首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
近年来,使用抗生素的副作用越来越多地受到关注,世界上许多国家已出台相应政策来控制抗生素的使用。但是由于养殖行业的迅猛发展,养殖密度加大,养殖动物病害发病的风险提高,急需可替代抗生素的新型绿色饲料添加剂产品。微生态制剂作为一种新型绿色饲料添加剂,在养殖行业发挥了重要作用。随着饲用微生态制剂产品研发的深入,现代生物技术在提升微生态制剂的理论和应用研究方面发挥着重要作用。PCR、核酸分子杂交、基因工程以及组学等技术已应用于微生物菌种鉴定、基因改良、作用机理等研究中。本文对饲用微生态制剂的研发现状进行了阐述,并综述了现代生物技术在饲用微生态制剂研究中的应用。  相似文献   

2.
水产养殖中益生菌研究进展   总被引:3,自引:0,他引:3  
益生菌在水产养殖中能够净化水质、预防疾病、促进生长且安全、环保、无抗性,是抗生素的理想替代品,具有重要的研究价值和广阔的应用前景。本文主要从益生菌制剂的定义概述、作用机理及特性进行阐述,分析益生菌制剂存在的问题,探讨水产养殖用益生菌制剂的研究方向。  相似文献   

3.
饲用微生态制剂替代抗生素的研究进展   总被引:1,自引:0,他引:1  
饲用抗生素的过度使用衍生出药物残留和抗药性两大严峻的问题,因此减少甚至禁止抗生素的使用并寻找适宜的替代物已到了刻不容缓的地步。时至今日,绿色、安全且无残留的益生菌微生态制剂以其改善宿主肠道菌群平衡、促进消化吸收、增强免疫力等功效正在逐步跻身于促生长饲料添加剂的行列以替代抗生素的使用。本综述着重论述益生菌微生态制剂的作用机制和应用现状。同时论述包括合生元和微胶囊化开发技术及抗生素与益生菌微生态制剂的配伍使用,以期为今后促生长饲料添加剂的开发提供一定的理论基础。  相似文献   

4.
微生态制剂在水产养殖中的应用   总被引:14,自引:0,他引:14  
随着健康养殖发展的需求,微生态制剂在水产动物中的应用逐渐成为当今的研究热点。有益菌在提高人和动物营养和防病方面的作用已得到证实。关于高等动植物的生物防治理论也应用于水产养殖中,微生态制剂的应用作为抗生素的替代品逐渐成为水产养殖动物病害防治的一种生物控制模式。本文简要介绍了微生态制剂概念的形成和发展过程,分别在营养特性、免疫特性和改善养殖生态环境三个方面阐述了其在水产养殖中的应用。虽然,微生态制剂在水产中的应用取得了一定的成效,但是仍然处于发展的初级阶段,有待进一步的研究。文章还阐明了微生态制剂的生产工艺和施用原则,最后就微生态制剂的应用问题提出了作者自己的观点和展望。  相似文献   

5.
畜禽中药-益生菌复合微生态制剂是指采用现代发酵技术将益生菌与中药联合发酵,发挥两者的协同作用,以提高畜禽免疫功能、保护畜禽健康的一种新型动物微生态制剂。文中通过调研近几年关于益生菌及中药微生态制剂等方面的文献,综述了畜禽中药-益生菌复合微生态制剂的产生背景及菌种特点,并重点阐述了畜禽中药-益生菌复合微生态制剂的作用机制、在畜禽养殖中的应用及存在问题与建议,以期为畜禽中药-益生菌复合微生态制剂的深入研究提供参考和依据。  相似文献   

6.
近年来,微生态制剂的开发与应用受到社会各界的普遍关注。微生态制剂是一类优质饲料添加剂,具有安全性高、无致病性、毒副作用小和生物功能齐全的特点,包括益生菌、益生元和合生元三类物质,其在维持肠道菌群平衡、促进免疫系统发育及提高机体抗氧化性能等方面具有显著作用,可改善生产性能和健康状况,有利于动物生产优质产品。详细论述了微生态制剂的种类和益生菌、益生元和合生元的作用机制以及国内外关于微生态制剂在动物生产中的应用现状和对喀斯特地区健康养殖的应用潜力,从而为微生态制剂的研究方向及生产应用提供参考。  相似文献   

7.
益生菌在水产养殖中的应用研究   总被引:1,自引:0,他引:1  
益生菌是一种活性微生物或微生物制剂,由于其安全、无毒、无副作用等,目前在水产动物饲料中被广泛应用。本文概述了益生菌在水产养殖中的应用研究,主要从以下几个方面探究:养殖污染概况、益生菌在水产养殖中的应用、益生菌在水产养殖中应用存在的问题及本文的研究意义。  相似文献   

8.
不同种类微生态制剂在水产养殖中使用的有效性   总被引:1,自引:0,他引:1  
随着对微生态制剂研究的深入,有越来越多的微生态制剂产品被开发和应用在水产养殖中。但是微生态制剂的使用需要综合考虑产品特性和养殖生物体的内外环境,选择适宜的种类和使用方法,提高使用的安全性和有效性。  相似文献   

9.
枯草芽孢杆菌微生态制剂发酵研究进展   总被引:7,自引:2,他引:7  
微生态制剂是饲用抗生素的绿色有效替代品。枯草芽孢杆菌在逆境中可形成抗逆性强的芽孢,在生产和应用过程中保持高活性,是一种高效的微生态制剂菌种。提高枯草芽孢杆菌活菌数及芽孢率是保证微生态制剂产品质量的关键。本文综述了枯草芽孢杆菌芽孢形成的分子生物学机制及影响芽孢形成的重要因素,进一步比较枯草芽孢杆菌微生态制剂不同发酵方式的特点,重点阐述了提高枯草芽孢杆菌有效生物量的工艺优化,最后介绍了枯草芽孢杆菌微生态制剂的应用,并对将来研究思路进行了讨论。  相似文献   

10.
[背景]随着水产养殖业的发展和养殖集约化程度的提高,养殖水环境日趋恶化,养殖动物病害频发,而水产益生菌因其环境友好、安全而被广泛应用于水产养殖中.[目的]从南美白对虾养殖池底泥分离枯草芽孢杆菌,探究其体外生物学特性及对水质的净化作用,以期扩充微生态制剂的种质资源.[方法]采用稀释涂布平板法分离菌株,通过形态学观察、生理...  相似文献   

11.
微生物发酵饲料,目前是饲料工业和养殖业的关注热点之一,也是绿色安全养殖的重要条件。我国早在20世纪90年代开始研究。近年来,微生物发酵饲料在畜牧业生产中得到迅速发展,其生产和应用形式更加多样化。在水产畜牧养殖时,将日基础饲粮部分替换成微生物发酵饲料或经复合微生物发酵后直接饲用,因含有活菌及相关代谢产物,能进一步改善动物对饲料的营养吸收、提高动物的生产性能、防病治病和改善养殖环境。未来将在饲料替代抗生素、饲养高品质动物、畜禽防病等方面发挥必不可少的作用。本文阐释了微生物发酵饲料概念,作用机理及其在畜牧业、水产养殖应用中的最新研究现状,为微生物发酵饲料产品及新技术的研发提供参考。  相似文献   

12.
Algal aquaculture worldwide is estimated to be a $5–6 billion U.S. per year industry. The largest portion of this industry is represented by macroalgal production for human food in Asia, with increasing activity in South America and Africa. The technical foundation for a shift in the last half century from wild harvest to farming of seaweeds lies in scientific research elucidating life histories and growth characteristics of seaweeds with economic interest. In several notable cases, scientific breakthroughs enabling seaweed-aquaculture advances were not motivated by aquaculture needs but rather by fundamental biological or ecological questions. After scientific breakthroughs, development of practical cultivation methods has been accomplished by both scientific and commercial-cultivation interests. Microalgal aquaculture is much smaller in economic impact than seaweed cultivation but is the subject of much research. Microalgae are cultured for direct human consumption and for extractable chemicals, but current use and development of cultured microalgae is increasingly related to their use as feeds in marine animal aquaculture. The history of microalgal culture has followed two main paths, one focused on engineering of culture systems to respond to physical and physiological needs for growing microalgae and the other directed toward understanding the nutritional needs of animals—chiefly invertebrates such as mollusks and crustaceans—that feed upon microalgae. The challenge being addressed in current research on microalgae in aquaculture food chains is to combine engineering and nutritional principles so that effective and economical production of microalgal feed cultures can be accomplished to support an expanding marine animal aquaculture industry.  相似文献   

13.
Microalgae aquaculture feeds   总被引:6,自引:0,他引:6  
Microalgae feeds are currently used in relatively small amounts in aquaculture, mainly for the production of larvae and juvenile shell- and finfish, as well as for raising the zooplankton required for feeding of juvenile animals. The blue-green algaSpirulina is used in substantial amounts (over 100 t y–1) as a fish and shrimp feed, and even larger markets can be projected if production costs could be reduced. Another potential large-scale application of microalgae is the cultivation ofHaematococcus for the production of the carotenoid astaxanthin, which gives salmon flesh its reddish color. In the long-term microalgae biomass high in lipids (omega-3 fatty acids) may be developed as substitutes for fish oil-based aquaculture feeds. In shrimp ponds the indigenous algal blooms supply a part of the dietary requirements of the animals, but it is difficult to maximize algal productivities. A separate algal production system could feed the shrimps and minimize the need for added feed. Bivalves feed essentially exclusively on marine microalgae throughout their life cycle. The development of cultivation technologies for such microalgae would allow the onshore production of these animals, with greatly improved product quality and safety.This paper was presented at the Symposium on Applied Phycology at the Fourth International Phycological Congress, Duke University.  相似文献   

14.
The use of probiotics in aquaculture   总被引:4,自引:0,他引:4       下载免费PDF全文
This study aims to present comprehensive notes for the use of probiotics in aquaculture. Probiotics have been proven to be positive promoters of aquatic animal growth, survival and health. In aquaculture, intestines, gills, the skin mucus of aquatic animals, and habitats or even culture collections and commercial products, can be sources for acquiring appropriate probiotics, which have been identified as bacteria (Gram‐positive and Gram‐negative) and nonbacteria (bacteriophages, microalgae and yeasts). While a bacterium is a pathogen to one aquatic animal, it can bring benefits to another fish species; a screening process plays a significant role in making a probiotic species specific. The administration of probiotics varies from oral/water routine to feed additives, of which the latter is commonly used in aquaculture. Probiotic applications can be either mono or multiple strains, or even in combination with prebiotic, immunostimulants such as synbiotics and synbiotism, and in live or dead forms. Encapsulating probiotics with live feed is a suitable approach to convey probiotics to aquatic animals. Dosage and duration of time are significant factors in providing desired results. Several modes of actions of probiotics are presented, while some others are not fully understood. Suggestions for further studies on the effects of probiotics in aquaculture are proposed.  相似文献   

15.
Recirculating aquaculture systems (RAS) are an alternative technology to tackle the major environmental challenges associated with conventional cage culture systems. In order to systematically assess the environmental performance of RAS farming, it is important to take the whole life cycle into account so as to avoid ad hoc and suboptimal environmental measures. So far, the application of life cycle assessment (LCA) in aquaculture, especially to indoor RAS, is still in progress. This study reports on an LCA of Atlantic salmon harvested at an indoor RAS farm in northern China. Results showed that 1 tonne live‐weight salmon production required 7,509 kWh farm‐level electricity and generated 16.7 tonnes of CO2 equivalent (eq), 106 kg of SO2 eq, 2.4 kg of P eq, and 108 kg of N eq (cradle‐to‐farm gate). In particular, farm‐level electricity use and feed product were identified as primary contributors to eight of nine impact categories assessed (54–95% in total), except the potential marine eutrophication (MEU) impact (dominated by the grow‐out effluents). Among feed ingredients (on a dry‐weight basis), chicken meal (5%) and krill meal (8%) dominated six and three, respectively, of the nine impact categories. Suggested environmental improvement measures for this indoor RAS farm included optimization of stocking density, feeding management, grow‐out effluent treatment, substitution of feed ingredients, and selection of electricity generation sources. In a generic context, this study can contribute to a better understanding of the life cycle environmental impacts of land‐based salmon RAS operations, as well as science‐based communication among stakeholders on more eco‐friendly farmed salmon.  相似文献   

16.
Atlantic salmon (Salmo salar) is the most valuable farmed fish globally and there is much interest in optimizing its genetics and rearing conditions for growth and feed efficiency. Marine feed ingredients must be replaced to meet global demand, with challenges for fish health and sustainability. Metabolic models can address this by connecting genomes to metabolism, which converts nutrients in the feed to energy and biomass, but such models are currently not available for major aquaculture species such as salmon. We present SALARECON, a model focusing on energy, amino acid, and nucleotide metabolism that links the Atlantic salmon genome to metabolic fluxes and growth. It performs well in standardized tests and captures expected metabolic (in)capabilities. We show that it can explain observed hypoxic growth in terms of metabolic fluxes and apply it to aquaculture by simulating growth with commercial feed ingredients. Predicted limiting amino acids and feed efficiencies agree with data, and the model suggests that marine feed efficiency can be achieved by supplementing a few amino acids to plant- and insect-based feeds. SALARECON is a high-quality model that makes it possible to simulate Atlantic salmon metabolism and growth. It can be used to explain Atlantic salmon physiology and address key challenges in aquaculture such as development of sustainable feeds.  相似文献   

17.
The use of probiotics in shrimp aquaculture   总被引:1,自引:0,他引:1  
Shrimp aquaculture, as well as other industries, constantly requires new techniques in order to increase production yield. Modern technologies and other sciences such as biotechnology and microbiology are important tools that could lead to a higher quality and greater quantity of products. Feeding and new practices in farming usually play an important role in aquaculture, and the addition of various additives to a balanced feed formula to achieve better growth is a common practice of many fish and shrimp feed manufacturers and farmers. Probiotics, as 'bio-friendly agents' such as lactic acid bacteria and Bacillus spp., can be introduced into the culture environment to control and compete with pathogenic bacteria as well as to promote the growth of the cultured organisms. In addition, probiotics are nonpathogenic and nontoxic microorganisms without undesirable side-effects when administered to aquatic organisms. These strains of bacteria have many other positive effects, which are described in this article.  相似文献   

18.
We attempted to isolate Lactobacillus spp. from the marine oyster (Crassostrea gigas) and select stress resistant strains for development of a future marine aquaculture feed adjuvant. A total of 83 lactobacilli strains were isolated from oyster. They were all Gram-positive, rod-shaped and catalase-negative. By performing a stress resistance assay, we selected eighteen isolates. Based on 16S rRNA gene sequencing, Lactobacillus paracasei was the most prevalent species among the selected isolates. The in vitro antagonistic effect of the selected strains against fish pathogens was assayed by measurement of inhibition diameters. Except for MH44, MH51, MH53 and MH62, most of the isolates showed inhibition of Vibrio alginolyticus and Vibrio proteolyticus (diameters over 15 mm). Lactobacillus rhamnosus MH22 was selected as the most stress resistant strain showing the MICs of 1.8 M NaCl, 14% ethanol and 0.014% hydrogen peroxide. L. rhamnosus MH22 isolated from oyster has a potential to be applied as a microbial feed adjuvant for marine aquaculture.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号