首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influenza viruses are major human pathogens, responsible for respiratory diseases affecting millions of people worldwide, with high morbidity and significant mortality. Infections by influenza can be controlled by vaccines and antiviral drugs. However, this virus is constantly under mutations, limiting the effectiveness of these clinical antiviral strategies. It is therefore urgent to develop new ones. Influenza hemagglutinin (HA) is involved in receptor binding and promotes the pH-dependent fusion of viral and cell endocytic membranes. HA-targeted peptides may emerge as a novel antiviral option to block this viral entry step. In this study, we evaluated three HA-derived (lipo)peptides using fluorescence spectroscopy. Peptide membrane interaction assays were performed at neutral and acidic pH to better resemble the natural conditions in which influenza fusion occurs. We found that peptide affinity towards membranes decreases upon the acidification of the environment. Therefore, the released peptides would be able to bind their complementary domain and interfere with the six-helix bundle formation necessary for viral fusion, and thus for the infection of the target cell. Our results provide new insight into molecular interactions between HA-derived peptides and cell membranes, which may contribute to the development of new influenza virus inhibitors.  相似文献   

2.
Influenza viruses are a major public health threat worldwide, and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The influenza virus glycoprotein hemagglutinin (HA) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-influenza drugs. Using pseudotype virus-based high-throughput screens, we have identified several new small molecules capable of inhibiting influenza virus entry. We prioritized two novel inhibitors, MBX2329 and MBX2546, with aminoalkyl phenol ether and sulfonamide scaffolds, respectively, that specifically inhibit HA-mediated viral entry. The two compounds (i) are potent (50% inhibitory concentration [IC50] of 0.3 to 5.9 μM); (ii) are selective (50% cytotoxicity concentration [CC50] of >100 μM), with selectivity index (SI) values of >20 to 200 for different influenza virus strains; (iii) inhibit a wide spectrum of influenza A viruses, which includes the 2009 pandemic influenza virus A/H1N1/2009, highly pathogenic avian influenza (HPAI) virus A/H5N1, and oseltamivir-resistant A/H1N1 strains; (iv) exhibit large volumes of synergy with oseltamivir (36 and 331 μM2 % at 95% confidence); and (v) have chemically tractable structures. Mechanism-of-action studies suggest that both MBX2329 and MBX2546 bind to HA in a nonoverlapping manner. Additional results from HA-mediated hemolysis of chicken red blood cells (cRBCs), competition assays with monoclonal antibody (MAb) C179, and mutational analysis suggest that the compounds bind in the stem region of the HA trimer and inhibit HA-mediated fusion. Therefore, MBX2329 and MBX2546 represent new starting points for chemical optimization and have the potential to provide valuable future therapeutic options and research tools to study the HA-mediated entry process.  相似文献   

3.
Influenza A viral (IAV) fusion peptides are known for their important role in viral-cell fusion process and membrane destabilization potential which are compatible with those of antimicrobial peptides. Thus, by replacing the negatively or neutrally charged residues of FPs with positively charged lysines, we synthesized several potent antimicrobial peptides derived from the fusogenic peptides (FPs) of hemagglutinin glycoproteins (HAs) of IAV. The biological screening identified that in addition to the potent antibacterial activities, these positively charged fusion peptides (pFPs) effectively inhibited the replication of influenza A viruses including oseltamivir-resistant strain. By employing pseudovirus-based entry inhibition assays including H5N1 influenza A virus (IAV), and VSV-G, the mechanism study indicated that the antiviral activity may be associated with the interactions between the HA2 subunit and pFP, of which, the nascent pFP exerted a strong effect to interrupt the conformational changes of HA2, thereby blocking the entry of viruses into host cells. In addition to providing new peptide “entry blockers”, these data also demonstrate a useful strategy in designing potent antibacterial agents, as well as effective viral entry inhibitors. It would be meaningful in treatment of bacterial co-infection during influenza pandemic periods, as well as in our current war against those emerging pathogenic microorganisms such as IAV and HIV.  相似文献   

4.
Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.  相似文献   

5.
Influenza viruses continue to pose a major public health threat worldwide and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The antiviral cytokine, interferon (IFN) is an essential mediator of the innate immune response and influenza viruses, like many viruses, have evolved strategies to evade this response, resulting in increased replication and enhanced pathogenicity. A cell-based assay that monitors IFN production was developed and applied in a high-throughput compound screen to identify molecules that restore the IFN response to influenza virus infected cells. We report the identification of compound ASN2, which induces IFN only in the presence of influenza virus infection. ASN2 preferentially inhibits the growth of influenza A viruses, including the 1918 H1N1, 1968 H3N2 and 2009 H1N1 pandemic strains and avian H5N1 virus. In vivo, ASN2 partially protects mice challenged with a lethal dose of influenza A virus. Surprisingly, we found that the antiviral activity of ASN2 is not dependent on IFN production and signaling. Rather, its IFN-inducing property appears to be an indirect effect resulting from ASN2-mediated inhibition of viral polymerase function, and subsequent loss of the expression of the viral IFN antagonist, NS1. Moreover, we identified a single amino acid mutation at position 499 of the influenza virus PB1 protein that confers resistance to ASN2, suggesting that PB1 is the direct target. This two-pronged antiviral mechanism, consisting of direct inhibition of virus replication and simultaneous activation of the host innate immune response, is a unique property not previously described for any single antiviral molecule.  相似文献   

6.
Influenza virus continues to emerge and re-emerge, posing new threats for humans. Here we tested various Korean medicinal plant extracts for potential antiviral activity against influenza viruses. Among them, an extract of Agrimonia pilosa was shown to be highly effective against all three subtypes of human influenza viruses including H1N1 and H3N2 influenza A subtypes and influenza B virus. The EC50 value against influenza A virus, as tested by the plaque reduction assay on MDCK cells, was 14–23 μg/ml. The extract also exhibited a virucidal effect at a concentration of 160–570 ng/ml against influenza A and B viruses when the viruses were treated with the extract prior to plaque assay. In addition, when tested in embryonated chicken eggs the extract exhibited a strong inhibitory effect in ovo on the H9N2 avian influenza virus at a concentration of 280 ng/ml. Quantitative RT-PCR analysis data showed that the extract, to some degree, suppressed viral RNA synthesis in MDCK cells. HI and inhibition of neuraminidase were observed only at high concentrations of the extract. And yet, the extract's antiviral activity required direct contact between it and the virus, suggesting that its antiviral action is mediated by the viral membrane, but does not involve the two major surface antigens, HA and NA, of the virus. The broad-spectrum antiviral activity of Agrimonia pilosa extract on various subtypes of influenza viruses merits further investigation as it may provide a means of managing avian influenza infections in poultry farms and potential avian-human transmission.  相似文献   

7.
Influenza viruses elude immune responses and antiviral chemotherapeutics through genetic drift and reassortment. As a result, the development of new strategies that attack a highly conserved viral function to prevent and/or treat influenza infection is being pursued. Such novel broadly acting antiviral therapies would be less susceptible to virus escape and provide a long lasting solution to the evolving virus challenge. Here we report the in vitro and in vivo activity of a human monoclonal antibody (A06) against two isolates of the 2009 H1N1 pandemic influenza virus. This antibody, which was obtained from a combinatorial library derived from a survivor of highly pathogenic H5N1 infection, neutralizes H5N1, seasonal H1N1 and 2009 “Swine” H1N1 pandemic influenza in vitro with similar potency and is capable of preventing and treating 2009 H1N1 influenza infection in murine models of disease. These results demonstrate broad activity of the A06 antibody and its utility as an anti-influenza treatment option, even against newly evolved influenza strains to which there is limited immunity in the general population.  相似文献   

8.
2009年A(H1N1)pdm09亚型流感病毒在墨西哥暴发,之后在全世界流行。为了解海南省2016-2018年A(H1N1)pdm09亚型流感病毒流行态势,分析血凝素(HA)与神经氨酸酶(NA)基因遗传进化特征与变异情况,本研究从中国流感监测信息系统获取海南省2016-2018年流感病毒病原学监测数据,选取5家流感监测网络实验室分离鉴定的37株A(H1N1)pdm09亚型流感毒株进行HA与NA基因测序,利用MEGA 10.1.8构建HA与NA基因种系进化树,并分析其氨基酸变异情况。结果显示,2016-2018年共出现3次A(H1N1)pdm09亚型流感病毒活动高峰。2017年10月份以后的分离株(4/8)与2018年大部分分离株(21/22)独立于疫苗株A/Michigan/45/2015聚为一个小支,发生20余处HA与NA氨基酸位点变异。与疫苗株A/California/7/2009(2010-2016)相比,2016-2018年流感病毒分离株在HA基因抗原决定簇上发生7处氨基酸变异并有一个潜在糖基化位点,未发现HA基因受体结合位点变异与NA基因耐药性变异。本研究提示,2016-2018年,A(H1N1)pdm09亚型流感病毒逐步发生规律性进化,氨基酸变异频率有增加趋势,今后应持续加强流感病毒病原学监测,密切追踪A(H1N1)pdm09亚型流感病毒基因变异情况,为科学防控提供理论依据。  相似文献   

9.
The rapid emergence and subsequent spread of the novel 2009 Influenza A/H1N1 virus (2009 H1N1) has prompted the World Health Organization to declare the first pandemic of the 21st century, highlighting the threat of influenza to public health and healthcare systems. Widespread resistance to both classes of influenza antivirals (adamantanes and neuraminidase inhibitors) occurs in both pandemic and seasonal viruses, rendering these drugs to be of marginal utility in the treatment modality. Worldwide, virtually all 2009 H1N1 and seasonal H3N2 strains are resistant to the adamantanes (rimantadine and amantadine), and the majority of seasonal H1N1 strains are resistant to oseltamivir, the most widely prescribed neuraminidase inhibitor (NAI). To address the need for more effective therapy, we evaluated the in vitro activity of a triple combination antiviral drug (TCAD) regimen composed of drugs with different mechanisms of action against drug-resistant seasonal and 2009 H1N1 influenza viruses. Amantadine, ribavirin, and oseltamivir, alone and in combination, were tested against amantadine- and oseltamivir-resistant influenza A viruses using an in vitro infection model in MDCK cells. Our data show that the triple combination was highly synergistic against drug-resistant viruses, and the synergy of the triple combination was significantly greater than the synergy of any double combination tested (P<0.05), including the combination of two NAIs. Surprisingly, amantadine and oseltamivir contributed to the antiviral activity of the TCAD regimen against amantadine- and oseltamivir-resistant viruses, respectively, at concentrations where they had no activity as single agents, and at concentrations that were clinically achievable. Our data demonstrate that the TCAD regimen composed of amantadine, ribavirin, and oseltamivir is highly synergistic against resistant viruses, including 2009 H1N1. The TCAD regimen overcomes baseline drug resistance to both classes of approved influenza antivirals, and thus may represent a highly active antiviral therapy for seasonal and pandemic influenza.  相似文献   

10.
Influenza viruses are among the most important human pathogens and are responsible for annual epidemics and sporadic, potentially devastating pandemics. The humoral immune response plays an important role in the defense against these viruses, providing protection mainly by producing antibodies directed against the hemagglutinin (HA) glycoprotein. However, their high genetic variability allows the virus to evade the host immune response and the potential protection offered by seasonal vaccines. The emergence of resistance to antiviral drugs in recent years further limits the options available for the control of influenza. The development of alternative strategies for influenza prophylaxis and therapy is therefore urgently needed. In this study, we describe a human monoclonal antibody (PN-SIA49) that recognizes a highly conserved epitope located on the stem region of the HA and able to neutralize a broad spectrum of influenza viruses belonging to different subtypes (H1, H2 and H5). Furthermore, we describe its protective activity in mice after lethal challenge with H1N1 and H5N1 viruses suggesting a potential application in the treatment of influenza virus infections.  相似文献   

11.
The HA2 glycopolypeptide (gp) is highly conserved in all influenza A virus strains, and it is known to play a major role in the fusion of the virus with the endosomal membrane in host cells during the course of viral infection. Vaccines and therapeutics targeting this HA2 gp could induce efficient broad-spectrum immunity against influenza A virus infections. So far, there have been no studies on the possible therapeutic effects of monoclonal antibodies (MAbs), specifically against the fusion peptide of hemagglutinin (HA), upon lethal infections with highly pathogenic avian influenza (HPAI) H5N1 virus. We have identified MAb 1C9, which binds to GLFGAIAGF, a part of the fusion peptide of the HA2 gp. We evaluated the efficacy of MAb 1C9 as a therapy for influenza A virus infections. This MAb, which inhibited cell fusion in vitro when administered passively, protected 100% of mice from challenge with five 50% mouse lethal doses of HPAI H5N1 influenza A viruses from two different clades. Furthermore, it caused earlier clearance of the virus from the lung. The influenza virus load was assessed in lung samples from mice challenged after pretreatment with MAb 1C9 (24 h prior to challenge) and from mice receiving early treatment (24 h after challenge). The study shows that MAb 1C9, which is specific to the antigenically conserved fusion peptide of HA2, can contribute to the cross-clade protection of mice infected with H5N1 virus and mediate more effective recovery from infection.Highly pathogenic avian influenza (HPAI) virus H5N1 strains are currently causing major morbidity and mortality in poultry populations across Asia, Europe, and Africa and have caused 385 confirmed human infections, with a fatality rate of 63.11% (37, 39). Preventive and therapeutic measures against circulating H5N1 strains have received a lot of interest and effort globally to prevent another pandemic outbreak. Influenza A virus poses a challenge because it rapidly alters its appearance to the immune system by antigenic drift (mutating) and antigenic shift (exchanging its components) (5). The current strategies to combat influenza include vaccination and antiviral drug treatment, with vaccination being the preferred option. The annual influenza vaccine aims to stimulate the generation of anti-hemagglutinin (anti-HA) neutralizing antibodies, which confer protection against homologous strains. Current vaccines have met with various degrees of success (31). The facts that these strategies target the highly variable HA determinant and that predicting the major HA types that pose the next epidemic threat is difficult are significant limitations to the current antiviral strategy. In the absence of an effective vaccine, therapy is the mainstay of control of influenza virus infection.Therefore, therapeutic measures against influenza will play a major role in case a pandemic arises due to H5N1 strains. Currently licensed antiviral drugs include the M2 ion-channel inhibitors (rimantidine and amantidine) and the neuraminidase inhibitors (oseltamivir and zanamivir). The H5N1 viruses are known to be resistant to the M2 ion-channel inhibitors (2, 3). Newer strains of H5N1 viruses are being isolated which are also resistant to the neuraminidase inhibitors (oseltamivir and zanamivir) (5, 17). The neuraminidase inhibitors also require high doses and prolonged treatment (5, 40), increasing the likelihood of unwanted side effects. Hence, alternative strategies for treatment of influenza are warranted.Recently, passive immunotherapy using monoclonal antibodies (MAbs) has been viewed as a viable option for treatment (26). The HA gene is the most variable gene of the influenza virus and also the most promising target for generating antibodies. It is synthesized as a precursor polypeptide, HA0, which is posttranslationally cleaved to two polypeptides, HA1 and HA2, linked by a disulfide bond. MAbs against the HA1 glycopolypeptide (gp) are known to neutralize the infectivity of the virus and hence provide good protection against infection (12). However, they are less efficient against heterologous or mutant strains, which are continuously arising due to antigenic shift and, to an extent, drift. Recent strategies for alternative therapy explore the more conserved epitopes of the influenza virus antigens (18, 33), which not only have the potential to stimulate a protective immune response but are also conserved among different subtypes, so as to offer protection against a broader range of viruses.The HA2 polypeptide represents a highly conserved region of HA across influenza A virus strains. The HA2 gp is responsible for the fusion of the virus and the host endosomal membrane during the entry of the virus into the cell (16). Previously, anti-HA MAbs that lacked HA inhibition activity were studied and were found to reduce the infectivity of non-H5 influenza virus subtypes by inhibition of fusion during viral replication (14). They are known to block fusion of the virus to the cell membrane at the postbinding and prefusion stage, thereby inhibiting viral replication. Furthermore, in vivo studies show that anti-HA2 MAbs that exhibit fusion inhibition activity contribute to protection and recovery from H3N2 influenza A virus infection (8). It is interesting that although the HA2 gp is generally conserved, the fusion peptide represents the most conserved region of the HA protein. So far, there have been no studies on the possible therapeutic effects of MAbs, specifically against the fusion peptide of HA, on lethal HPAI H5N1 infections.Previous studies have suggested that HA2 could contain a potential epitope responsible for the induction of antibody-mediated protective immunity (9). In the present study, a panel of MAbs against HA2 gp was characterized for their respective epitopes by epitope mapping. The therapeutic and prophylactic efficacies of these MAbs were evaluated in mice challenged with HPAI H5N1 virus infection.  相似文献   

12.
The emergence of viral infections with potentially devastating consequences for human health is highly dependent on their underlying evolutionary dynamics. One likely scenario for an avian influenza virus, such as A/H5N1, to evolve to one capable of human-to-human transmission is through the acquisition of genetic material from the A/H1N1 or A/H3N2 subtypes already circulating in human populations. This would require that viruses of both subtypes coinfect the same cells, generating a mixed infection, and then reassort. Determining the nature and frequency of mixed infection with influenza virus is therefore central to understanding the emergence of pandemic, antigenic, and drug-resistant strains. To better understand the potential for such events, we explored patterns of intrahost genetic diversity in recently circulating strains of human influenza virus. By analyzing multiple viral genome sequences sampled from individual influenza patients we reveal a high level of mixed infection, including diverse lineages of the same influenza virus subtype, drug-resistant and -sensitive strains, those that are likely to differ in antigenicity, and even viruses of different influenza virus types (A and B). These results reveal that individuals can harbor influenza viruses that differ in major phenotypic properties, including those that are antigenically distinct and those that differ in their sensitivity to antiviral agents.Influenza viruses (family Orthomyxoviridae) possess a negative-strand segmented RNA genome and enveloped virions. Genetic diversity in influenza virus is the result of a high rate of mutation associated with replication using low-fidelity RNA polymerase and of the reshuffling (or reassortment) of segments among coinfecting strains. Although the 13.5-kb genome of influenza A virus is composed of eight segments coding for 11 known proteins, these viruses are typically categorized by their two surface antigens, hemagglutinin (HA), of which there are 16 subtypes (H1 to H16), and neuraminidase (NA), of which there are 9 (N1 to N9) (9). All known subtypes are present in aquatic birds of the orders Anseriformes and Charadriformes, and a smaller number circulate in some mammalian species. The HA plays a major role in the attachment of the virus to the host cell surface by binding to the sialic acid moiety of host receptors and facilitating the fusion of the viral envelope with host cell membranes. It is also the major viral antigen against which neutralizing antibodies are directed. The NA is important for mobility of the virions by cleaving the sialic acid residues from the viral hemagglutinin, which facilitates both entry of the virus into the cell and release of the viruses during budding (11).Most discussions of influenza virus evolution have focused on the process of antigenic drift in which mutations accumulate—most likely by natural selection—in the antigenic sites of the HA and NA, thereby allowing evasion of the host populations’ acquired immunity to previously circulating strains. Such antigenic variation occurs primarily in the HA1 domain and is clustered into five main epitope regions (19, 20, 22). Although antigenic drift clearly plays a key role in the seasonal evolution of influenza A virus, recent studies making use of large data sets generated by the Influenza Genome Sequencing Project (IGSP) suggest that reassortment may also be important in the generation of antigenically novel isolates by placing diverse HAs in compatible genetic backgrounds (6, 8, 10, 14).Segment reassortment is also central to the process of cross-species transmission and emergence of pandemic influenza virus. In particular, the segmented nature of the influenza virus genome allows reassortment of gene segments to occur between diverse influenza A virus strains when they coinfect a single host, including those derived from different species. This can result in subtle changes within a subtype, or dramatic changes that occur when different subtypes mix, leading to the generation of novel viruses expressing surface glycoproteins to which a specific host immune system has little if any serological cross-reactivity. Such antigenic shift is believed to have led to the emergence of global human influenza A virus pandemics in 1957 (A/H2N2) and in 1968 (A/H3N2), with new segments ultimately derived from the avian reservoir pool reassorting into human influenza viruses (17).Given the potential for emerging viruses such as influenza virus to adversely affect the health of human and other animal populations, it is essential to determine the factors that allow viruses to acquire the mutations they need to adapt to new host populations. As a large number of point mutations are thought to be required for an avian influenza virus such as A/H5N1 to evolve sustained transmission in human populations (5), one likely scenario for successful emergence is through the acquisition of genetic material from a viral subtype already adapted to humans, such as A/H1N1 or A/H3N2. This would require that viruses of both subtypes coinfect the same cells, thereby generating a mixed infection, and then exchange genomic segments through reassortment, as was the case in 1957 and 1968. As a consequence, it is crucial to determine the frequency with which mixed infection naturally occurs in influenza A virus as well as its phenotypic consequences. To address these questions we undertook, for the first time, in-depth sequencing of multiple viral genome sequences sampled from individual influenza patients. These studies were performed with approval of the New York State (study numbers 04-103 and 02-054) and University of Pittsburgh (08-110400) institutional review boards.  相似文献   

13.
Influenza viruses continue to emerge and re-emerge, posing new threats for public health. Control and treatment of influenza depends mainly on vaccination and chemoprophylaxis with approved antiviral drugs. Identification of specific epitopes derived from influenza viruses has significantly advanced the development of epitope-based vaccines. Here, we explore the idea of using HLA binding data to design an epitope-based vaccine that can elicit heterosubtypic T-cell responses against circulating H7N9, H5N1, and H9N2 subtypes. The hemokinin-1(HK-1) peptide sequence was used to induce immune responses against the influenza viruses. Five conserved high score cytotoxic T lymphocyte(CTL) epitopes restricted to HLA-A*0201-binding peptides within the hemagglutinin(HA) protein of the viruses were chosen, and two HA CTL/HK-1 chimera protein models designed. Using in silico analysis, which involves interferon epitope scanning, protein structure prediction, antigenic epitope determination, and model quality evaluation, chimeric proteins were designed. The applicability of one of these proteins as a heterosubtypic epitopebased vaccine candidate was analyzed.  相似文献   

14.
Influenza A virus infection is a persistent threat to public health worldwide due to its ability to evade immune surveillance through rapid genetic drift and shift. Current vaccines against influenza A virus provide immunity to viral isolates that are similar to vaccine strains. High-affinity neutralizing antibodies against conserved epitopes could provide immunity to diverse influenza virus strains and protection against future pandemic viruses. In this study, by using a highly sensitive H5N1 pseudotype-based neutralization assay to screen human monoclonal antibodies produced by memory B cells from an H5N1-infected individual and molecular cloning techniques, we developed three fully human monoclonal antibodies. Among them, antibody 65C6 exhibited potent neutralization activity against all H5 clades and subclades except for subclade 7.2 and prophylactic and therapeutic efficacy against highly pathogenic avian influenza H5N1 viruses in mice. Studies on hemagglutinin (HA)-antibody complexes by electron microscopy and epitope mapping indicate that antibody 65C6 binds to a conformational epitope comprising amino acid residues at positions 118, 121, 161, 164, and 167 (according to mature H5 numbering) on the tip of the membrane-distal globular domain of HA. Thus, we conclude that antibody 65C6 recognizes a neutralization epitope in the globular head of HA that is conserved among almost all divergent H5N1 influenza stains.  相似文献   

15.
Influenza A virus subtype H5N1 is highly contagious among birds, causing high mortality among domestic poultry. The viral genome is contained on eight single RNA strands of which HA encode the antigenic glycoprotein called hemagglutinin. Hemagglutinin found on the surface of the influenza viruses and is responsible for binding the virus to the cell that is being infected. Among the most prevalent RNA structures the pseudoknot motif represents an important piece of RNA architecture, as it provides a means for a single RNA strand to fold upon itself to produce a globular structure capable of performing important biological functions. In this analysis we have identified the pseudoknot motifs in the hemagglutinin gene of HPAI A (H5N1) Asian strains. Specific aptamers have been designed against these pseudoknots. These in-silico aptamers can be used to hinder the ability of pseudoknots to facilitate ribosomal frameshifting. This may ultimately lead to reduce the coding efficiency of the HA that encodes hemagglutinin and might be used as molecular medicine for H5N1.  相似文献   

16.
There are very few antiviral drugs available to fight viral infections and the appearance of viral strains resistant to these antivirals is not a rare event. Hence, the design of new antiviral drugs is important. We describe the prediction of peptides with antiviral activity (AVP) derived from the viral glycoproteins involved in the entrance of herpes simplex (HSV) and influenza A viruses into their host cells. It is known, that during this event viral glycoproteins suffer several conformational changes due to protein-protein interactions, which lead to membrane fusion between the viral envelope and the cellular membrane. Our hypothesis is that AVPs can be derived from these viral glycoproteins, specifically from regions highly conserved in amino acid sequences, which at the same time have the physicochemical properties of being highly exposed (antigenic), hydrophilic, flexible, and charged, since these properties are important for protein-protein interactions. For that, we separately analyzed the HSV glycoprotein H and B, and influenza A viruses hemagglutinin (HA), using several bioinformatics tools. A set of multiple alignments was carried out, to find the most conserved regions in the amino acid sequences. Then, the physicochemical properties indicated above were analyzed. We predicted several peptides 12-20 amino acid length which by docking analysis were able to interact with the fusion viral glycoproteins and thus may prevent conformational changes in them, blocking the viral infection. Our strategy to design AVPs seems to be very promising since the peptides were synthetized and their antiviral activities have produced very encouraging results.  相似文献   

17.
Influenza A virus has evolved and thrived in human populations. Since the 1918 influenza A pandemic, human H1N1 viruses had acquired additional N-linked glycosylation (NLG) sites within the globular head region of hemagglutinin (HA) until the NLG-free HA head pattern of the 1918 H1N1 virus was renewed with the swine-derived 2009 pandemic H1N1 virus. Moreover, the HA of the 2009 H1N1 virus appeared to be antigenically related to that of the 1918 H1N1 virus. Hence, it is possible that descendants of the 2009 H1N1 virus might recapitulate the acquisition of HA head glycosylation sites through their evolutionary drift as a means to evade preexisting immunity. We evaluate here the evolution signature of glycosylations found in the globular head region of H1 HA in order to determine their impact in the virulence and transmission of H1N1 viruses. We identified a polymorphism at HA residue 147 associated with the acquisition of glycosylation at residues 144 and 172. By in vitro and in vivo analyses using mutant viruses, we also found that the polymorphism at HA residue 147 compensated for the loss of replication, virulence, and transmissibility associated with the presence of the N-linked glycans. Our findings suggest that the polymorphism in H1 HA at position 147 modulates viral fitness by buffering the constraints caused by N-linked glycans and provide insights into the evolution dynamics of influenza viruses with implications in vaccine immunogenicity.  相似文献   

18.

Background

The recent emergence of a novel pandemic influenza A(H1N1) strain in humans exemplifies the rapid and unpredictable nature of influenza virus evolution and the need for effective therapeutics and vaccines to control such outbreaks. However, resistance to antivirals can be a formidable problem as evidenced by the currently widespread oseltamivir- and adamantane-resistant seasonal influenza A viruses (IFV). Additional antiviral approaches with novel mechanisms of action are needed to combat novel and resistant influenza strains. DAS181 (Fludase™) is a sialidase fusion protein in early clinical development with in vitro and in vivo preclinical activity against a variety of seasonal influenza strains and highly pathogenic avian influenza strains (A/H5N1). Here, we use in vitro, ex vivo, and in vivo models to evaluate the activity of DAS181 against several pandemic influenza A(H1N1) viruses.

Methods and Findings

The activity of DAS181 against several pandemic influenza A(H1N1) virus isolates was examined in MDCK cells, differentiated primary human respiratory tract culture, ex-vivo human bronchi tissue and mice. DAS181 efficiently inhibited viral replication in each of these models and against all tested pandemic influenza A(H1N1) strains. DAS181 treatment also protected mice from pandemic influenza A(H1N1)-induced pathogenesis. Furthermore, DAS181 antiviral activity against pandemic influenza A(H1N1) strains was comparable to that observed against seasonal influenza virus including the H274Y oseltamivir-resistant influenza virus.

Conclusions

The sialidase fusion protein DAS181 exhibits potent inhibitory activity against pandemic influenza A(H1N1) viruses. As inhibition was also observed with oseltamivir-resistant IFV (H274Y), DAS181 may be active against the antigenically novel pandemic influenza A(H1N1) virus should it acquire the H274Y mutation. Based on these and previous results demonstrating DAS181 broad-spectrum anti-IFV activity, DAS181 represents a potential therapeutic agent for prevention and treatment of infections by both emerging and seasonal strains of IFV.  相似文献   

19.
We previously described fusion-inhibitory peptides that are targeted to the cell membrane by cholesterol conjugation and potently inhibit enveloped viruses that fuse at the cell surface, including HIV, parainfluenza, and henipaviruses. However, for viruses that fuse inside of intracellular compartments, fusion-inhibitory peptides have exhibited very low antiviral activity. We propose that for these viruses, too, membrane targeting via cholesterol conjugation may yield potent compounds. Here we compare the activity of fusion-inhibitory peptides derived from the influenza hemagglutinin (HA) and show that although the unconjugated peptides are inactive, the cholesterol-conjugated compounds are effective inhibitors of infectivity and membrane fusion. We hypothesize that the cholesterol moiety, by localizing the peptides to the target cell membrane, allows the peptides to follow the virus to the intracellular site of fusion. The cholesterol-conjugated peptides trap HA in a transient intermediate state after fusion is triggered but before completion of the refolding steps that drive the merging of the viral and cellular membranes. These results provide proof of concept for an antiviral strategy that is applicable to intracellularly fusing viruses, including known and emerging viral pathogens.  相似文献   

20.

Background

Influenza A virus displays strong reassortment characteristics, which enable it to achieve adaptation in human infection. Surveying the reassortment and virulence of novel viruses is important in the prevention and control of an influenza pandemic. Meanwhile, studying the mechanism of reassortment may accelerate the development of anti-influenza strategies.

Methodology/Principal Findings

The hemagglutinin (HA) and neuraminidase (NA) matching patterns of two pandemic H1N1 viruses (the 1918 and current 2009 strains) and a highly pathogenic avian influenza A virus (H5N1) were studied using a pseudotyped particle (pp) system. Our data showed that four of the six chimeric HA/NA combinations could produce infectious pps, and that some of the chimeric pps had greater infectivity than did their ancestors, raising the possibility of reassortment among these viruses. The NA of H5N1 (A/Anhui/1/2005) could hardly reassort with the HAs of the two H1N1 viruses. Many biological characteristics of HA and NA, including infectivity, hemagglutinating ability, and NA activity, are dependent on their matching pattern.

Conclusions/Significance

Our data suggest the existence of an interaction between HA and NA, and the HA NA matching pattern is critical for valid viral reassortment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号