首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rattus norvegicus (Norway rat) is the main reservoir host of pathogenic Leptospira, the causative agent of leptospirosis, in urban environments. Pathogenic Leptospira forms biofilms in the environment, possibly contributing for bacterial survival and maintenance. Nonetheless, biofilms have not yet been studied in natural animal reservoirs presenting leptospiral renal carriage. Here, we described biofilm formation by pathogenic Leptospira inside the renal tubules of R. norvegicus naturally infected and captured in an urban slum endemic for leptospirosis. From the 65 rats carrying Leptospira in their kidneys, 24 (37%) presented biofilms inside the renal tubules. The intensity of leptospiral colonization in the renal tubules (OR: 1.00; 95% CI 1.05–1.1) and the type of occlusion pattern of the colonized renal tubules (OR: 3.46; 95% CI 1.20–9.98) were independently associated with the presence of Leptospira biofilm. Our data showed that Leptospira interrogans produce biofilms during renal chronic colonization in rat reservoirs, suggesting a possible role for leptospiral biofilms in the pathogenesis of leptospirosis and bacterial carriage in host reservoirs.  相似文献   

2.
Pathogenic Leptospira spp. shed in the urine of reservoir hosts into freshwater can be transmitted to a susceptible host through skin abrasions or mucous membranes causing leptospirosis. The infection process involves the ability of leptospires to adhere to cell surface and extracellular matrix components, a crucial step for dissemination and colonization of host tissues. Therefore, the elucidation of novel mediators of host-pathogen interaction is important in the discovery of virulence factors involved in the pathogenesis of leptospirosis. In this study, we assess the functional roles of transmembrane outer membrane proteins OmpL36 (LIC13166), OmpL37 (LIC12263), and OmpL47 (LIC13050), which we recently identified on the leptospiral surface. We determine the capacity of these proteins to bind to host tissue components by enzyme-linked immunosorbent assay. OmpL37 binds elastin preferentially, exhibiting dose-dependent, saturating binding to human skin (Kd, 104±19 nM) and aortic elastin (Kd, 152±27 nM). It also binds fibrinogen (Kd, 244±15 nM), fibrinogen fragment D (Kd, 132±30 nM), plasma fibronectin (Kd, 359±68 nM), and murine laminin (Kd, 410±81 nM). The binding to human skin elastin by both recombinant OmpL37 and live Leptospira interrogans is specifically enhanced by rabbit antiserum for OmpL37, suggesting the involvement of OmpL37 in leptospiral binding to elastin and also the possibility that host-generated antibodies may promote rather than inhibit the adherence of leptospires to elastin-rich tissues. Further, we demonstrate that OmpL37 is recognized by acute and convalescent leptospirosis patient sera and also by Leptospira-infected hamster sera. Finally, OmpL37 protein is detected in pathogenic Leptospira serovars and not in saprophytic Leptospira. Thus, OmpL37 is a novel elastin-binding protein of pathogenic Leptospira that may be promoting attachment of Leptospira to host tissues.  相似文献   

3.
Leptospirosis is an important global zoonotic disease caused by pathogenic Leptospira spp. species. Swine leptospirosis has a major economic impact because pigs are sources of animal protein and by-products. The signs of swine leptospirosis are abortion, stillbirth, birth of weak or ill piglets, appearing 14–60 days after infection. The reference method for diagnosis of leptospirosis is the microscopic agglutination test (MAT), in which serum samples are reacted with live antigen suspensions of leptospiral serovars. However, MAT is laborious and time consuming as a diagnostic procedure when dealing with a large number of samples; therefore, efforts are being made to develop novel, sensitive, and specific diagnostic tests for leptospirosis. In this study, a recombinant LipL32 based on enzyme-linked immunosorbent assay (rLipL32/ELISA) was evaluated as a screening test for the detection of pathogenic leptospiral-specific antibodies. A total of 86 swine serum samples tested by MAT were used to develop rLipL32/ELISA. Compared to positive and negative sera tested by MAT, rLipL32/ELISA showed 100 % sensitivity, 85.1 % specificity, and 91.86 % accuracy. No positive reaction for other bacterial diseases (enzootic pneumonia and brucellosis) was observed. The rLipL32/ELISA reported in this study is a specific, sensitive, and convenient test for the detection of antibodies against swine leptospiral infection and can be used as a rapid screening test in epidemiological surveys.  相似文献   

4.
5.
6.
H Wang  Y Wu  DM Ojcius  XF Yang  C Zhang  S Ding  X Lin  J Yan 《PloS one》2012,7(8):e42266

Background

Infection with pathogenic Leptospira species causes serious systemic inflammation in patients. Although a few leptospiral proinflammatory molecules have been identified, Leptospira likely encodes other unidentified strong inflammation stimulators. The pathogenic L. interrogans genome encodes numerous putative hemolysin genes. Since hemolysins from other bacteria can cause inflammatory reactions, we hypothesized that leptospiral hemolysins may function as proinflammatory stimulators that contribute to the strong inflammation associated with Leptospira infection.

Methodology/Principal Findings

We first used cytokine protein microarrays for systematic analysis of serum cytokine profiles in leptospirosis patients and leptospire-infected mice. We found that IL-1β, IL-6 and TNF-α were the main proinflammatory cytokines in the sera of both the patients and the mice. We then analyzed eight putative hemolysins in L. interrogans strain Lai. The results showed that five of them, Sph1, Sph2, Sph3, HlpA and TlyA were secreted and had hemolytic activity. More importantly, these five hemolysins induced the strong production of IL-1β, IL-6 and TNF-α in human and mouse macrophages (although a bit lower in the latter). Furthermore, blockade of TLR2 or TLR4 with either antibodies or inhibitors of the NF-κB or JNK signaling pathways significantly reduced the production of hemolysin-induced IL-1β, IL-6 and TNF-α. Macrophages isolated from TLR2-, TLR4-or double TLR2-and 4-deficient mice also confirmed that the leptospiral hemolysins that induce proinflammatory cytokines are both TLR2-and TLR4-dependent.

Conclusions/Significance

Our findings demonstrate that L. interrogans secretes many hemolysins that function as powerful inducers of proinflammatory cytokines through both TLR2-and TLR4-dependent JNK and NF-κB pathways.  相似文献   

7.
It has long been known that pathogenic Leptospira can mobilize the immune system but the specific contribution of neutrophils to control the infectious challenge remains to be clarified. We herein analyzed the phenotype of circulating neutrophils of patients with leptospirosis and healthy controls for the expression of toll-like receptor (TLR) type 2 (TLR2, to sense the leptospiral LPS) and several activation markers: interleukin 8 chemokine receptor CD182 (CXCR2), CD11b of the integrin/opsonin complement receptor type 3 (CR3) and CD15 (ligand of the selectin). The plasmatic level of the main CD182 ligand, interleukin 8 (CXCL8), was measured by ELISA. Hospitalized leptospirosis cases showed marked neutrophilia, particularly in the most severe cases. Interestingly, TLR2 was significantly increased in leptospirosis but identical levels of CD182 and CD11b were detected when compared to controls. CD15 was significantly decreased on neutrophils in leptospirosis but returned to normal within 1 month. Basal levels of IL-8 were measured in control subjects and were not increased in leptospirosis cases at the initial stage of the disease. In conclusion, we observed that neutrophils failed to regulate the expression of several of the receptors involved in cell activation and recruitment. This study further emphasizes the paradigm that neutrophils may be impaired in their overall capacity to thwart bacterial infection in leptospirosis patients.  相似文献   

8.
Leptospirosis is a worldwide zoonosis caused by spirochetes from the genus Leptospira. Although there is a large diversity of clinical signs and symptoms, a severe inflammatory response is common to all leptospirosis patients. The mechanism of IL-1β secretion during Leptospira infection has been previously studied in mouse macrophages. However, the outcome of Leptospira infection is very different in human and murine macrophages, and the mechanisms responsible for IL-1β secretion in human macrophages had not been investigated. This study therefore examines the effects of Leptospira interrogans infection on inflammasome activation and proinflammatory cytokine expression in human macrophages. Increased mRNA and protein expression of NLRP3 was observed by real time RT-PCR and flow cytometry at 1 h after co-cultivation. Enzyme-linked immunosorbent assay (ELISA) determination showed that IL-1β and IL-18 are released in the culture supernatants at 1 h after cultivation. The inhibition assay showed that glybenclamide (a K+ efflux inhibitor that blocks NLRP3 inflammasome activation) and N-benzyloxycarbony-Val-Ala-Asp (O-methyl)-fluoromethylketone (Z-VAD-FMK; a caspase-1 inhibitor) and NLRP3 depletion with siRNAs reduced the levels of IL-1β and IL-18 release. Moreover, the levels of IL-1β and IL-18 production decreased in CA-074 (a cathepsin B inhibitor) and NAC (an anti-oxidant) pretreated human macrophages, compared to untreated controls. This study suggests that L. interrogans infection leads to reactive oxygen species (ROS)- and cathepsin B-dependent NLRP3 inflammasome activation, which subsequently mediates caspase-1 activation and IL-1β and IL-18 release.  相似文献   

9.

Background

Leptospirosis, a re-emerging disease of global importance caused by pathogenic Leptospira spp., is considered the world''s most widespread zoonotic disease. Rats serve as asymptomatic carriers of pathogenic Leptospira and are critical for disease spread. In such reservoir hosts, leptospires colonize the kidney, are shed in the urine, persist in fresh water and gain access to a new mammalian host through breaches in the skin.

Methodology/Principal Findings

Previous studies have provided evidence for post-translational modification (PTM) of leptospiral proteins. In the current study, we used proteomic analyses to determine the presence of PTMs on the highly abundant leptospiral protein, LipL32, from rat urine-isolated L. interrogans serovar Copenhageni compared to in vitro-grown organisms. We observed either acetylation or tri-methylation of lysine residues within multiple LipL32 peptides, including peptides corresponding to regions of LipL32 previously identified as epitopes. Intriguingly, the PTMs were unique to the LipL32 peptides originating from in vivo relative to in vitro grown leptospires. The identity of each modified lysine residue was confirmed by fragmentation pattern analysis of the peptide mass spectra. A synthetic peptide containing an identified tri-methylated lysine, which corresponds to a previously identified LipL32 epitope, demonstrated significantly reduced immunoreactivity with serum collected from leptospirosis patients compared to the peptide version lacking the tri-methylation. Further, a subset of the identified PTMs are in close proximity to the established calcium-binding and putative collagen-binding sites that have been identified within LipL32.

Conclusions/Significance

The exclusive detection of PTMs on lysine residues within LipL32 from in vivo-isolated L. interrogans implies that infection-generated modification of leptospiral proteins may have a biologically relevant function during the course of infection. Although definitive determination of the role of these PTMs must await further investigations, the reduced immune recognition of a modified LipL32 epitope suggests the intriguing possibility that LipL32 modification represents a novel mechanism of immune evasion within Leptospira.  相似文献   

10.

Background

Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. The bacteria enter the human body via abraded skin or mucous membranes and may disseminate throughout. In general the clinical picture is mild but some patients develop rapidly progressive, severe disease with a high case fatality rate. Not much is known about the innate immune response to leptospires during haematogenous dissemination. Previous work showed that a human THP-1 cell line recognized heat-killed leptospires and leptospiral LPS through TLR2 instead of TLR4. The LPS of virulent leptospires displayed a lower potency to trigger TNF production by THP-1 cells compared to LPS of non-virulent leptospires.

Methodology/Principal Findings

We investigated the host response and killing of virulent and non-virulent Leptospira of different serovars by human THP-1 cells, human PBMC''s and human whole blood. Virulence of each leptospiral strain was tested in a well accepted standard guinea pig model. Virulent leptospires displayed complement resistance in human serum and whole blood while in-vitro attenuated non-virulent leptospires were rapidly killed in a complement dependent manner. In vitro stimulation of THP-1 and PBMC''s with heat-killed and living leptospires showed differential serovar and cell type dependence of cytokine induction. However, at low, physiological, leptospiral dose, living virulent complement resistant strains were consistently more potent in whole blood stimulations than the corresponding non-virulent complement sensitive strains. At higher dose living virulent and non-virulent leptospires were equipotent in whole blood. Inhibition of different TLRs indicated that both TLR2 and TLR4 as well as TLR5 play a role in the whole blood cytokine response to living leptospires.

Conclusions/Significance

Thus, in a minimally altered system as human whole blood, highly virulent Leptospira are potent inducers of the cytokine response.  相似文献   

11.
Leptospirosis is a zoonotic infection that is caused by the pathogenic species of Leptospira. Rats are the most important reservoirs of these organisms. Our study aimed to characterize Leptospira isolates from humans and rats and elucidate the Leptospira-rat-human relationship in Luzon, Philippines. Forty strains were isolated from humans and rats. The isolates were confirmed to be Leptospira and pathogenic through rrl- and flaB-PCR, respectively. Around 73% of the isolates were found to be lethal to hamsters. Serotyping showed that there were mainly three predominant leptospiral serogroups in the study areas namely Pyrogenes, Bataviae, and Grippotyphosa. Gyrase B gene sequence analysis showed that all the isolates belonged to Leptospira interrogans. Most had 100% similarity with serovar Manilae (15/40), serovar Losbanos (8/40), and serogroup Grippotyphosa (8/40). Strains from each group had highly identical pulsed-field gel electrophoresis patterns and were further grouped as A (Pyrogenes, 14), B (Bataviae, 8), and C (Grippotyphosa, 10). Results further revealed that similar serotypes were isolated from both humans and rats in the same areas. It is suggested that these three predominant groups with highly similar intra-group PFGE patterns may have been primarily transmitted by rats and persistently caused leptospirosis in humans particularly in the Luzon islands.  相似文献   

12.
Leptospirosis, caused by pathogenic species of Leptospira, is the most widespread zoonosis and has emerged as a major public health problem worldwide. The adhesion of pathogenic Leptospira to host cells, and to extracellular matrix (ECM) components, is likely to be necessary for the ability of leptospires to penetrate, disseminate and persist in mammalian host tissues. Previous work demonstrated that pathogenic L. interrogans binds to host cells more efficiently than to ECM. Using two independent screening methods, mass spectrometry and protein arrays, members of the cadherin family were identified as potential L. interrogans receptors on mammalian host surfaces. We focused our investigation on vascular endothelial (VE)-cadherin, which is widely expressed on endothelia and is primarily responsible for endothelial cell-cell adhesion. Monolayers of EA.hy926 and HMEC-1 endothelial cells produce VE-cadherin, bind L. interrogans in vitro, and are disrupted upon incubation with the bacteria, which may reflect the endothelial damage seen in vivo. Dose-dependent and saturable binding of L. interrogans to the purified VE-cadherin receptor was demonstrated and pretreatment of purified receptor or endothelial cells with function-blocking antibody against VE-cadherin significantly inhibited bacterial attachment. The contribution of VE-cadherin to leptospiral adherence to host endothelial cell surfaces is biologically significant because VE-cadherin plays an important role in maintaining the barrier properties of the vasculature. Attachment of L. interrogans to the vasculature via VE-cadherin may result in vascular damage, facilitating the escape of the pathogen from the bloodstream into different tissues during disseminated infection, and may contribute to the hemorrhagic manifestations of leptospirosis. This work is first to describe a mammalian cell surface protein as a receptor for L. interrogans.  相似文献   

13.
Leptospires are a group of bacteria with a unique ultrastructure and a fascinating swimming behavior that cause a number of emerging and re-emerging diseases worldwide called leptospirosis. The unusual form of motility is thought to play a critical role in the infection process. However, the inhibition mechanism of antiserum on the motility of Leptospira to attenuate the infection efficiency is unknown. In this study, effect of antiserum on motility was quantitatively investigated by swimming speed. Relatively low concentration of antiserum was found to inhibit leptospiral motility, suggesting that the basic immunization can affect the infection efficiency. Recovery of motility a few hours later after the addition of antiserum was observed. This raises a hypothesis that Leptospira carries surface molecules bound with antibodies toward the cell end to escape and recovers the motility.  相似文献   

14.
Leptospirosis is a zoonotic disease caused by pathogenic spirochetes of theLeptospira genus. Vaccination with bacterins has severe limitations. Here, we evaluated the N-terminal region of the leptospiral immunoglobulin-like B protein (LigBrep) as a vaccine candidate against leptospirosis using immunisation strategies based on DNA prime-protein boost, DNA vaccine, and subunit vaccine. Upon challenge with a virulent strain ofLeptospira interrogans, the prime-boost and DNA vaccine approaches induced significant protection in hamsters, as well as a specific IgG antibody response and sterilising immunity. Although vaccination with recombinant fragment of LigBrep also produced a strong antibody response, it was not immunoprotective. These results highlight the potential of LigBrep as a candidate antigen for an effective vaccine against leptospirosis and emphasise the use of the DNA prime-protein boost as an important strategy for vaccine development.  相似文献   

15.
BackgroundSevere leptospirosis is challenging as it could evolve rapidly and potentially fatal if appropriate management is not performed. An understanding of the progression and pathophysiology of Leptospira infection is important to determine the early changes that could be potentially used to predict the severe occurrence of leptospirosis. This study aimed to understand the kinetics pathogenesis of Leptospira interrogans strain HP358 in the hamster model and identify the early parameters that could be used as biomarkers to predict severe leptospirosis.Methodology/Principal findingsMale Syrian hamsters were infected with Leptospira interrogans strain HP358 and euthanized after 24 hours, 3, 4, 5, 6 and 7 days post-infection. Blood, lungs, liver and kidneys were collected for leptospiral detection, haematology, serum biochemistry and differential expression of pro- and anti-inflammatory markers. Macroscopic and microscopic organ damages were investigated. Leptospira interrogans strain HP358 was highly pathogenic and killed hamsters within 6–7 days post-infection. Pulmonary haemorrhage and blood vessel congestion in organs were noticed as the earliest pathological changes. The damages in organs and changes in biochemistry value were preceded by changes in haematology and immune gene expression.Conclusion/SignificanceThis study deciphered haemorrhage as the earliest manifestation of severe leptospirosis and high levels of IL-1β, CXCL10/IP-10, CCL3/MIP-α, neutrophils and low levels of lymphocytes and platelets serve as a cumulative panel of biomarkers in severe leptospirosis.  相似文献   

16.
Spirochetes of the genus Leptospira cause leptospirosis in humans and animals worldwide. Proteins exposed on the bacterial cell surface are implicated in the pathogenesis of leptospirosis. However, the biological role of the majority of these proteins is unknown; this is principally due to the lack of genetic systems for investigating Leptospira and the absence of any structural information on leptospiral antigens. To address this, we have determined the 2.0-Å-resolution structure of the lipoprotein LipL32, the most abundant outer-membrane and surface protein present exclusively in pathogenic Leptospira species. The extracellular domain of LipL32 revealed a compact, globular, “jelly-roll” fold from which projected an unusual extended β-hairpin that served as a principal mediator of the observed crystallographic dimer. Two acid-rich patches were also identified as potential binding sites for positively charged ligands, such as laminin, to which LipL32 has a propensity to bind. Although LipL32 shared no significant sequence identity to any known protein, it possessed structural homology to the adhesins that bind components of the extracellular matrix, suggesting that LipL32 functions in an analogous manner. Moreover, the structure provides a framework for understanding the immunological role of this major surface lipoprotein.  相似文献   

17.

Background

Leptospira (L.) interrogans are bacteria responsible for a worldwide reemerging zoonosis. Rodents carry L. interrogans asymptomatically in their kidneys and excrete bacteria in the urine, contaminating the environment. Humans get infected through skin contact and develop a mild or severe leptospirosis that may lead to renal failure and fibrosis. L. interrogans provoke an interstitial nephritis, but the induction of fibrosis caused by L. interrogans has not been studied in murine models. Innate immune receptors from the TLR and NLR families have recently been shown to play a role in the development and progression of tissue fibrosis in the lung, liver and kidneys under different pathophysiological situations. We recently showed that TLR2, TLR4, and NLRP3 receptors were crucial in the defense against leptospirosis. Moreover, infection of a human cell line with L. interrogans was shown to induce TLR2-dependent production of fibronectin, a component of the extracellular matrix. Therefore, we thought to assess the presence of renal fibrosis in L. interrogans infected mice and to analyze the contribution of some innate immune pathways in this process.

Methodology/principal findings

Here, we characterized by immunohistochemical studies and quantitative real-time PCR, a model of Leptospira-infected C57BL/6J mice, with chronic carriage of L. interrogans inducing mild renal fibrosis. Using various strains of transgenic mice, we determined that the renal infiltrates of T cells and, unexpectedly, TLR and NLR receptors, are not required to generate Leptospira-induced renal fibrosis. We also show that the iNOS enzyme, known to play a role in Leptospira-induced interstitial nephritis, also plays a role in the induction of renal fibrosis.

Conclusion/significance

To our knowledge, this work provides the first experimental murine model of sustained renal fibrosis induced by a chronic bacterial infection that may be peculiar, since it does not rely on TLR or NLR receptors. This model may prove useful to test future therapeutic strategies to combat Leptospira-induced renal lesions.  相似文献   

18.
Leptospirosis is a bacterial zoonotic disease caused by spirochetes in the genus Leptospira. To date, factors determining the pathogenicity and virulence of leptospires remain unclear. We performed a gel‐based proteomic analysis to evaluate differential leptospiral proteomes in the pathogenic L. interrogans (serovars Australis, Bratislava, Autumnalis, and Icterohaemorrhagiae) and the non‐pathogenic L. biflexa (serovar Patoc). Quantitative proteome analysis and MS protein identification revealed 42 forms of 33 unique proteins whose levels were significantly greater in the pathogenic serovars compared with the non‐pathogenic serovar. Among the four pathogenic serovars, the more virulent serovar Icterohaemorrhagiae (which is most commonly associated with severe leptospirosis in patients) had significantly greater levels of 14 forms of 12 unique proteins, when compared with the other three pathogenic serovars. Some of these identified proteins may serve as the pathogenic and/or virulence factors of leptospirosis.  相似文献   

19.
Leptospira interrogans is a pathogenic spirochete responsible for leptospirosis, a neglected, zoonotic reemerging disease. Humans are sensitive hosts and may develop severe disease. Some animal species, such as rats and mice can become asymptomatic renal carriers. More than 350 leptospiral serovars have been identified, classified on the basis of the antibody response directed against the lipopolysaccharide (LPS). Similarly to whole inactivated bacteria used as human vaccines, this response is believed to confer only short-term, serogroup-specific protection. The immune response of hosts against leptospires has not been thoroughly studied, which complicates the testing of vaccine candidates. In this work, we studied the immunoglobulin (Ig) profiles in mice infected with L. interrogans over time to determine whether this humoral response confers long-term protection after homologous challenge six months post-infection. Groups of mice were injected intraperitoneally with 2×107 leptospires of one of three pathogenic serovars (Manilae, Copenhageni or Icterohaemorrhagiae), attenuated mutants or heat-killed bacteria. Leptospira-specific immunoglobulin (IgA, IgM, IgG and 4 subclasses) produced in the first weeks up to 6 months post-infection were measured by ELISA. Strikingly, we found sustained high levels of IgM in mice infected with the pathogenic Manilae and Copenhageni strains, both colonizing the kidney. In contrast, the Icterohaemorrhagiae strain did not lead to kidney colonization, even at high dose, and triggered a classical IgM response that peaked at day 8 post-infection and disappeared. The virulent Manilae and Copenhageni serovars elicited high levels and similar profiles of IgG subclasses in contrast to Icterohaemorrhagiae strains that stimulated weaker antibody responses. Inactivated heat-killed Manilae strains elicited very low responses. However, all mice pre-injected with leptospires challenged with high doses of homologous bacteria did not develop acute leptospirosis, and all antibody responses were boosted after challenge. Furthermore, we showed that 2 months post-challenge, mice pre-infected with the attenuated M895 Manilae LPS mutant or heat-killed bacterin were completely protected against renal colonization. In conclusion, we observed a sustained IgM response potentially associated with chronic leptospiral renal infection. We also demonstrated in mice different profiles of protective and cross-reactive antibodies after L. interrogans infection, depending on the serovar and virulence of strains.  相似文献   

20.
A severe re‐emergingzoonosis, leptospirosis, is caused by pathogenic spirochetes of the genus Leptospira. Several studies have identified leptospiral surface proteins with the ability to bind ECM and plasma components, which could mediate adhesion and invasion through the hosts. It has been shown that Mce of pathogenic Leptospira spp. is an RGD (Arg‐Gly‐Asp)‐motif‐dependent virulence factor, responsible for infection of cells and animals. In the present article, we decided to further study the repertoire of the Mce activities in leptospiral biological properties. We report that the recombinant Mce is a broad‐spectrum ECM‐binding protein, capable of interacting with laminin, cellular and plasma fibronectin and collagen IV. Dose­–r­esponse interaction was observed for all the components, fulfilling ligand­–receptor requirements. Mce is a PLG binding protein capable to recruit this component from NHS, generating PLA in the presence of PLG activator. Binding of Mce was also observed with the leukocyte cell receptors αLβ2 [(CD11a/CD18)‐LFA‐1] and αMβ2 [(CD11b/CD18)‐Mac‐1], suggesting the involvement of this protein in the host immune response. Indeed, virulent Leptospira L1‐130 was capable of binding both integrins, whereas culture‐attenuated M‐20 strain only bind to αMβ2 [(CD11b/CD18)‐Mac‐1]. To the best of our knowledge, this is the first work to describe that Mce surface protein could mediate the attachment of Leptospira interrogans to human cell receptors αLβ2(CD11a/CD18) and αMβ2(CD11b/CD18).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号