 61). Multiple factors have been associated with the resistance to HIV-1 infection in ES individuals (32), including host genetic factors (8, 16, 20, 37-39, 44, 46, 47, 49, 59, 63), such as certain HLA class I and II alleles (41), as well as cellular (1, 15, 26, 55, 56), humoral (25, 29), and innate immune responses (22, 35).Seroconversion in previously HIV-resistant Nairobi female commercial sex workers, despite preexisting HIV-specific cytotoxic T-lymphocyte (CTL) responses, has been reported (27). Similarly, 13 of 125 ES enrollees in our Seattle ES cohort (1, 15, 17) have become late seroconverters (H. Zhu, T. Andrus, Y. Liu, and T. Zhu, unpublished observations). Here, we analyze the virology, genetics, and immune responses of HIV-1 infection in one of the later seroconverting subjects, LSC63, who had developed broad CTL responses before seroconversion. 相似文献
10.
Didier Hober Faïza Ajana Marie-Ccile Petit Claudine Sartiaux Michel Boniface Michle Caillaux Yves Mouton Pierre Wattre Michle Maniez-Montreuil 《Microbiology and immunology》1993,37(10):785-792
Variations in cytokine production in patients with human immunodeficiency virus (HIV) infection could be involved in the physiopathology and in the progression of the disease. Therefore we studied the level of granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor α (TNFα) produced in patients with HIV infection at stage II (asymptomatic seropositives) and stage IV (AIDS) of the CDC classification, by using an enzyme amplified sensitivity immunoassay. We measured the level of GM-CSF and TNFα in supernatant of phytohemagglutinin-activated peripheral blood mononuclear cells from patients and healthy individuals. In one out of 10 stage II patients and 4 out of 14 stage IV patients, we obtained higher levels of GM-CSF than the mean + 2 S.D. of controls, but in 3 stage IV patients with very low CD4+ T lymphocyte counts (< 50/mm–3) compared to other patients, the GM-CSF values were very low. High levels of TNFα were detected in 3 out of 10 stage II and 6 out of 11 stage IV patients. The high values of TNFα were associated with high values of GM-CSF in stage II and in most of AIDS patients except those with very low CD4+ T cell counts, who produced low levels of GM-CSF. Plasma levels of cytokines were evaluated in 10 stage II, 22 stage IV patients and 20 controls. Increased levels of GM-CSF (more than 9 pg/ml) were observed in the plasma from 8 out of 10 stage II patients and 17 out of 22 stage IV patients. The tendency that increased levels of GM-CSF were associated with increased levels of TNFα was observed in plasma from stage IV patients. We report a disarray of GM-CSF production in patients with HIV infection that could be involved in clinical manifestations and progression of the disease. 相似文献
11.
Eun-Young Kim Ramon Lorenzo-Redondo Susan J. Little Yoon-Seok Chung Prabhjeet K. Phalora Irina Maljkovic Berry John Archer Sudhir Penugonda Will Fischer Douglas D. Richman Tanmoy Bhattacharya Michael H. Malim Steven M. Wolinsky 《PLoS pathogens》2014,10(7)
Human APOBEC3 proteins are cytidine deaminases that contribute broadly to innate immunity through the control of exogenous retrovirus replication and endogenous retroelement retrotransposition. As an intrinsic antiretroviral defense mechanism, APOBEC3 proteins induce extensive guanosine-to-adenosine (G-to-A) mutagenesis and inhibit synthesis of nascent human immunodeficiency virus-type 1 (HIV-1) cDNA. Human APOBEC3 proteins have additionally been proposed to induce infrequent, potentially non-lethal G-to-A mutations that make subtle contributions to sequence diversification of the viral genome and adaptation though acquisition of beneficial mutations. Using single-cycle HIV-1 infections in culture and highly parallel DNA sequencing, we defined trinucleotide contexts of the edited sites for APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H. We then compared these APOBEC3 editing contexts with the patterns of G-to-A mutations in HIV-1 DNA in cells obtained sequentially from ten patients with primary HIV-1 infection. Viral substitutions were highest in the preferred trinucleotide contexts of the edited sites for the APOBEC3 deaminases. Consistent with the effects of immune selection, amino acid changes accumulated at the APOBEC3 editing contexts located within human leukocyte antigen (HLA)-appropriate epitopes that are known or predicted to enable peptide binding. Thus, APOBEC3 activity may induce mutations that influence the genetic diversity and adaptation of the HIV-1 population in natural infection. 相似文献
12.
Neutralizing Monoclonal Antibodies Block Human Immunodeficiency Virus Type 1 Infection of Dendritic Cells and Transmission to T Cells 总被引:6,自引:2,他引:6
Sarah S. Frankel Ralph M. Steinman Nelson L. Michael Silvia Ratto Kim Nina Bhardwaj Melissa Pope Mark K. Louder Philip K. Ehrenberg Paul W. H. I. Parren Dennis R. Burton Hermann Katinger Thomas C. VanCott Merlin L. Robb Deborah L. Birx John R. Mascola 《Journal of virology》1998,72(12):9788-9794
Prevention of the initial infection of mucosal dendritic cells (DC) and interruption of the subsequent transmission of HIV-1 from DC to T cells are likely to be important attributes of an effective human immunodeficiency virus type 1 (HIV-1) vaccine. While anti-HIV-1 neutralizing antibodies have been difficult to elicit by immunization, there are several human monoclonal antibodies (MAbs) that effectively neutralize virus infection of activated T cells. We investigated the ability of three well-characterized neutralizing MAbs (IgG1b12, 2F5, and 2G12) to block HIV-1 infection of human DC. DC were generated from CD14+ blood cells or obtained from cadaveric human skin. The MAbs prevented viral entry into purified DC and the ensuing productive infection in DC/T-cell cultures. When DC were first pulsed with HIV-1, MAbs blocked the subsequent transmission to unstimulated CD3+ T cells. Thus, neutralizing antibodies can block HIV-1 infection of DC and the cell-to-cell transmission of virus from infected DC to T cells. These data suggest that neutralizing antibodies could interrupt the initial events associated with mucosal transmission and regional spread of HIV-1. 相似文献
13.
Viral Dynamics during Structured Treatment Interruptions of Chronic Human Immunodeficiency Virus Type 1 Infection 总被引:1,自引:0,他引:1 下载免费PDF全文
Simon D. W. Frost Javier Martinez-Picado Lidia Ruiz Bonaventura Clotet Andrew J. Leigh Brown 《Journal of virology》2002,76(3):968-979
Although antiviral agents which block human immunodeficiency virus (HIV) replication can result in long-term suppression of viral loads to undetectable levels in plasma, long-term therapy fails to eradicate virus, which generally rebounds after a single treatment interruption. Multiple structured treatment interruptions (STIs) have been suggested as a possible strategy that may boost HIV-specific immune responses and control viral replication. We analyze viral dynamics during four consecutive STI cycles in 12 chronically infected patients with a history (>2 years) of viral suppression under highly active antiretroviral therapy. We fitted a simple model of viral rebound to the viral load data from each patient by using a novel statistical approach that allows us to overcome problems of estimating viral dynamics parameters when there are many viral load measurements below the limit of detection. There is an approximate halving of the average viral growth rate between the first and fourth STI cycles, yet the average time between treatment interruption and detection of viral loads in the plasma is approximately the same in the first and fourth interruptions. We hypothesize that reseeding of viral reservoirs during treatment interruptions can account for this discrepancy, although factors such as stochastic effects and the strength of HIV-specific immune responses may also affect the time to viral rebound. We also demonstrate spontaneous drops in viral load in later STIs, which reflect fluctuations in the rates of viral production and/or clearance that may be caused by a complex interaction between virus and target cells and/or immune responses. 相似文献
14.
15.
In order to clarify the transmission process of human immunodeficiency virus type 1 (HIV-1) through the epithelial cell barrier, HeLa cells susceptible and non-susceptible to HIV-1 were cloned and designated as P6 HeLa and N7 HeLa cells, respectively. P6 HeLa cells could be infected with the LAI strain of HIV-1 and mediated HIV-1 transcytosis. In contrast, N7 HeLa cells exhibited neither HIV-1 infection nor transcytosis. CD4 and galactosylceramide as the receptors for HIV-1 were not detected on P6 HeLa cells, although an anti-CD4 monoclonal antibody (mAb) blocked HIV-1 infection. Since HIV-1-infected P6 HeLa cells exhibited no fusion and survived, we speculated that the P6 HeLa cells expressed molecules other than CD4 which facilitated HIV-1 infection. Two mAbs (A-14 ITK and C57 a9-9) which inhibited the HIV-1 infection of P6 HeLa cells were generated. Each mAb recognized distinct molecule(s) as shown by Western blotting. Transcytosis by the P6 HeLa cells was inhibited by C57 a9-9 but not by A-14 ITK or anti-CD4 mAb. Both infection and transcytosis may be responsible for HIV-1 transmission through epithelial cells in a complex manner. Although infection and transcytosis occurred via different mechanisms, the molecule(s) recognized by C57 a9-9 mAb may be associated with both processes. 相似文献
16.
Antonio Bertoletti Fatim Cham Stephen McAdam Tim Rostron Sarah Rowland-Jones Sehu Sabally Tumani Corrah Koya Ariyoshi Hilton Whittle 《Journal of virology》1998,72(3):2439-2448
Knowledge of immune mechanisms responsible for the cross-protection between highly divergent viruses such as human immunodeficiency virus type 1 (HIV-1) and HIV-2 may contribute to an understanding of whether virus variability may be overcome in the design of vaccine candidates which are broadly protective across the HIV subtypes. We demonstrate that despite the significant difference in virus amino acid sequence, the majority of HIV-2-infected individuals with different HLA molecules possess a dominant cytotoxic T-cell response which is able to recognize HIV-1 Gag protein. Furthermore, HLA-B5801-positive subjects show broad cross-recognition of HIV-1 subtypes since they mounted a T-cell response that tolerated extensive amino acid substitutions within HLA-B5801-restricted HIV-1 and HIV-2 epitopes. These results suggests that HLA-B5801-positive HIV-2-infected individuals have an enhanced ability to react with HIV-1 that could play a role in cross-protection.Human immunodeficiency virus type 1 (HIV-1) and HIV-2 are related human retroviruses that show various biological and structural differences. HIV-2 is found mainly in West Africa, whereas HIV-1 is spreading throughout the world. HIV-2 is less transmissible, and HIV-2-positive patients exhibit longer clinical latency periods than individuals infected with HIV-1 (23). A recent report has also shown that the mortality in HIV-2-infected individuals is only twice as high as in the uninfected population and, in the majority of adults, survival is not affected by HIV-2 status (31).Although the two viruses are similar in genomic organization, various genetic and enzymatic differences have been found at many stages of the retroviral life cycle. They differ significantly in terms of amino acid sequence, the more conserved being the Pol and Gag sequences, which exhibit less than 60% homology (17).Despite these differences, epidemiological data and animal studies have shown some evidence of cross-protection between the two viral infections. Travers et al. reported that HIV-2-infected women had a lower incidence of HIV-1 infection than did HIV-seronegative women in a cohort of commercial sexual workers in Dakar (37), and rhesus macaques immunized with a recombinant HIV-1 poxvirus vaccine are protected against HIV-2 challenge (2). These studies, though not conclusive (1, 6), suggest that differences in the virus may not necessarily preclude the development of defensive immunity to a subsequent pathogenic infection, an old-fashioned concept pioneered by Jenner, who used cowpox to vaccinate against human smallpox.The immunological basis of cross-protection is largely unknown, and a clear understanding of the role played by the humoral or cell-mediated immune response in HIV protection is still lacking. However, mounting evidence suggests that cytotoxic T-lymphocyte (CTL) response could be the key element. Indeed, the protection afforded in animal models against simian (13) and feline (12) immunodeficiency virus infections is closely correlated with the induction of specific CTL response, and HIV-1 and HIV-2 HLA-B35-restricted cross-reactive CTLs have been postulated to confer protection against repeated HIV exposure (33).CTLs recognize short viral peptides, 8 to 11 amino acids long, that are generated by the intracellular processing of endogenously synthesized viral antigens within the infected cells, which are expressed at the cell surface in the binding groove of HLA class I molecules. The specificity of the T-cell response is determined by the interaction of the antigen-specific T-cell receptor (TCR) with the peptide-HLA complex, and this interaction, together with non-antigen-specific signals, activates the CTLs (15).The presence of cross-reactive CTLs able to lyse HIV-1- or HIV-2-infected cells should be dependent on the extent of conservation between the two viruses within the epitopes selected by particular HLA class I molecules. It is well known that amino acid substitutions within the epitopes can abrogate the CTL response by inhibiting either HLA binding or TCR recognition (32). However, a number of recent studies have shown that T cells can recognize apparently unrelated peptides (10, 41), and crystallographic data have shown physical limits to the TCR epitope specificity due to the limited size of contact between the TCR and the peptide (14), suggesting a flexibility in T-cell recognition of antigen (19).Some individuals with a particular HLA profile which is responsible for presentation of the viral antigen and for selection of the T-cell repertoire may possess a CTL response not affected by mutations within the epitope, as has been demonstrated in subjects with HLA alleles B27 (28) and B35 (33). In these cases, amino acid substitutions within the HIV-1 and -2 epitopes were tolerated by the CTLs.In this study, we have investigated the extent of cross-reacting CTLs between HIV-2 and HIV-1 in a group of HIV-2-infected subjects with different HLA class I types. We have shown that despite differences in amino acid sequence between the two viruses, the majority of HIV-2-positive subjects possess CTLs which are able to recognize HIV-1 Gag protein.Furthermore, analysis of HLA profiles and the fine specificity of the cytotoxic response demonstrated that HLA-B5801-positive subjects show broad cross-recognition of HIV-1 isolates. These subjects mounted a CTL response that tolerated extensive amino acid substitutions within an HLA-B5801-restricted HIV-1 epitope. 相似文献
17.
18.
Inhibitory Mechanism of the CXCR4 Antagonist T22 against Human Immunodeficiency Virus Type 1 Infection 总被引:6,自引:0,他引:6 下载免费PDF全文
Tsutomu Murakami Tian-Yuan Zhang Yoshio Koyanagi Yuetsu Tanaka Jin Kim Yoichi Suzuki Shigeru Minoguchi Hirokazu Tamamura Michinori Waki Akiyoshi Matsumoto Nobutaka Fujii Hisatoshi Shida James A. Hoxie Stephen C. Peiper Naoki Yamamoto 《Journal of virology》1999,73(9):7489-7496
We recently reported that a cationic peptide, T22 ([Tyr(5,12), Lys(7)]-polyphemusin II), specifically inhibits human immunodeficiency virus type 1 (HIV-1) infection mediated by CXCR4 (T. Murakami et al., J. Exp. Med. 186:1389-1393, 1997). Here we demonstrate that T22 effectively inhibits replication of T-tropic HIV-1, including primary isolates, but not of non-T-tropic strains. By using a panel of chimeric viruses between T- and M-tropic HIV-1 strains, viral determinants for T22 susceptibility were mapped to the V3 loop region of gp120. T22 bound to CXCR4 and interfered with stromal-cell-derived factor-1alpha-CXCR4 interactions in a competitive manner. Blocking of anti-CXCR4 monoclonal antibodies by T22 suggested that the peptide interacts with the N terminus and two of the extracellular loops of CXCR4. Furthermore, the inhibition of cell-cell fusion in cells expressing CXCR4/CXCR2 chimeric receptors suggested that determinants for sensitivity of CXCR4 to T22 include the three extracellular loops of the coreceptor. 相似文献
19.
Plasmacytoid Dendritic Cells Are Highly Susceptible to Human Immunodeficiency Virus Type 1 Infection and Release Infectious Virus 总被引:13,自引:0,他引:13 下载免费PDF全文
Steven Patterson Aaron Rae Nicola Hockey Jill Gilmour Frances Gotch 《Journal of virology》2001,75(14):6710-6713
Plasmacytoid dendritic cells (pcDC) and myeloid dendritic cells (myDC) are shown to express CD4 and low levels of CCR5 and CXCR4, but only myDC express DC SIGN, a C-type lectin that binds human immunodeficiency virus but does not mediate virus entry. Both DC types were more susceptible to infection with a macrophage than a lymphotropic strain of human immunodeficiency virus type 1, but pcDC were more readily infected than myDC. 相似文献