首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A daylength extension with incandescent light is more effective in promoting flowering of long-day plants like Hyoscyamus niger than fluorescent light. A low phytochrome photoequilibrium (Pfr/Ptot), attained by a far-red irradiation at the close of long days under fluorescent light, also promotes flowering. Moreover, if flower initiation processes are initiated by several long days, a low phytochrome photoequilibrium at the end of short, postinduction photoperiods also enhances flowering. The initiation phase of flowering requires Pfr to be present whereas the development phase proceeds more rapidly in the absence of Pfr. Spectral dependence studies, therefore, could be misinterpreted if the initiation and development stages are combined into a single audit of flowering.  相似文献   

2.
Phytochrome Pelletability in Barley   总被引:1,自引:0,他引:1  
Phytochrome pelletability in the 1000 g and 20,000 g pellet from crude homogenates of etiolated Hordeum vulgare L. cv. Ark Royal primary leaves is enhanced by red light in vivo and in vitro. Red enhanced phytochrome pelletability appears different in the 1000 g and 20,000 g pellets after red light in vivo, being irreversible by subsequent far red light in the latter. Mg2+ concentration in the range 1–20 mM has no effect on red enhanced phytochrome pelletability. The enhancement of pelletability is reduced by low pH and high 2-mercaptoethanol concentration, conditions which lead to a high level of pelletability of the far red absorbing form of phytochrome. Washing these pellets at high pH or low 2-mercaptoethanol concentration reveals the red enhancement of pelletability. The results are discussed in terms of a possible two point attachment of phytochrome to membranes.  相似文献   

3.

Background

PhyC levels have been observed to be markedly lower in phyB mutants than in Arabidopsis or rice wild type etiolated seedlings, but the mechanism of this phenomenon has not been fully elucidated.

Results

In the present study, we investigated the mechanism by which phyB affects the protein concentration and photo-sensing abilities of phyC and demonstrated that rice phyC exists predominantly as phyB/phyC heterodimers in etiolated seedlings. PHYC-GFP protein was detected when expressed in phyA phyC mutants, but not in phyA phyB mutants, suggesting that phyC requires phyB for its photo-sensing abilities. Interestingly, when a mutant PHYB gene that has no chromophore binding site, PHYB(C364A), was introduced into phyB mutants, the phyC level was restored. Moreover, when PHYB(C364A) was introduced into phyA phyB mutants, the seedlings exhibited de-etiolation under both far-red light (FR) and red light (R) conditions, while the phyA phyB mutants were blind to both FR and R. These results are the first direct evidence that phyC is responsible for regulating seedling de-etiolation under both FR and R. These findings also suggest that phyB is indispensable for the expression and function of phyC, which depends on the formation of phyB/phyC heterodimers.

Significance

The present report clearly demonstrates the similarities and differences in the properties of phyC between Arabidopsis and rice and will advance our understanding of phytochrome functions in monocots and dicots.  相似文献   

4.
Two basic experiments defined a long-day inhibitory effect on Xanthium flowering: the basal half of a single leaf on long day inhibits response of the tip half to a short day; and a long-day leaf inhibits response of a short-day leaf, providing it is between the short-day leaf and a receptive bud (whether above or below the short-day leaf). Five hypotheses were explored with the conclusions that the tip half can synthesize florigen, and inhibition is not due to prevention of florigen synthesis, translocational effects, or a translocatable long-day inhibitor. Inhibition is localized and may be a condition of the leaf or a relatively immobile substance. Studies of critical dark period, light intensity, and interruption of a dark period show that, when the leaf is not producing florigen, it is actively inhibitory. Immature leaves are more inhibitory than older leaves. The effect was found not to pass dead tissue, and iron-deficient tissue will cause inhibition, though it will not cause promotion.  相似文献   

5.
Green-leaved and red-leaved Perilla plants (short-day plants)cultured aseptically on diluted modified White's medium or onfull strength White's medium (W) containing reduced concentrationsof nitrogen sources, initiated flower buds under continuouslight (2,000–2,200 lux fluorescent lamps) at 24–26?C.The addition of sucrose to the medium promoted flower formation;the optimum concentration was 2% in 1/10?W medium. The plantscultured on unfertilized vermiculite also developed flower budsreadily, unlike those on fertilized vermiculite. High-intensity light (8,000 lux fluorescent lamps) given duringthe first 30 days of culture promoted flowering. This effectwas also produced to a lesser degree by the addition of sucroseto the medium, instead. On the other hand, high-intensity lightgiven during the second 30 days or throughout the culture periodinhibited flowering, irrespective of the presence of sucrosein the medium. (Received February 4, 1982; Accepted June 14, 1982)  相似文献   

6.
The inhibition of flowering in chrysanthemum by cyclic or continuous illuminations in the middle of the night was studied with mixed red/far red (incandescent) and pure red light at different intensities. Although cyclic lighting greatly enhanced the flower-inhibitory capacity of mixed red/far red light, no such effect was obtained with pure red light. It is argued that the “dark reversion” hypothesis is not adequate to explain the differential effectiveness of cyclic lighting. A possible mechanism is suggested by which mixed red/far red light may produce more Pfr by interrupted than by uninterrupted illuminations. Contribution from The Volcani Institute of Agricultural Research, Bet-Dagan, Israel. 1970 Series No. 1826-E.  相似文献   

7.
CONSTANS(CO)基因是生物钟和开花时间基因之间监测日照长度的重要元件,在光周期途径中发挥核心功能。CO可以整合光信号和生物钟信号,诱导开花途径整合子FLOWERINGLOCUST(F即和SUPPRESSOROF OVEREXPRESSION OF CONSTANS 1(SOC1)的表达,进而促进植株开花。本文综述CO基因的开花调控机制,并结合CO基因的研究现状展望了其未来的研究方向。  相似文献   

8.
9.
Long-day flowering of Pharbitis nil, dwarf strain Kidachi, at20?C was greatly influenced by the size of the culture vesseland the number of plants per vessel. The smaller the vessel,the greater the flowering response. The volume of nutrient solutionper plant was not decisive for long-day flowering. For instance,plants cultured singly in 200-ml beakers flowered, but thosecultured in 5,000-ml vessels (33?26?11.5 cm, 48 plants per vessel)did not, even though there was only about 100 ml of nutrientsolution per plant. Long-day flowering was always accompaniedby the suppression of root elongation, but not by a decreasein the dry weight of roots or shoots, or in the rate at whichthe leaf primordia appeared (plastochrone). Aeration of thenutrient solution or culture in vermiculite promoted root elongationeven in small vessels, thereby inhibiting long-day flowering.Thus the suppression of root elongation seems to be necessaryfor long-day flowering. Removal of the roots or cotyledons;however, suppressed long-day flowering even when root elongationwas inhibited by culture in small vessels. When plants werecultured at 24?C, suppression of root elongation (culture ina small vessel) did not induce long-day flowering; but, short-daytreatment induced flowering without suppressing root elongation. (Received April 19, 1982; Accepted June 24, 1982)  相似文献   

10.
11.
12.
When Lemna gibba G3 was grown on E medium, a decrease in thephosphate concentration caused a suppression of flowering andlead to a decrease in the phosphorus concentration in the plants.Addition of salicylic acid reversed this inhibition withoutcausing an increase in the phosphorus concentration, while additionof copper or ammonium to Hoagland-type medium inhibited flowering,also without affecting the phosphorus concentration. Plantsgrown under 8 h or 24 h daylengths exhibited a FL% of 0 or about50, respectively, but showed no difference in their phosphorusconcentrations. These results indicate that a high phosphorusconcentration is not always required for flowering in Lemnagibba G3. When plants were grown on a modified E medium in which 1/50strength Hutner’s medium micronutrients were substitutedfor the normal E medium micronutrients, the suppression of floweringcaused by reduced phosphate was completely eliminated. Addingeach micronutrient individually at the normal concentrationto the modified E medium demonstrated that manganese inhibitedflowering in modified E medium with a low phosphate concentration. (Received January 31, 1986; Accepted July 4, 1986)  相似文献   

13.
14.
15.
3′,5′-cAMP stimulates flowering of Lemna gibba G3 under inductive long-day conditions and enhances flower onset. 3′,5′-cAMP has no influence on frond production. 2′,3′-cGMP increases markedly the proliferation of fronds and inhibits flowering. The effect of 2′,3′-cGMP on frond multiplication is photoperiodically independent; under short-day conditions 2′,3′-cGMP replaces in fact the requirement for inductive long-day conditions. 2′,3′-cGMP increases the total amount of DNA per frond. This accumulation of DNA precedes by 2–3 days the 2′,3′-cGMP related increase in frond formation. The results are discussed in the light of the hypothesis that the active cyclic mononucleotides exert their effects on multiplication and flowering at the level of DNA.  相似文献   

16.
Oat Phytochrome Is Biologically Active in Transgenic Tomatoes   总被引:26,自引:9,他引:17       下载免费PDF全文
To determine the functional homology between phytochromes from evolutionarily divergent species, we used the cauliflower mosaic virus 35S promoter to express a monocot (oat) phytochrome cDNA in a dicot plant (tomato). Immunoblot analysis shows that more than 50% of the transgenic tomato plants synthesize the full-length oat phytochrome polypeptide. Moreover, leaves of light-grown transgenic plants contain appreciably less oat phytochrome than leaves from dark-adapted plants, and etiolated R1 transgenic seedlings have higher levels of spectrally active phytochrome than wild-type tomato seedlings in direct proportion to the level of immunochemically detectable oat polypeptide present. These data suggest that the heterologous oat polypeptide carries a functional chromophore, allowing reversible photoconversion between the two forms of the molecule, and that the far-red absorbing form (Pfr) is recognized and selectively degraded by the Pfr-specific degradative machinery in the dicot cell. The overexpression of oat phytochrome has pleiotropic, phenotypic consequences at all major phases of the life cycle. Adult transgenic tomato plants expressing high levels of the oat protein tend to be dwarfed, with dark green foliage and fruits. R1 transgenic seedlings have short hypocotyls with elevated anthocyanin contents. We conclude that a monocot phytochrome can be synthesized and correctly processed to a biologically active form in a dicot cell, and that the transduction pathway components that interact with the photoreceptor are evolutionarily conserved.  相似文献   

17.
Rice Phytochrome Is Biologically Active in Transgenic Tobacco   总被引:15,自引:7,他引:15       下载免费PDF全文
To investigate the mechanisms of phytochrome action in vivo, we have overexpressed rice phytochrome in transgenic tobacco plants. A full-length rice phytochrome cDNA was fused to the cauliflower mosaic virus 35S promoter and transferred to tobacco. The progeny of some of the transgenic plants contain large amounts of rice phytochrome mRNA in green leaves. Extracts prepared from overexpressing plants contain twofold to fivefold more spectrophotometrically detectable phytochrome than extracts from control plants. Species-specific, anti-phytochrome monoclonal antibodies were used in immunoblots to discriminate between rice and tobacco phytochrome apoproteins in fractions eluted from a DEAE-Sepharose column. Red minus far-red difference spectra of the partially purified rice phytochrome from the transgenic plants indicate that the rice phytochrome assembles with chromophore and is photoreversible. Analysis of the circadian pattern of Cab mRNA levels in transgenic plants versus controls demonstrates that the overproduction of rice phytochrome extends the duration of the free-running rhythm of Cab gene expression. The rice phytochrome is, therefore, biologically active in the transgenic tobacco plant, which establishes a system for in vivo functional analysis of phytochrome.  相似文献   

18.
We examined whether spectrally active phytochrome A (PhyA) and phytochrome B (PhyB) play specific roles in the induction of seed germination in Arabidopsis thaliana (L.) Heynh., using PhyA- and PhyB-null mutants, fre1-1 (A. Nagatani, J.W. Reed, J. Chory [1993] Plant Physiol 102: 269-277) and hy3-Bo64 (J. Reed, P.Nagpal, D.S. Poole, M. Furuya, J. Chory [1993] Plant Cell 5: 147-157). When dormant seeds of each genotype imbibed in the dark on aqueous agar plates, the hy3 (phyB) mutant did not germinate, whereas the fre1 (phyA) mutant germinated at a rate of 50 to 60%, and the wild type (WT) germinated at a rate of 60 to 70%. By contrast, seeds of all genotypes germinated to nearly 100% when plated in continuous irradiation with white or red light. When plated in continuous far-red light, however, frequencies of seed germination of the WT and the fre1 and hy3 mutants averaged 14, nearly 0, and 47%, respectively, suggesting that PhyB in the red-absorbing form prevents PhyA-dependent germination under continuous far-red light. When irradiated briefly with red or far-red light after imbibition for 1 h, a typical photoreversible effect on seed germination was observed in the fre1 mutant and the WT but not in the hy3 mutant. In contrast, when allowed to imbibe in the dark for 24 to 48 h and exposed to red light, the seed germination frequencies of the hy3 mutant were more than 40%. Immunoblot analyses of the mutant seeds showed that PhyB apoprotein accumulated in dormant seeds of the WT and the fre1 mutant as much as in the seeds that had imbibed. In contrast, PhyA apoprotein, although detected in etiolated seedlings grown in the dark for 5 d, was not detectable in the dormant seeds of the WT and the hy3 mutant. The above physiological and immunochemical evidence indicates that PhyB in the far-red-absorbing form was stored in the Arabidopsis seeds and resulted in germination in the dark. Hence, PhyA does not play any role in dark germination but induces germination under continuous irradiation with far-red light. Finally, we examined seeds from a signal transduction mutant, det1, and a det1/hy3 double mutant. The det1 seeds exhibited photoreversible responses of germination on aqueous agar plates, and the det1/hy3 double mutant seeds did not. Hence, DET1 is likely to act in a distinct pathway from PhyB in the photoregulation of seed germination.  相似文献   

19.
This is the first report, to our knowledge, to reveal important factors by which members of the Cucurbitaceae family, such as cucumber (Cucumis sativus), watermelon (Citrullus lanatus), melon (Cucumis melo), pumpkin (Cucurbita pepo), squash (C. pepo), and zucchini (C. pepo), are selectively polluted with highly toxic hydrophobic contaminants, including organochlorine insecticides and dioxins. Xylem sap of C. pepo ssp. pepo, which is a high accumulator of hydrophobic compounds, solubilized the hydrophobic compound pyrene into the aqueous phase via some protein(s). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of xylem sap of two C. pepo subspecies revealed that the amount of 17-kD proteins in C. pepo ssp. pepo was larger than that in C. pepo ssp. ovifera, a low accumulator, suggesting that these proteins may be related to the translocation of hydrophobic compounds. The protein bands at 17 kD contained major latex-like proteins (MLPs), and the corresponding genes MLP-PG1, MLP-GR1, and MLP-GR3 were cloned from the C. pepo cultivars Patty Green and Gold Rush. Expression of the MLP-GR3 gene in C. pepo cultivars was positively correlated with the band intensity of 17-kD proteins and bioconcentration factors toward dioxins and dioxin-like compounds. Recombinant MLP-GR3 bound polychlorinated biphenyls immobilized on magnetic beads, whereas recombinant MLP-PG1 and MLP-GR1 did not. These results indicate that the high expression of MLP-GR3 in C. pepo ssp. pepo plants and the existence of MLP-GR3 in their xylem sap are related to the efficient translocation of hydrophobic contaminants. These findings should be useful for decreasing the contamination of fruit of the Cucurbitaceae family as well as the phytoremediation of hydrophobic contaminants.Numerous agricultural fields and crops have been contaminated with persistent organic pollutants (POPs), including dioxins, such as polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs); dioxin-like compounds, such as coplanar polychlorinated biphenyls (PCBs) and the insecticide dichlorodiphenyltrichloroethane; drins, such as aldrin, dieldrin, and endrin; and chlordane (Hashimoto, 2005; Uegaki et al., 2006; Hilber et al., 2008). POPs show carcinogenicity, teratogenicity, immunotoxicity, and estrogenicity toward humans and wildlife after accumulation through the food chain. Despite the fact that the use of PCBs and these insecticides was prohibited several decades ago, environmental and crop contamination remains a problem due to their high hydrophobicity and chemical stability.Members of the Cucurbitaceae family, such as cucumber (Cucumis sativus), watermelon (Citrullas lanatus), melon (Cucumis melo), pumpkin (Cucurbita pepo), and zucchini (C. pepo), are some of the major crops in the world. Previous studies reported that members of the Cucurbitaceae family, particularly C. pepo, which includes pumpkin and zucchini, accumulated higher levels of PCDDs and PCDFs (Hülster et al., 1994; Inui et al., 2008), 2,2-bis(p-chlorophenyl) 1,1-dichloroethylene (p,p′-DDE; White et al., 2003), PCBs (Aslund et al., 2008; Inui et al., 2008), chlordane (Mattina et al., 2004), and drins (Otani et al., 2007) compared with the levels in other plant species. Thus, it appears that the Cucurbitaceae family has unique mechanisms of POP uptake and translocation. Lunney et al. (2004) reported that the shoots of pumpkin and zucchini plants showed much higher concentrations of dichlorodiphenyltrichloroethane than those of tall fescue (Festuca arundinacea), alfalfa (Medicago sativa), and ryegrass (Lolium multiflorum), whereas concentrations in roots were similar among these plants. Likewise, significant differences were found between C. pepo ssp. pepo and ssp. ovifera in concentrations of dioxins and dioxin-like compounds in the aerial parts, whereas the concentrations in their roots were similar (Inui et al., 2011). These results suggest that the mechanisms causing the high accumulation of POPs in C. pepo plants mainly occur during translocation from the roots to the aerial parts.The transport of substances such as nutrients and signal molecules over long distances in higher land plants is mediated by the vascular bundles, which consist of phloem and xylem strands. In addition to inorganic salts, organic nutrients such as amino acids, sugars, and organic acids are translocated through the xylem from the roots to the aerial parts (Satoh, 2006). Furthermore, the fact that POPs such as chlordane, dieldrin, and PCBs were detected in xylem sap of C. pepo suggests that their accumulation in the aerial parts of plants occurs during the translocation from roots to aerial parts in xylem sap (Mattina et al., 2004; Murano et al., 2010b; Greenwood et al., 2011). A recent study revealed that there were protein-like materials with the ability to dissolve dieldrin in xylem sap (Murano et al., 2010a). However, these materials have yet to be identified, and the mechanisms underlying the high transport ability and high accumulation of POPs in C. pepo plants are not fully understood.In this study, to clarify the molecular mechanisms of the efficient uptake and high accumulation of POPs by C. pepo plants, xylem sap proteins related to the transport of POPs in xylem sap were identified. The aim of this research is to provide a means of preventing cucumber, melon, watermelon, pumpkin, and zucchini fruits from being contaminated by POPs.  相似文献   

20.
Flowering time is influenced by environmental factors such as photosynthesis, temperature, nutrition, and water. The main products of photosynthesis are sugars that are mobilized to sink tissues to support plant growth and differentiation. They also function as signals to control various types of metabolism and developmental processes. One of the most important transitions in the plant life cycle is from the vegetative to reproductive phase. During that transition, sucrose levels rise rapidly but transiently in the phloem and shoot apexes. For several species, the addition of exogenous sucrose promotes flowering, possibly by acting as a main signal. Although other sugars, including glucose, also appear to be involved in this transition, evidence for their roles in flowering is limited. In Arabidopsis thaliana, trehalose-6-phosphate serves as a signal to induce flowering. However, its roles in other plants have not been reported. Sucrose seems to function primarily in the leaf phloem to enhance the generation of florigens such as Flowering Locus T (FT) while trehalose-6-phosphate functions in the shoot apical meristem to promote the flowering signal pathway downstream of those florigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号