首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evolutionarily distinctive host lineages might harbor fewer parasite species because they have fewer opportunities for parasite sharing than hosts having extant close relatives, or because diverse parasite assemblages promote host diversification. We evaluate these hypotheses using data from 930 species of parasites reported to infect free‐living carnivores. We applied nonparametric richness estimators to estimate parasite diversity among well‐sampled carnivore species and assessed how well host evolutionary distinctiveness, relative to other biological and environmental factors, explained variation in estimated parasite diversity. Species richness estimates indicate that the current published literature captures less than 50% of the true parasite diversity for most carnivores. Parasite species richness declined with evolutionary distinctiveness of carnivore hosts (i.e., length of terminal ranches of the phylogeny) and increased with host species body mass and geographic range area. We found no support for the hypothesis that hosts from more diverse lineages support a higher number of generalist parasites, but we did find evidence that parasite assemblages might have driven host lineage diversification through mechanisms linked to sexual selection. Collectively, this work provides strong support for host evolutionary history being an essential predictor of parasite diversity, and offers a simple model for predicting parasite diversity in understudied carnivore species.  相似文献   

2.
Do threatened hosts have fewer parasites? A comparative study in primates   总被引:3,自引:1,他引:2  
1. Parasites and infectious diseases have become a major concern in conservation biology, in part because they can trigger or accelerate species or population declines. Focusing on primates as a well-studied host clade, we tested whether the species richness and prevalence of parasites differed between threatened and non-threatened host species. 2. We collated data on 386 species of parasites (including viruses, bacteria, protozoa, helminths and arthropods) reported to infect wild populations of 36 threatened and 81 non-threatened primate species. Analyses controlled for uneven sampling effort and host phylogeny. 3. Results showed that total parasite species richness was lower among threatened primates, supporting the prediction that small, isolated host populations harbour fewer parasite species. This trend was consistent across three major parasite groups found in primates (helminths, protozoa and viruses). Counter to our predictions, patterns of parasite species richness were independent of parasite transmission mode and the degree of host specificity. 4. We also examined the prevalence of selected parasite genera among primate sister-taxa that differed in their ranked threat categories, but found no significant differences in prevalence between threatened and non-threatened hosts. 5. This study is the first to demonstrate differences in parasite richness relative to host threat status. Results indicate that human activities and host characteristics that increase the extinction risk of wild animal species may lead simultaneously to the loss of parasites. Lower average parasite richness in threatened host taxa also points to the need for a better understanding of the cascading effects of host biodiversity loss for affiliated parasite species.  相似文献   

3.
Aim  Comparative studies have revealed strong links between ecological factors and the number of parasite species harboured by different hosts, but studies of different taxonomic host groups have produced inconsistent results. As a step towards understanding the general patterns of parasite species richness, we present results from a new comprehensive data base of over 7000 host–parasite combinations representing 146 species of carnivores (Mammalia: Carnivora) and 980 species of parasites.
Methods  We used both phylogenetic and non-phylogenetic comparative methods while controlling for unequal sampling effort within a multivariate framework to ascertain the main determinants of parasite species richness in carnivores.
Results  We found that body mass, population density, geographical range size and distance from the equator are correlated with overall parasite species richness in fissiped carnivores. When parasites are classified by transmission mode, body mass and home range area are the main determinants of the richness of parasites spread by close contact between hosts, and population density, geographical range size and distance from the equator account for the diversity of parasites that are not dependent on close contact. For generalist parasites, population density, geographical range size and latitude are the primary predictors of parasite species richness. We found no significant ecological correlates for the richness of specialist or vector-borne parasites.
Main conclusions  Although we found that parasite species richness increases instead of decreases with distance from the equator, other comparative patterns in carnivores support previous findings in primates, suggesting that similar ecological factors operate in both these independent evolutionary lineages.  相似文献   

4.
N Cooper  JM Kamilar  CL Nunn 《PloS one》2012,7(8):e42190
Hosts and parasites co-evolve, with each lineage exerting selective pressures on the other. Thus, parasites may influence host life-history characteristics, such as longevity, and simultaneously host life-history may influence parasite diversity. If parasite burden causes increased mortality, we expect a negative association between host longevity and parasite species richness. Alternatively, if long-lived species represent a more stable environment for parasite establishment, host longevity and parasite species richness may show a positive association. We tested these two opposing predictions in carnivores, primates and terrestrial ungulates using phylogenetic comparative methods and controlling for the potentially confounding effects of sampling effort and body mass. We also tested whether increased host longevity is associated with increased immunity, using white blood cell counts as a proxy for immune investment. Our analyses revealed weak relationships between parasite species richness and longevity. We found a significant negative relationship between longevity and parasite species richness for ungulates, but no significant associations in carnivores or primates. We also found no evidence for a relationship between immune investment and host longevity in any of our three groups. Our results suggest that greater parasite burden is linked to higher host mortality in ungulates. Thus, shorter-lived ungulates may be more vulnerable to disease outbreaks, which has implications for ungulate conservation, and may be applicable to other short-lived mammals.  相似文献   

5.
Host movements, including migrations or range expansions, are known to influence parasite communities. Transitions to captivity—a rarely studied yet widespread human‐driven host movement—can also change parasite communities, in some cases leading to pathogen spillover among wildlife species, or between wildlife and human hosts. We compared parasite species richness between wild and captive populations of 22 primate species, including macro‐ (helminths and arthropods) and micro‐parasites (viruses, protozoa, bacteria, and fungi). We predicted that captive primates would have only a subset of their native parasite community, and would possess fewer parasites with complex life cycles requiring intermediate hosts or vectors. We further predicted that captive primates would have parasites transmitted by close contact and environmentally—including those shared with humans and other animals, such as commensals and pests. We found that the composition of primate parasite communities shifted in captive populations, especially because of turnover (parasites detected in captivity but not reported in the wild), but with some evidence of nestedness (holdovers from the wild). Because of the high degree of turnover, we found no significant difference in overall parasite richness between captive and wild primates. Vector‐borne parasites were less likely to be found in captivity, whereas parasites transmitted through either close or non‐close contact, including through fecal‐oral transmission, were more likely to be newly detected in captivity. These findings identify parasites that require monitoring in captivity and raise concerns about the introduction of novel parasites to potentially susceptible wildlife populations during reintroduction programs.  相似文献   

6.
We investigate the determinants of macroparasite species richness of Iberian carnivores. For this, we used the parasitological data collected on 14 species of carnivores over a 10-year period. These previously unpublished data permitted to estimate parasite species richness using estimators of species richness, i.e. Jackknife first order and Chao 2. Most of the parasite species were rare, with low prevalence. Potential determinants were investigated as possible factors explaining the variability of parasites species richness among carnivores host body mass, host geographical range, host longevity and host density. Using independent contrasts, we found positive relationships between residuals of estimates of parasite species richness and residuals in host density, and between residuals of estimates of parasite species richness and residuals in host range. These results are discussed in terms of risk of extinction and invasion abilities related to a possible investment in immune defences correlated with parasite diversity.  相似文献   

7.
Understanding how parasites are transmitted to new species is of great importance for human health, agriculture and conservation. However, it is still unclear why some parasites are shared by many species, while others have only one host. Using a new measure of ‘phylogenetic host specificity’, we find that most primate parasites with more than one host are phylogenetic generalists, infecting less closely related primates than expected. Evolutionary models suggest that phylogenetic host generalism is driven by a mixture of host–parasite cospeciation and lower rates of parasite extinction. We also show that phylogenetic relatedness is important in most analyses, but fails to fully explain patterns of parasite sharing among primates. Host ecology and geographical distribution emerged as key additional factors that influence contacts among hosts to facilitate sharing. Greater understanding of these factors is therefore crucial to improve our ability to predict future infectious disease risks.  相似文献   

8.
Past models have suggested host-parasite coextinction could lead to linear, or concave down relationships between free-living species richness and parasite richness. I explored several models for the relationship between parasite richness and biodiversity loss. Life cycle complexity, low generality of parasites and sensitivity of hosts reduced the robustness of parasite species to the loss of free-living species diversity. Food-web complexity and the ordering of extinctions altered these relationships in unpredictable ways. Each disassembly of a food web resulted in a unique relationship between parasite richness and the richness of free-living species, because the extinction trajectory of parasites was sensitive to the order of extinctions of free-living species. However, the average of many disassemblies tended to approximate an analytical model. Parasites of specialist hosts and hosts higher on food chains were more likely to go extinct in food-web models. Furthermore, correlated extinctions between hosts and parasites (e.g. if parasites share a host with a specialist predator) led to steeper declines in parasite richness with biodiversity loss. In empirical food webs with random removals of free-living species, the relationship between free-living species richness and parasite richness was, on average, quasi-linear, suggesting biodiversity loss reduces parasite diversity more than previously thought.  相似文献   

9.
Within populations the contact rate of hosts and infectious parasites is mediated by the interactions of resource availability, host density, and host behavior. Fluctuations in host density can result in the loss or extinction of a parasite population as contact rates between parasites and susceptible individuals drop below thresholds of parasite population persistence. Less understood is how changes in resources and the behavioral ecology of host populations affect parasites. We used food provisioning to experimentally assess the effects of resource availability and of inducing host aggregation on the endoparasite community of free‐ranging raccoons. Twelve independent raccoon populations were subjected to differential resource provisioning for two years: a clumped food distribution to aggregate hosts (n = 5 populations), a dispersed food distribution to add food without aggregating hosts (n = 3), and a no food treatment (n = 4). Remote cameras indicated that aggregation sizes were three to four times greater in aggregated versus non‐aggregated populations. We considered endoparasites with direct and indirect life cycles separately and determined the best‐fit models of parasite species richness in relation to host aggregation, food supplements, and host age and sex. Social aggregation had a negligible impact on the species richness of directly or indirectly transmitted parasites. However, food additions decreased the number of indirectly transmitted parasite species by 35% in the oldest age classes. These results suggest that while resource availability can influence the transmission of indirectly transmitted parasites, an examination of additional factors will be necessary to understand the role of host contact and factors that shape the community structure of endoparasites in natural environments.  相似文献   

10.
Studies of biodiversity traditionally focus on charismatic megafauna. By comparison, little is known about parasite biodiversity. Recent studies suggest that co-extinction of host specific parasites with their hosts should be common and that parasites may even go extinct before their hosts. The few studies examining the relationship between parasite diversity and habitat quality have focused on parasites that require intermediate hosts and pathogens that require vectors to complete their life-cycles. Declines in parasite and pathogen richness in these systems could be due to the decline of any of the definitive hosts, intermediate hosts, or vectors. Here we focus on avian ectoparasites, primarily lice, which are host specific parasites with simple, direct, life-cycles. By focusing on these parasites we gain a clearer understanding of how parasites are linked to their hosts and their hosts’ environment. We compare parasite richness on birds from fragmented forests in southern China. We show that parasite richness correlates with forest size, even among birds that are locally common. The absence of some ectoparasite genera in small forests suggests that parasites can go locally extinct even if their hosts persist. Our data suggest that the conservation of parasite biodiversity may require preservation of habitat fragments that are sufficiently large to maintain parasite populations, not just their host populations.  相似文献   

11.
Infectious disease risk is thought to increase in the tropics, but little is known about latitudinal gradients of parasite diversity. We used a comparative data set encompassing 330 parasite species reported from 119 primate hosts to examine latitudinal gradients in the diversity of micro and macroparasites per primate host species. Analyses conducted with and without controlling for host phylogeny showed that parasite species richness increased closer to the equator for protozoan parasites, but not for viruses or helminths. Relative to other major parasite groups, protozoa reported from wild primates were transmitted disproportionately by arthropod vectors. Within the protozoa, our results revealed that vector‐borne parasites showed a highly significant latitudinal gradient in species richness. This higher diversity of vector‐borne protozoa near the tropics could be influenced by a greater abundance or diversity of biting arthropods in the tropics, or by climatic effects on vector behaviour and parasite development. Many vector‐borne diseases, such as leishmaniasis, trypanosomiasis, and malaria pose risks to both humans and wildlife, and nearly one‐third of the protozoan parasites from free‐living primates in our data set have been reported to infect humans. Because the geographical distribution and prevalence of many vector‐borne parasites are expected to increase because of global warming, these results are important for predicting future parasite‐mediated threats to biodiversity and human health.  相似文献   

12.
Host identity, habitat type, season, and interspecific interactions were investigated as determinants of the community structure of fleas on wild carnivores in northwestern Mexico. A total of 540 fleas belonging to seven species was collected from 64 wild carnivores belonging to eight species. We found that the abundances of some flea species are explained by season and host identity. Pulex irritans and Echidnophaga gallinacea abundances were significantly higher in spring than in fall season. Flea communities on carnivore hosts revealed three clusters with a high degree of similarity within each group that was explained by the flea dominance of E. gallinacea, P. simulans, and P. irritans across host identity. Flea abundances did not differ statistically among habitat types. Finally, we found a negative correlation between the abundances of three flea species within wild carnivore hosts. Individual hosts with high loads of P. simulans males usually had significantly lower loads of P. irritans males or tend to have lower loads of E. gallinacea fleas and vice‐versa. Additionally, the logistic regression model showed that the presence of P. simulans males is more likely to occur in wild carnivore hosts in which P. irritans males are absent and vice‐versa. These results suggest that there is an apparent competitive exclusion among fleas on wild carnivores. The study of flea community structure on wild carnivores is important to identify the potential flea vectors for infectious diseases and provide information needed to design programs for human health and wildlife conservation.  相似文献   

13.
14.
Encountering suitable hosts is key for parasite success. A general assumption for disease transmission is that the contact of a parasite with a potential host is driven by the density or relative frequency of hosts. That assumption ignores the potential role of differential host attractiveness for parasites that can drive the encounter of hosts. It has been posited that hosts may be chosen by parasites as a function of their suitability, but the existing literature addressing that hypothesis is still very scarce. In a natural system involving a parasitic Philornis botfly and its multiple bird hosts, there are profound differences in host quality. The Great Kiskadee tolerates and does not invest in resisting the infection, which makes it an optimal host. Alternative hosts are frequently used, but whilst some of them may be good options, others are bad alternatives. Here we examined the host selection processes that drive parasite dynamics in this system with 8 years of data from a longitudinal study under natural conditions. We found that the use of an alternative host was not driven by its density or relative frequency, but instead selection of these hosts was strongly dependent on availability of more suitable hosts. When optimal hosts are plentiful, the parasite tends to ignore alternative ones. As broods of optimal hosts become limited, good alternative hosts are targeted. The parasite chooses bad alternative hosts only when better alternatives are not sufficiently available. These results add evidence from a natural system that some parasites choose their hosts as a function of their profitability, and show that host selection by this parasite is plastic and context-dependent. Such findings could have important implications for the epidemiology of some parasitic and vector-borne infections which should be considered when modelling and managing those diseases. The facultative host selection observed here can be of high relevance for public health, animal husbandry, and biodiversity conservation, because reductions in the richness of hosts might cause humans, domestic animals, or endangered species to become increasingly targeted by parasites that can drive the encounter of hosts.  相似文献   

15.
The threats, both real and perceived, surrounding the development of new and emerging infectious diseases of humans are of critical concern to public health and well-being. Among these risks is the potential for zoonotic transmission to humans of species of the malaria parasite, Plasmodium, that have been considered historically to infect exclusively non-human hosts. Recently observed shifts in the mode, transmission, and presentation of malaria among several species studied are evidenced by shared vectors, atypical symptoms, and novel host-seeking behavior. Collectively, these changes indicate the presence of environmental and ecological pressures that are likely to influence the dynamics of these parasite life cycles and physiological make-up. These may be further affected and amplified by such factors as increased urban development and accelerated rate of climate change. In particular, the extended host-seeking behavior of what were once considered non-human malaria species indicates the specialist niche of human malaria parasites is not a limiting factor that drives the success of blood-borne parasites. While zoonotic transmission of non-human malaria parasites is generally considered to not be possible for the vast majority of Plasmodium species, failure to consider the feasibility of its occurrence may lead to the emergence of a potentially life-threatening blood-borne disease of humans. Here, we argue that recent trends in behavior among what were hitherto considered to be non-human malaria parasites to infect humans call for a cross-disciplinary, ecologically-focused approach to understanding the complexities of the vertebrate host/mosquito vector/malaria parasite triangular relationship. This highlights a pressing need to conduct a multi-species investigation for which we recommend the construction of a database to determine ecological differences among all known Plasmodium species, vectors, and hosts. Closing this knowledge gap may help to inform alternative means of malaria prevention and control.  相似文献   

16.
Pathogens that can be transmitted between different host species are of fundamental interest and importance from public health, conservation and economic perspectives, yet systematic quantification of these pathogens is lacking. Here, pathogen characteristics, host range and risk factors determining disease emergence were analysed by constructing a database of disease-causing pathogens of humans and domestic mammals. The database consisted of 1415 pathogens causing disease in humans, 616 in livestock and 374 in domestic carnivores. Multihost pathogens were very prevalent among human pathogens (61.6%) and even more so among domestic mammal pathogens (livestock 77.3%, carnivores 90.0%). Pathogens able to infect human, domestic and wildlife hosts contained a similar proportion of disease-causing pathogens for all three host groups. One hundred and ninety-six pathogens were associated with emerging diseases, 175 in humans, 29 in livestock and 12 in domestic carnivores. Across all these groups, helminths and fungi were relatively unlikely to emerge whereas viruses, particularly RNA viruses, were highly likely to emerge. The ability of a pathogen to infect multiple hosts, particularly hosts in other taxonomic orders or wildlife, were also risk factors for emergence in human and livestock pathogens. There is clearly a need to understand the dynamics of infectious diseases in complex multihost communities in order to mitigate disease threats to public health, livestock economies and wildlife.  相似文献   

17.
Host and parasite richness are generally positively correlated, but the stability of this relationship in response to global change remains poorly understood. Rapidly changing biotic and abiotic conditions can alter host community assembly, which in turn, can alter parasite transmission. Consequently, if the relationship between host and parasite richness is sensitive to parasite transmission, then changes in host composition under various global change scenarios could strengthen or weaken the relationship between host and parasite richness. To test the hypothesis that host community assembly can alter the relationship between host and parasite richness in response to global change, we experimentally crossed host diversity (biodiversity loss) and resource supply to hosts (eutrophication), then allowed communities to assemble. As previously shown, initial host diversity and resource supply determined the trajectory of host community assembly, altering post‐assembly host species richness, richness‐independent host phylogenetic diversity, and colonization by exotic host species. Overall, host richness predicted parasite richness, and as predicted, this effect was moderated by exotic abundance—communities dominated by exotic species exhibited a stronger positive relationship between post‐assembly host and parasite richness. Ultimately, these results suggest that, by modulating parasite transmission, community assembly can modify the relationship between host and parasite richness. These results thus provide a novel mechanism to explain how global environmental change can generate contingencies in a fundamental ecological relationship—the positive relationship between host and parasite richness.  相似文献   

18.
Characterizing the diversity and structure of host–parasite communities is crucial to understanding their eco-evolutionary dynamics. Malaria and related haemosporidian parasites are responsible for fitness loss and mortality in bird species worldwide. However, despite exhibiting the greatest ornithological biodiversity, avian haemosporidians from Neotropical regions are quite unexplored. Here, we analyze the genetic diversity of bird haemosporidian parasites (Plasmodium and Haemoproteus) in 1,336 individuals belonging to 206 bird species to explore for differences in diversity of parasite lineages and bird species across 5 well-differentiated Peruvian ecoregions. We detected 70 different haemosporidian lineages infecting 74 bird species. We showed that 25 out of the 70 haplotypes had not been previously recorded. Moreover, we also identified 81 new host–parasite interactions representing new host records for these haemosporidian parasites. Our outcomes revealed that the effective diversity (as well as the richness, abundance, and Shannon–Weaver index) for both birds and parasite lineages was higher in Amazon basin ecoregions. Furthermore, we also showed that ecoregions with greater diversity of bird species also had high parasite richness, hence suggesting that host community is crucial in explaining parasite richness. Generalist parasites were found in ecoregions with lower bird diversity, implying that the abundance and richness of hosts may shape the exploitation strategy followed by haemosporidian parasites. These outcomes reveal that Neotropical region is a major reservoir of unidentified haemosporidian lineages. Further studies analyzing host distribution and specificity of these parasites in the tropics will provide important knowledge about phylogenetic relationships, phylogeography, and patterns of evolution and distribution of haemosporidian parasites.  相似文献   

19.
Disease‐mediated threats posed by exotic species to native counterparts are not limited to introduced parasites alone, since exotic hosts frequently acquire native parasites with possible consequences for infection patterns in native hosts. Several biological and geographical factors are thought to explain both the richness of parasites in native hosts, and the invasion success of free‐living exotic species. However, the determinants of native parasite acquisition by exotic hosts remain unknown. Here, we investigated native parasite communities of exotic freshwater fish to determine which traits influence acquisition of native parasites by exotic hosts. Model selection suggested that five factors (total body length, time since introduction, phylogenetic relatedness to the native fish fauna, trophic level and native fish species richness) may be linked to native parasite acquisition by exotic fish, but 95% confidence intervals of coefficient estimates indicated these explained little of the variance in parasite richness. Based on R2‐values, weak positive relationships may exist only between the number of parasites acquired and either host size or time since introduction. Whilst our results suggest that factors influencing parasite richness in native host communities may be less important for exotic species, it seems that analyses of general ecological factors currently fail to adequately incorporate the physiological and immunological complexity of whether a given animal species will become a host for a new parasite.  相似文献   

20.
在陆地生态系统中, 大型食肉动物对于稳定食物网结构和生态系统功能有重要作用。在世界范围内, 由于栖息地丧失和破碎化、猎杀、人类活动干扰以及病原体的传播, 大型食肉动物生存正面临严重威胁, 多种食肉动物地理分布范围及种群数量大幅度缩减。如何有效保护大型食肉动物物种多样性及种群已经成为世界关注的焦点问题和保护生物学的重要研究方向。川西高原地处我国西南山地与青藏高原东缘交界地带, 属于世界生物多样性热点地区, 是世界大型食肉动物物种最丰富的地区之一, 而日益增强的人类活动可能会加剧对当地动植物资源的破坏, 进而威胁野生食肉动物的生存。获得准确的物种多样性信息及食肉动物食性数据有助于深入了解该地区生态系统结构及食物网关系, 对研究物种共存机制及生物多样性保护有重要意义。本研究通过从四川甘孜藏族自治州新龙县和石渠县野外采集的食肉动物粪便样品中提取DNA, 利用DNA条形码进行物种鉴定, 快速获得该地区食肉动物物种构成信息。38份粪便样品经鉴定来自于7种食肉动物, 分别为5种大型食肉动物(狼Canis lupus、棕熊Ursus arctos、豹Panthera pardus、雪豹P. unica、狗Canis lupus familiaris)和2种中小型食肉动物(豹猫Prionailurus bengalensis、赤狐Vulpes vulpes)。进一步利用高通量测序和宏条形码技术对7种食肉动物粪便中的食物DNA进行精准食性分析, 得到包含19种哺乳类、8种鸟类和1种鱼类共计28个不同的食物分子可操作分类单元(molecular operational taxonomic unit, MOTU)。结果显示, 狼、狗、棕熊最主要的食物来源为偶蹄目动物, 其中取食频率最高的物种为家牦牛(Bos grunniens); 而豹猫和赤狐食物中小型哺乳动物如啮齿目和兔形目占重要比例, 其中高原松田鼠(Neodon irene)和高原鼠兔(Ochotona curzoniae)被取食频率最高。豹和雪豹的食物分别为偶蹄目的中华斑羚(Naemorhedus griseus)和岩羊(Pseudois nayaur)。本研究显示了粪便DNA及宏条形码技术在食肉动物多样性快速调查及高通量精确食性分析中的应用前景, 并为此类研究提供了技术路线的有力借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号