首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Topoisomerases are essential for the replication of herpesviruses but the mechanisms by which the viruses hijack the cellular enzymes are largely unknown. We found that topoisomerase-II (TOP2) is a substrate of the Epstein-Barr virus (EBV) ubiquitin deconjugase BPLF1. BPLF1 co-immunoprecipitated and deubiquitinated TOP2, and stabilized SUMOylated TOP2 trapped in cleavage complexes (TOP2ccs), which halted the DNA damage response to TOP2-induced double strand DNA breaks and promoted cell survival. Induction of the productive virus cycle in epithelial and lymphoid cell lines carrying recombinant EBV encoding the active enzyme was accompanied by TOP2 deubiquitination, accumulation of TOP2ccs and resistance to Etoposide toxicity. The protective effect of BPLF1 was dependent on the expression of tyrosyl-DNA phosphodiesterase 2 (TDP2) that releases DNA-trapped TOP2 and promotes error-free DNA repair. These findings highlight a previously unrecognized function of BPLF1 in supporting a non-proteolytic pathway for TOP2ccs debulking that favors cell survival and virus production.  相似文献   

2.
PCNA is monoubiquitinated in response to DNA damage and fork stalling and then initiates recruitment of specialized polymerases in the DNA damage tolerance pathway, translesion synthesis (TLS). Since PCNA is reported to associate with Epstein-Barr virus (EBV) DNA during its replication, we investigated whether the EBV deubiquitinating (DUB) enzyme encoded by BPLF1 targets ubiquitinated PCNA and disrupts TLS. An N-terminal BPLF1 fragment (a BPLF1 construct containing the first 246 amino acids [BPLF1 1-246]) associated with PCNA and attenuated its ubiquitination in response to fork-stalling agents UV and hydroxyurea in cultured cells. Moreover, monoubiquitinated PCNA was deubiquitinated after incubation with purified BPLF1 1-246 in vitro. BPLF1 1-246 dysregulated TLS by reducing recruitment of the specialized repair polymerase polymerase η (Polη) to the detergent-resistant chromatin compartment and virtually abolished localization of Polη to nuclear repair foci, both hallmarks of TLS. Expression of BPLF1 1-246 decreased viability of UV-treated cells and led to cell death, presumably through deubiquitination of PCNA and the inability to repair damaged DNA. Importantly, deubiquitination of PCNA could be detected endogenously in EBV-infected cells in comparison with samples expressing short hairpin RNA (shRNA) against BPLF1. Further, the specificity of the interaction between BPLF1 and PCNA was dependent upon a PCNA-interacting peptide (PIP) domain within the N-terminal region of BPLF1. Both DUB activity and PIP sequence are conserved in the members of the family Herpesviridae. Thus, deubiquitination of PCNA, normally deubiquitinated by cellular USP1, by the viral DUB can disrupt repair of DNA damage by compromising recruitment of TLS polymerase to stalled replication forks. PCNA is the first cellular target identified for BPLF1 and its deubiquitinating activity.  相似文献   

3.
Viral infection triggers an early host response through activation of pattern recognition receptors, including Toll-like receptors (TLR). TLR signaling cascades induce production of type I interferons and proinflammatory cytokines involved in establishing an anti-viral state as well as in orchestrating ensuing adaptive immunity. To allow infection, replication, and persistence, (herpes)viruses employ ingenious strategies to evade host immunity. The human gamma-herpesvirus Epstein-Barr virus (EBV) is a large, enveloped DNA virus persistently carried by more than 90% of adults worldwide. It is the causative agent of infectious mononucleosis and is associated with several malignant tumors. EBV activates TLRs, including TLR2, TLR3, and TLR9. Interestingly, both the expression of and signaling by TLRs is attenuated during productive EBV infection. Ubiquitination plays an important role in regulating TLR signaling and is controlled by ubiquitin ligases and deubiquitinases (DUBs). The EBV genome encodes three proteins reported to exert in vitro deubiquitinase activity. Using active site-directed probes, we show that one of these putative DUBs, the conserved herpesvirus large tegument protein BPLF1, acts as a functional DUB in EBV-producing B cells. The BPLF1 enzyme is expressed during the late phase of lytic EBV infection and is incorporated into viral particles. The N-terminal part of the large BPLF1 protein contains the catalytic site for DUB activity and suppresses TLR-mediated activation of NF-κB at, or downstream of, the TRAF6 signaling intermediate. A catalytically inactive mutant of this EBV protein did not reduce NF-κB activation, indicating that DUB activity is essential for attenuating TLR signal transduction. Our combined results show that EBV employs deubiquitination of signaling intermediates in the TLR cascade as a mechanism to counteract innate anti-viral immunity of infected hosts.  相似文献   

4.
Carcinogenic DNA viruses such as high-risk human papillomaviruses (HPV) and Epstein-Barr-Virus (EBV) replicate during persistent infections as low-copy-number plasmids. EBV DNA replication is restricted by host cell replication licensing mechanisms. In contrast, copy number control of HPV genomes is not under cellular control but involves the viral sequence-specific DNA-binding E2 activator and E8-E2C repressor proteins. Analysis of HPV31 mutant genomes revealed that residues outside of the DNA-binding/dimerization domain of E8-E2C limit viral DNA replication, indicating that binding site competition or heterodimerization among E2 and E8-E2C proteins does not contribute to copy number control. Domain swap experiments demonstrated that the amino-terminal 21 amino acids of E8-E2C represent a novel, transferable DNA replication repressor domain, whose activity requires conserved lysine and tryptophan residues. Furthermore, E8-E2C (1-21)-GAL4 fusion proteins inhibited the replication of the plasmid origin of replication of EBV, suggesting that E8-E2C functions as a general replication repressor of extrachromosomal origins. This finding could be important for the development of novel therapies against persistent DNA tumor virus infections.  相似文献   

5.
6.
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) protein is known as a regulator which recognizes phosphorylated Ser/Thr-Pro motifs and increases the rate of cis and trans amide isomer interconversion, thereby altering the conformation of its substrates. We found that Pin1 knockdown using short hairpin RNA (shRNA) technology resulted in strong suppression of productive Epstein-Barr virus (EBV) DNA replication. We further identified the EBV DNA polymerase catalytic subunit, BALF5, as a Pin1 substrate in glutathione S-transferase (GST) pulldown and immunoprecipitation assays. Lambda protein phosphatase treatment abolished the binding of BALF5 to Pin1, and mutation analysis of BALF5 revealed that replacement of the Thr178 residue by Ala (BALF5 T178A) disrupted the interaction with Pin1. To further test the effects of Pin1 in the context of virus infection, we constructed a BALF5-deficient recombinant virus. Exogenous supply of wild-type BALF5 in HEK293 cells with knockout recombinant EBV allowed efficient synthesis of viral genome DNA, but BALF5 T178A could not provide support as efficiently as wild-type BALF5. In conclusion, we found that EBV DNA polymerase BALF5 subunit interacts with Pin1 through BALF5 Thr178 in a phosphorylation-dependent manner. Pin1 might modulate EBV DNA polymerase conformation for efficient, productive viral DNA replication.  相似文献   

7.
G Decaussin  V Leclerc    T Ooka 《Journal of virology》1995,69(11):7309-7314
In Epstein-Barr virus (EBV)-carrying nonproducer Raji cells, the induction of the viral replicative cycle by chemical treatment is limited to only the early stage and viral DNA synthesis is totally inhibited. We previously showed the absence of two messenger RNAs that are encoded by the BamHI-A fragment of the EBV genome and that correspond to open reading frames BALF2 and BARF1 in chemically induced Raji cells. Since the BALF2 gene encodes a 135-kDa DNA-binding protein which was immunoprecipitated by antibody against ICP8 protein, a key protein in herpes simplex virus replication, we asked whether the lack of productive cycle in Raji cells is due to the absence of expression of the BALF2 gene. We transfected the Raji cell line with the BALF2 gene. After chemical induction, the BALF2-transfected cells expressed not only early antigens but also late antigens. In these cultures, the viral particles were detected by electron microscopy. The expression of late antigens was completely inhibited by arabinofuranosylthymine, which is a specific inhibitor of viral DNA replication. The BALF2 gene might play an essential role in the induction of the EBV-lytic cycle.  相似文献   

8.
Growth of lymphoblastoid cells (B95-8, Raji) is not inhibited by the presence of 0.4 mM phosphonoacetic acid. The synthesis of Epstein-Barr virus (EBV) in the producer line B95-8 is completely inhibited, as shown by the total inhibition of viral capsid antigen synthesis. Early viral antigens are made normally in the presence of phosphonoacetic acid, but EBV DNA synthesis is blocked in cells entering the productive cycle. Nonproducer cells in the population replicate the resident EBV DNA by a mechanism that is resistant to phosphonoacetic acid. These results are consistant with the hypotheses that EBV DNA is replicated by two mechanisms, one in the noninduced cell and a different mechanism in the producer cell, and that prior replication of EBV DNA, probably by the second mode, is a prerequisite for late gene expression.  相似文献   

9.
蛋白质拟素化是一种类似于泛素化的翻译后修饰,由NEDD8活化酶E1 (NAE)、NEDD8耦联酶E2 (UBE2M或UBE2F)和NEDD8连接酶E3三种酶催化组成的级联反应。Cullin家族蛋白是拟素化修饰的生理性底物,Cullin的拟素化修饰激活Cullin-RING连接酶(CRLs),CRLs是最大一类E3泛素连接酶家族,介导了其中约20%蛋白质的泛素化降解来调节许多生物过程,包括细胞周期调控、DNA损伤修复、细胞生长、代谢、存活、自噬、迁移和免疫逃逸等。去拟素化过程则是通过特异性的去拟素化酶将拟素分子NEDD8从底物蛋白上水解并移除,释放至细胞中以维持拟素化的动态平衡。NEDD8和拟素化修饰的催化酶在多种癌症中高表达或活性上调,导致CRLs的过度激活,催化许多抑癌蛋白质的降解,从而促进肺癌细胞的增殖与存活以及肺肿瘤的发生发展。蛋白质拟素化修饰已被证实是有希望的癌症靶点。同样地,多种去拟素化酶在肺癌中高表达,其改变也与多种恶性肿瘤的发生发展密切相关,亦是潜在的肿瘤治疗重要靶点。本综述主要聚焦于拟素化及去拟素化通路在肺癌细胞中表达水平的改变,如何调节肺癌细胞的生长、存活和肺癌微环境...  相似文献   

10.
Epstein-Barr virus (EBV) is a human DNA virus that is responsible for the syndrome infectious mononucleosis, and is associated with several forms of cancer. During both lytic and latent viral infection, viral proteins manipulate the host's cellular components to aid in viral replication and maintenance. Here, it is demonstrated that induction of EBV lytic replication results in a dramatic reorganization of mitochondria accompanied by a significant alteration of mitochondrial membrane potential and a rapid and transient increase in the microtubular cytoskeleton. Moreover, we show that expression of the EBV immediate-early genes BZLF1 and BRLF1 contributes to the mitochondrial alteration but not the increase in the microtubule cytoskeleton, suggesting that the mechanism for the observed cytoplasmic restructuring involves a number of coordinated viral and host proteins.  相似文献   

11.
The specific binding of HeLa cell factors to DNA sequences at the Epstein-Barr virus (EBV) latent origin of DNA replication was detected by gel shift experiments and DNase I footprinting analysis. These cellular proteins protected at least five discrete regions of the DNA replication origin. The viral protein required for EBV plasmid replication, EBV nuclear antigen 1 (EBNA-1), binds to specific sequences within the origin region. The HeLa cell proteins competed with EBNA-1 for binding to EBV origin DNA in vitro, leading to the possibility that these cellular proteins regulate EBV DNA replication by displacing EBNA-1 at the origin sites.  相似文献   

12.
The propagation of herpesviruses has long been viewed as a temporally regulated sequential process that results from the consecutive expression of specific viral transactivators. As a key step in this process, lytic viral DNA replication is considered as a checkpoint that controls the expression of the late structural viral genes. In a novel genetic approach, we show that both hypotheses do not hold true for the Epstein-Barr virus (EBV). The study of viral mutants of EBV in which the early genes BZLF1 and BRLF1 are deleted allowed a precise assignment of the function of these proteins. Both transactivators were absolutely essential for viral DNA replication. Both BZLF1 and BRLF1 were required for full expression of the EBV proteins expressed during the lytic program, although the respective influence of these molecules on the expression of various viral target genes varied greatly. In replication-defective viral mutants, neither early gene expression nor DNA replication was a prerequisite for late gene expression. This work shows that BRLF1 and BZLF1 harbor distinct but complementary functions that influence all stages of viral production.  相似文献   

13.
Productive infection and replication of herpesviruses usually occurs in growth-arrested cells, but there has been no direct evidence in the case of Epstein-Barr virus (EBV), since an efficient lytic replication system without external stimuli does not exist for the virus. Expression of the EBV lytic-switch transactivator BZLF1 protein in EBV-negative epithelial tumor cell lines, however, is known to arrest the cell cycle in G(0)/G(1) by induction of the tumor suppressor protein p53 and the cyclin-dependent kinase (CDK) inhibitors p21(WAF-1/CIP-1) and p27(KIP-1), followed by the accumulation of a hypophosphorylated form of the Rb protein. In order to determine the effect of the onset of lytic viral replication on cellular events in latently EBV-infected B LCLs, a tightly controlled induction system of the EBV lytic-replication program by inducible BZLF1 protein expression was established in B95-8 cells. The induction of lytic replication completely arrested cell cycle progression and cellular DNA replication. Surprisingly, the levels of p53, p21(WAF-1/CIP-1), and p27(KIP-1) were constant before and after induction of the lytic program, indicating that the cell cycle arrest induced by the lytic program is not mediated through p53 and the CDK inhibitors. Furthermore, although cellular DNA replication was blocked, elevation of cyclin E/A expression and accumulation of hyperphosphorylated forms of Rb protein were observed, a post-G(1)/S phase characteristic of cells. Thus, while the EBV lytic program promoted specific cell cycle-associated activities involved in the progression from G(1) to S phase, it inhibited cellular DNA synthesis. Such cellular conditions appear to especially favor viral lytic replication.  相似文献   

14.
The Epstein-Barr virus (EBV) lytic program includes lytic viral DNA replication and the production of a viral particle into which the replicated viral DNA is packaged. The terminal repeats (TRs) located at the end of the linear viral DNA have been identified as the packaging signals. A TR-negative (TR(-)) mutant therefore provides an appropriate tool to analyze the relationships between EBV DNA packaging and virus production. Here, we show that supernatants from lytically induced 293 cells carrying TR mutant EBV genomes (293/TR(-)) contain large amounts of viral particles devoid of viral DNA which are nevertheless able to bind to EBV target cells. This shows that viral DNA packaging is not a prerequisite for virion formation and egress. Rather surprisingly, supernatants from lytically induced 293/TR(-) cells also contained rare infectious viruses carrying the viral mutant DNA. This observation indicates that the TRs are important but not absolutely essential for virus encapsidation.  相似文献   

15.
Epstein-Barr virus (EBV) productive DNA replication occurs at discrete sites, called replication compartments, in nuclei. In this study we performed comprehensive analyses of the architecture of the replication compartments. The BZLF1 oriLyt binding proteins showed a fine, diffuse pattern of distribution throughout the nuclei at immediate-early stages of induction and then became associated with the replicating EBV genome in the replication compartments during lytic infection. The BMRF1 polymerase (Pol) processivity factor showed a homogenous, not dot-like, distribution in the replication compartments, which completely coincided with the newly synthesized viral DNA. Inhibition of viral DNA replication with phosphonoacetic acid, a viral DNA Pol inhibitor, eliminated the DNA-bound form of the BMRF1 protein, although the protein was sufficiently expressed in the cells. These observations together with the findings that almost all abundantly expressed BMRF1 proteins existed in the DNA-bound form suggest that the BMRF1 proteins not only act at viral replication forks as Pol processive factors but also widely distribute on newly replicated EBV genomic DNA. In contrast, the BALF5 Pol catalytic protein, the BALF2 single-stranded-DNA binding protein, and the BBLF2/3 protein, a component of the helicase-primase complex, were colocalized as distinct dots distributed within replication compartments, representing viral replication factories. Whereas cellular replication factories are constructed based on nonchromatin nuclear structures and nuclear matrix, viral replication factories were easily solubilized by DNase I treatment. Thus, compared with cellular DNA replication, EBV lytic DNA replication factories would be simpler so that construction of the replication domain would be more relaxed.  相似文献   

16.
Human lymphoblastoid Raji cells, which do not produce virus, supported replication of Epstein-Barr virus (EBV) upon superinfection. Early antigen, viral capsid antigen, and virions were produced in Raji cells superinfected with EBV. Viral DNA replicated under complete inhibition of host cell DNA synthesis to the extent that a few micrograms of EBV DNA were recovered from 107 superinfected Raji cells, corresponding to 5,000 viral genomes/cell. Homology of the synthesized viral DNA to parental EBV DNA was more than 90%. Virions produced by the Raji cells contained a 55S DNA but failed to induce early antigen, viral capsid antigen, and viral DNA synthesis after a second superinfection of Raji cells.  相似文献   

17.
18.
19.
A de Bruyn Kops  D M Knipe 《Cell》1988,55(5):857-868
Eukaryotic DNA synthesis is thought to occur in multienzyme complexes present at numerous discrete sites throughout the nucleus. We demonstrate here that cellular DNA replication sites identified by bromodeoxyuridine labeling are relocated in cells infected with herpes simplex virus such that they correspond to viral prereplicative structures containing the HSV DNA replication protein, ICP8. Thus components of the cellular DNA replication apparatus are present at viral prereplicative sites. Mutant virus strains expressing defective ICP8 do not alter the pattern of host cell DNA replication sites, indicating that functional ICP8 is required for the redistribution of cellular DNA replication complexes. This demonstrates that a specific protein molecule can play a role in the organization of DNA replication proteins at discrete sites within the cell nucleus.  相似文献   

20.
In ubiquitination, cullin-RING E3 ubiquitin ligases (CRLs) assist in ubiquitin transfer from ubiquitin-conjugating enzyme E2 to the substrate. Neddylation, which involves NEDD8 transfer from E2 to E3-cullin, stimulates ubiquitination by inducing conformational change in CRLs. However, deneddylation, which removes NEDD8 from cullin, does not suppress ubiquitination in vivo, raising the question of how neddylation/deneddylation exerts its effects. Using molecular-dynamics simulations, we demonstrate that before neddylation occurs, the linker flexibility of Rbx1, a CRL component, leads to conformational changes in CRLs that allow neddylation and initiation of ubiquitination. These large NEDD8-induced conformational changes are retained after deneddylation, allowing both initiation of the ubiquitination process and ubiquitin chain elongation after deneddylation. Furthermore, mutation of lysine, the cullin residue to which NEDD8 covalently attaches, dramatically reduces CRL conformational changes, suggesting that the acceptor lysine allosterically regulates CRLs. Thus, our results imply that neddylation stimulates ubiquitination by CRL conformational control via lysine modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号