首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Accidents resulting in widespread dispersal of radioactive materials have given rise to a need for materials that are convenient in allowing individual dose assessment. The present study examines natural Dead Sea salt adopted as a model thermoluminescence dosimetry system. Samples were prepared in two different forms, loose-raw and loose-ground, subsequently exposed to 60Co gamma-rays, delivering doses in the range 2–10 Gy. Key thermoluminescence (TL) properties were examined, including glow curves, dose response, sensitivity, reproducibility and fading. Glow curves shapes were found to be independent of given dose, prominent TL peaks for the raw and ground samples appearing in the temperature ranges 361–385 ºC and 366–401 ºC, respectively. The deconvolution of glow curves has been undertaken using GlowFit, resulting in ten overlapping first-order kinetic glow peaks. For both sample forms, the integrated TL yield displays linearity of response with dose, the loose-raw salt showing some 2.5 × the sensitivity of the ground salt. The samples showed similar degrees of fading, with respective residual signals 28 days post-irradiation of 66% and 62% for the ground and raw forms respectively; conversely, confronted by light-induced fading the respective signal losses were 62% and 80%. The effective atomic number of the Dead Sea salt of 16.3 is comparable to that of TLD-200 (Zeff 16.3), suitable as an environmental radiation monitor in accident situations but requiring careful calibration in the reconstruction of soft tissue dose (soft tissue Zeff 7.2). Sample luminescence studies were carried out via Raman and Photoluminescence spectroscopy as well as X-ray diffraction, ionizing radiation dependent variation in lattice structure being found to influence TL response.

  相似文献   

2.
In this study, the thermoluminescence (TL) characteristics of Ag‐doped and undoped lithium tetraborate (Li2B4O7, LTB) materials, grown using the Czochralski method, were reported. The TL properties of LTB:Ag, such as glow curve structure, dose response, fading and reproducibility, were investigated. The glow curve of the Li2B4O7:Ag single crystal consists of four peaks located at approximately 75, 130, 190 and 275°C; in undoped LTB, the single crystal shows a broad glow curve with peaks at 65, 90, 125, 160 and 190°C using a heating rate of 5°C/s in the 50–350°C temperature region. The high temperature peak of Ag‐doped sample at 275°C has a nonlinear dose response within the range from 33 mGy to 9 Gy. There is a linear response in the range of 33–800 mGy; after which, a sublinear region appears up to 9 Gy for Ag‐doped LTB single crystal. For undoped single crystal, the dose response is supralinear for low doses and linear for the region between 1 and 9 Gy. The thermal fading ratio of the undoped material is almost 60% for the high temperature peak after 7 days. Ag‐doped LTB single crystal exhibits different behaviour over a period of 7 days.  相似文献   

3.
In this article, photoluminescence (PL) and thermoluminescence (TL) properties of ZrO2, ZrO2:Dy3+, ZrO2:Dy3+–Gd3+, ZrO2:Dy3+–Yb3+, ZrO2:Dy3+–Er3+, and ZrO2:Dy3+–Sm3+ phosphors synthesized by the Pechini method were investigated. The crystal structure, thermal properties, morphology, PL and TL properties were investigated using X-ray powder diffraction (XRD), differential thermal analysis/thermogravimetric analysis (DTA/TGA), scanning electron microscopy (SEM), PL and TL, respectively. The room temperature emission bands corresponding to 4F9/2 → 6HJ (J = 9/2, 11/2, 13/2 and 15/2) transitions of Dy3+ ions were measured. The phosphors were analysed using TmTSTOP, variable dose, and computerized glow curve fitting methods. Reusability, dose–response, and fading characteristics were investigated. The phosphors have a natural TL emission that vanished by heating treatment. Moreover, new peaks with similar properties to the natural emissions were observed after high-dose irradiation and long-term fading experiments. The glow curves of the phosphors have 13 individual peaks and many low- and high-temperature satellite peaks. The origin of the peaks is ZrO2 host material and doping with rare-earth ions (Gd3+, Dy3+, Yb3+, Er3+ and Sm3+) does not lead to a new glow peak. The dopants cause drastic changes in individual peak intensities of ZrO2.The initial fading rates of all the phosphors are relatively fast, but they slow down as time goes on.  相似文献   

4.
Lithium borosilicate glass composite (SiO2–Li2CO3–H3BO3) doped with various concentrations of Sm2O3 (0–0.7 mole %) was prepared using the melt quenching method. The investigated thermoluminescence (TL) characteristics of the prepared system revealed that the highest TL response was obtained for this glass composite at 0.05 mol% Sm2O3. In this study, the 0.05 mol% Sm2O3‐doped lithium borosilicate glass composite was subjected to detailed dosimetric investigation in terms of its annealing condition, dose–response, and minimum detectable dose. The reproducibility of the response, thermal characteristics, and optical fading were also studied. The obtained results showed that the prepared glass composite had a linear dose–response over the wide gamma dose range 2Gy to 2 kGy, as well as reasonable thermal fading and excellent reproducibility. These attributes render the composite under investigation promising for utilization in radiation detection.  相似文献   

5.
In this work, (99 − x)CaSO4-Dy2O3–xEu2O3, (where x = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5) thermoluminescence phosphors were prepared using a coprecipitation method. The thermoluminescence (TL) dosimetry (TLD) characteristics such as TL sensitivity, dose–response, minimum detectable dose, thermal fading, and the effect of sunlight on the prepared phosphors were investigated. The obtained results indicated that the most sensitive phosphor was obtained at x = 0.05. Large thermal fading of 6% after 1 h and 26% after 24 h from irradiation followed by 71% after 1 month with no additional fading was observed within a time frame exceeding 2 months throughout the remaining duration of the investigation, which also spanned over 2 months. Despite the phosphor's high fading rate, the relative sensitivity of the prepared samples was ~90% compared with TLD-100. The marked effect of day sunlight was also determined. High dose–response within the low-dose range from 0.01 to 5 Gy was observed. The obtained results suggested that the synthesized phosphor is well suited for applications involving radiation biology and radiotherapy dosimetry.  相似文献   

6.
This work explores the thermoluminescence (TL) and photoluminescence (PL) properties of Ag/Y co-doped zinc oxide (ZnO) nanophosphor. The proposed dosimeter was prepared by the coprecipitation method and sintered at temperatures from 400°C to 1000°C in an air atmosphere. Raman spectroscopy was studied to investigate the structural features of this composition. The new proposed dosimeter revealed two peaks at 150°C and 175°C with a small shoulder at high temperature (225°C). The PL spectrum showed strong green emissions between 500 to 550 nm. The Raman spectrum showed many bands related to the interaction between ZnO, silver (Ag), and yttrium oxide (Y2O3). The rising sintering temperature enhanced the TL glow curve intensity. The Ag/Y co-doped ZnO nanophosphor showed an excellent linearity index within a dose from 1 to 4 Gy. The minimum detectable dose (MDD) of the Ag/Y co-doped ZnO nanopowder (pellets) equaled 0.518 mGy. The main TL properties were achieved in this work as follows: thermal fading (37% after 45 days at 1 and 4 Gy), optical fading (53% after 1 h and 68% after 6 h by exposure to sunlight), effective atomic number (27.6), and energy response (flat behavior from 0.1 to 1.3 MeV). Finally, the proposed material shows promising results nominated to be used for radiation measurements.  相似文献   

7.
The synthesis and characterization of glass systems were carried out using prepared nanocrystals injected into a glass matrix as a thermoluminescence (TL) activator using the melt–quenching method. Sample 1 was prepared as [40P2O5 50BaO:2.5MgO, 2.5Na2O, 5TiO2], sample 2 as [37.5P2O5 37.5CaO:25TiO2] and sample 3 as [50P2O5–50Li2O]. Formation of the synthesized compound was confirmed by studying the X‐ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images. An annealing procedure was carried out for 1 h at 400 °C. The glow curve position and shape shifted dramatically and linearly to the higher temperature values on increasing the heating rate. A heating rate of 30 °C/s was the most suitable for obtaining a high TL response. Samples 2 and 3 have the highest TL response, which approached the effective atomic number (Zeff) of natural bone. The observed TL sensitivity of the prepared samples 2 and 3 is less than that of commercially available ‘TLD‐200 chips’ and LiF:Mg,Ti (TLD‐100) phosphor. Sample [37.5P2O5 37.5CaO:25TiO2] would be useful in personal and environmental dosimetry for measuring high doses of gamma radiation. Sample [50P2O5–50Li2O] is a good dosimeter, although it requires the addition of an appropriate transitional metal (activator) to overcome the problem of high fading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A series of ZnB2O4 phosphors doped with different concentrations of Eu and Dy (0.05 0.1, 0.2, 0.5, 1.0 mol%) and co-doped with Ce (1, 2, 5, 7, 10 mol%) respectively was prepared via the solid-state reaction technique and the thermoluminescence (TL) behaviour of gamma ray-irradiated samples was studied. The synthesized samples were irradiated with γ-rays for the dose range 0.03–1.20 kGy. The TL intensity variations with dose, dopant concentration, and the effect of co-doping were studied. The TL response curves for ZnB2O4:Eu3+ and ZnB2O4:Dy3+, ZnB2O4:Eu3,Ce3+ and ZnB2O4:Dy3+,Ce3+ phosphor were observed. It was revealed that ZnB2O4:Eu3+ showed a linear TL behaviour for the dose 0.03–1.20 kGy and ZnB2O4:Dy3+ showed linearity for the gamma dose range 0.03–0.10 kGy. Furthermore, fading for all the samples was observed to be less than 10% for a storage period of 30 days. In addition to this, the trapping parameters, especially activation energies were evaluated using the Ilich method and the initial rise method. The activation energy values obtained from both methods were in complete agreement with each other.  相似文献   

9.
《Journal of Asia》2022,25(4):102009
The cacao mealybug, Planococcus lilacinus Cock, is an important quarantine pest. Infested commodity should be subject to appropriate phytosanitary treatment, while irradiation is recommended for the cacao mealybug. Radio-tolerance comparison tests were conducted on the crawler, nymphs, and adult females of P. lilacinus at the X-ray radiation doses of 40, 80, and 120 Gy, respectively. The results showed that irradiation had a strong effect on preventing of development and reproduction; the adult female stage was identified as the most tolerant. During the following dose–response tests, among young and late females X-ray-irradiation (20–100 Gy), the late females were most tolerant when preventing F1 generation 2nd instars emergence was used as the evaluation criterion. Minimum absorbed dose and its 95 % fiducial limits to provide probit 9 efficacy at 95 % confidence level (100 % mortality/inhibition in an estimated population of 93,616 individuals) were 131.5 Gy (122.5, 142.6 Gy) and 144.4 Gy (132.7, 159.4 Gy), estimating from the probit analysis on dose-mortality data of 1–30 and 1–10-day-old neonates laid by late females, respectively. In the large-scale confirmatory tests, a total of estimating 97,384 late females of P. lilacinus rearing on the pumpkins fruits were irradiated with gamma-ray at the target dose of 135 or 145 Gy (measured doses 126.1–163.0 Gy), which resulted in no F1 generation 2nd nymphs developing during a 6-week post-treatment period. The treatment efficacy calculated is 99.9969 % at the 95 % confidence level. Therefore, a minimum absorbed dose of 163.0 Gy is recommended for phytosanitary treatment of P. lilacinus in infested commodity.  相似文献   

10.
A series of single‐phase phosphors based on Na6Mg(SO4)4 (Zeff = 11.70) doped with Dy and Eu was prepared by the wet chemical method. The photoluminescence (PL) and thermoluminescence (TL) properties of Dy3+‐ and Eu3+‐activated Na6Mg(SO4)4 phosphors were investigated. The characteristic emissions of Dy3+ and Eu3+ were observed in the Na6Mg(SO4)4 host. The TL glow curve of the Na6Mg(SO4)4:Dy phosphor consisted of a prominent peak at 234°C and a very small hump at 158°C. The TL sensitivity of the Na6Mg(SO4)4:Dy phosphor was found to be four times less than the commercialized CaSO4:Dy phosphor. The TL dose–response of the Na6Mg(SO4)4:Dy phosphor was studied from a dose range of 5–10 kGy and the linear dose–response was observed up to 1 kGy which is good for a microcrystalline phosphor. Trapping parameters for both the samples were calculated using the Initial Rise and Chen's peak shape methods.  相似文献   

11.
PurposeWe aimed to evaluate the characteristics of optically stimulated luminescence dosimeters (OSLDs) with fully filled deep electron/hole traps, and determine the optimal bleaching conditions for these OSLDs to minimize the changes in dose sensitivity or linearity according to the accumulated dose.MethodsInLight nanoDots were used as OSLDs. The OSLDs were first pre-irradiated at a dose greater than 5 kGy to fill the deep electron and hole traps, and then bleached (OSLDfull). OSLDfull characteristics were investigated in terms of the full bleaching, fading, regeneration of luminescence, dose linearity, and dose sensitivity with various bleaching conditions. For comparison, OSLDs with un-filled deep electron/hole traps (OSLDempty) were investigated in the same manner.ResultsThe fading for OSLDfull exhibited stable signals after 10 min, for 1 and 10 Gy. The mean supra-linear index values for OSLDfull were 1.001 ± 0.001 for doses from 2 to 10 Gy. Small variations in dose sensitivity were obtained for OSLDfull within standard deviations of 0.85% and 0.71%, whereas those of OSLDempty decreased by 2.3% and 4.2% per 10 Gy for unfiltered and filtered bleaching devices, respectively.ConclusionsUnder the bleaching conditions determined in this study, clinical dosimetry with OSLDfull is highly stable, minimizing the changes in dose sensitivity or linearity for the clinical dose.  相似文献   

12.
PurposeTo evaluate the uncertainties and characteristics of radiochromic film-based dosimetry system using the EBT3 model Gafchromic® film in therapy photon, electron and proton beams.Material and methodsEBT3 films were read using an EPSON Expression 10000XL/PRO scanner. They were irradiated in five beams, an Elekta SL25 6 MV and 18 MV photon beam, an IBA 100 MeV 5 × 5 cm2 proton beam delivered by pencil-beam scanning, a 60 MeV fixed proton beam and an Elekta SL25 6 MeV electron beam. Reference dosimetry was performed using a FC65-G chamber (Elekta beam), a PPC05 (IBA beam) and both Markus 1916 and PPC40 Roos ion-chambers (60 MeV proton beam). Calibration curves of the radiochromic film dosimetry system were acquired and compared within a dose range of 0.4–10 Gy. An uncertainty budget was estimated on films irradiated by Elekta SL25 by measuring intra-film and inter-film reproducibility and uniformity; scanner uniformity and reproducibility; room light and film reading delay influences.ResultsThe global uncertainty on acquired optical densities was within 0.55% and could be reduced to 0.1% by placing films consistently at the center of the scanner. For all beam types, the calibration curves are within uncertainties of measured dose and optical densities. The total uncertainties on calibration curve due to film reading and fitting were within 1.5% for photon and proton beams. For electrons, the uncertainty was within 2% for dose superior to 0.8 Gy.ConclusionsThe low combined uncertainty observed and low beam and energy-dependence make EBT3 suitable for dosimetry in various applications.  相似文献   

13.

The impact of in-situ CO2 nano-bubbles generation on the freezing properties of soft serve, milk, and apple juice was investigated. Carbonated (0, 1000, and 2000 ppm) liquid foods contained in a tube were submerged and cooled for 90 min in a pre-set ethylene glycol bath (−15 °C). Before the enclosed liquid reached 0 °C, the vibration was discharged through ultrasound in the bath to create nano-bubbles within the carbonated food samples, and the changes in temperature for 90 min of each food were recorded as a freezing curve. The time for onset of nucleation of control soft serve mix was halved in samples with 2000-ppm CO2 due to the presence of nano-bubbles. Likewise, the nucleation time for milk with and without nano-bubbles at the same CO2 concentration of 2000 ppm was 7.9 ± 0.1 and 2.8 ± 0.8 min, respectively. The generation of CO2 nano-bubbles from 2000-ppm CO2 level in 10 oBx apple juice displayed −9.3 ± 0.3 °C nucleation temperature while the control one had −11.7 ± 0.9 °C.

  相似文献   

14.

L-lysine α-oxidase (LO) is an L-amino acid oxidase with antitumor, antimicrobial and antiviral properties. Pharmacokinetic (PK) studies were carried out by measuring LO concentration in plasma and tissue samples by enzyme immunoassay. L-lysine concentration in samples was measured spectrophotometrically using LO. After single i.v. injection of 1.0, 1.5, 3.0 mg/kg the circulating T1/2 of enzyme in mice varied from 51 to 74 min and the AUC0–inf values were 6.54 ± 0.46, 8.66 ± 0.59, 9.47 ± 1.45 μg/ml × h, respectively. LO was distributed in tissues and determined within 48 h after administration with maximal accumulation in liver and heart tissues. Mean time to reach the maximum concentration was highest for the liver—9 h, kidney—1 h and 15 min for the tissues of heart, spleen and brain. T1/2 of LO in tissues ranged from 7.75 ± 0.73 to 26.10 ± 2.60 h. In mice, plasma L-lysine decreased by 79% 15 min after LO administration in dose 1.6 mg/kg. The serum L-lysine levels remained very low from 1 to 9 h (< 25 μM, 17%), indicating an acute lack of L-lysine in animals for at least 9 h. Concentration of L-lysine in serum restored only 24 h after LO administration. The results of LO PK study show that it might be considered as a promising enzyme for further investigation as a potential anticancer agent.

  相似文献   

15.
AimThe aim of this study was to estimate the secondary malignancy risk from the radiation in FFB prostate linac-based radiotherapy for different organs of the patient.BackgroundRadiation therapy is one of the main procedures of cancer treatment. However, the application the radiation may impose dose to organs of the patient which can be the cause of some malignancies.Materials and methodsMonte Carlo (MC) simulation was used to calculate radiation doses to patient organs in 18 MV linear accelerator (linac) based radiotherapy. A humanoid MC phantom was used to calculate the equivalent dose s for different organs and probability of secondary cancer, fatal and nonfatal risk, and other risks and parameters related to megavoltage radiation therapy. In out-of-field radiation calculation, it could be seen that neutrons imparted a higher dose to distant organs, and the dose to surrounding organs was mainly due to absorbed scattered photons and electron contamination.ResultsOur results showed that the bladder and skin with 54.89 × 10−3 mSv/Gy and 46.09 × 10−3 mSv/Gy, respectively, absorbed the highest equivalent dose s from photoneutrons, while a lower dose was absorbed by the lung at 3.42 × 10−3 mSv/Gy. The large intestine and bladder absorbed 55.00 × 10−3 mSv/Gy and 49.08 × 10−3, respectively, which were the highest equivalent dose s due to photons. The brain absorbed the lowest out-of-field dose, at 1.87 × 10−3 mSv/Gy.ConclusionsWe concluded that secondary neutron portion was higher than other radiation. Then, we recommended more attention to neutrons in the radiation protection in linac based high energy radiotherapy.  相似文献   

16.
The effect of optical radiation during the phase transition from the amorphous to the crystalline state of matter was investigated for the first time. The results were obtained on nanoscale films of (LiF)x(Li2B4O7)1-x compositions by sputtering on cold Ni substrates. The starting materials for films were chosen due to their wide use for tissue-equivalent ionizing radiation dosimetry. It is shown that the detected thermoluminescence effect is sensitive to the thickness of the films. The paper compares the results of these studies with the study of the thermoluminescence characteristics of films irradiated by an M-30 microtron with bremsstrahlung radiation with a maximum energy of 6 MeV. The absorbed radiation dose was 1 kGy. Differences in the luminescence characteristics of irradiated and nonirradiated films were revealed. The nature of the demonstrated structural–optical effect is discussed.  相似文献   

17.

The aim of this study was to investigate the effect of a hybrid technique which results from combining intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) for the treatment of cervical cancer patients. Plans made with the hybrid technique and pure IMRT and VMAT were retrospectively compared in 20 patients with cervical cancer at different stages. All plans were made using the same contours based on the original computed tomography (CT) scans. Conformity (CI) and homogeneity (HI) indices of the planning target volumes (PTVs) were calculated for each technique in order to evaluate plan quality. All techniques were compared in terms of dose to organs at risk (OARs), number of monitor units (MUs) and treatment time. It turned out that plans made with the hybrid technique had improved dose conformity and homogeneity compared to plans made only with IMRT and VMAT (p < 0.001). Regarding the OARs, the maximum dose (Dmax) delivered to the bladder, rectum and femoral heads was lower for the hybrid plans compared to the IMRT and VMAT plans (p < 0.001). The volumes irradiated to doses of 50 Gy (V50Gy) for rectum, bladder and bowel were lower for the hybrid plans (p < 0.001, p = 0.002). Furthermore, the treatment time and MU values for the hybrid plans were found to be between of the values for the IMRT and VMAT plans. It is concluded that, as compared to IMRT and VMAT plans, the hybrid plan technique allowed a better conformity and homogeneity for the dose distribution in the PTV and a dose reduction to the OARs.

  相似文献   

18.
The gas leak in Chimaera near Çıralı, Antalya, has been active for thousands of years. It is also known to be the source of the first Olympic flame in the Hellenistic period. The sample taken from the Chimaere seepage annealed for thousands of years was determined to be calcite-magnesian (Ca, Mg)O3. In this study, thermoluminescence (TL) properties of calcite-magnesian annealed for thousands of years in the fire caused by methane gas were investigated for particle size, dose–response, heating rate, and fading experiments. It exhibits a clear TL glow curve with two distinct peaks positioned at 160 and 330°C, and its shape is not affected by variation in applied dose and reproduciility of experiment. There is a wide linear relationship between TL output and applied dose up to 614 Gy. Although the positions of the TL peaks are stable with the cycle of measurement, a poor reusability was observed in terms of the area under the TL glow curve and peak intensity.  相似文献   

19.
The K2Mg(SO4)2:Eu phosphor, synthesized by a solid‐state diffusion method, was studied for its photoluminescence (PL) and thermoluminescence (TL) characteristics. The X‐ray diffraction (XRD) pattern of the material was matched with the standard JCPDF No. 36–1499. For PL characteristics, K2Mg(SO4)2:Eu2+ showed an emission peak at 474 nm when excited at 340 nm, while it showed Eu3+ emission at 580 nm, and 594 nm splitting at 613 nm and 618 nm for an excitation of 396 nm wavelength due to radiative transitions from 5D0 to 7Fj (j = 0, 1, 2, 3). The Commission International de I′ Eclairage (CIE) chromaticity coordinates were also calculated for the K2Mg(SO4)2:Eu phosphor, and were close to the NTSC standard values. For the TL study, the prepared sample was irradiated using a 60Co source of γ‐irradiation at the dose rate of 0.322 kGy/h for 2 min. The formation of traps in K2Mg (SO4)2:Eu and the effects of γ‐radiation dose on the glow curve are discussed. Well defined broad glow peaks were obtained at 186°C. With increasing γ‐ray dose, the sample showed linearity in intensity. The presence of a single glow peak indicated that there was only one set of traps being activated within the particular temperature range. The presented phosphors were also studied for their fading, reusability and trapping parameters. There was just 2% fading during a period of 30 days, indicating no serious fading problem. Kinetic parameters were calculated using the initial rise method and Chen's half‐width method. Activation energy and frequency factor were found to be 0.77 eV and 1.41 × 106 sec?1.  相似文献   

20.
Lithium borate (LB) glasses doped with dysprosium oxide (Dy2O3) have been prepared by utilizing the conventional melt‐quench technique. The prepared glass samples were exposed to 60Co to check their dosimetric features and kinetic parameters. These features involve glow curves, annealing, fading, reproducibility, minimum detectable dose (MDD), and effective atomic number (Zeff). Kinetic parameters including the frequency factors and activation energy were also determined using three methods (glow curve analysis, initial rise, and peak shape method) and were thoroughly interpreted. In addition, the incorporation of Dy impurities into LB enhanced the thermoluminescence sensitivity ~170 times. The glow from LB:Dy appeared as a single prominent peak at 190°C. The best annealing proceeding was obtained at 300°C for 30 min. Signal stability was reported for a period of 1 and 3 months with a reduction of 26% and 31%, respectively. The proposed glass samples showed promising dosimeter properties that can be recommended for personal radiation monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号