首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MicroRNAs (miRNAs) guide Argonaute (Ago) proteins to distinct target mRNAs leading to translational repression and mRNA decay. Ago proteins interact with a member of the GW protein family, referred to as TNRC6A-C in mammals, which coordinate downstream gene-silencing processes. The cytoplasmic functions of TNRC6 and Ago proteins are reasonably well established. Both protein families are found in the nucleus as well. Their detailed nuclear functions, however, remain elusive. Furthermore, it is not clear which import routes Ago and TNRC6 proteins take into the nucleus. Using different nuclear transport assays, we find that Ago as well as TNRC6 proteins shuttle between the cytoplasm and the nucleus. While import receptors might function redundantly to transport Ago2, we demonstrate that TNRC6 proteins are imported by the Importin-β pathway. Finally, we show that nuclear localization of both Ago2 and TNRC6 proteins can depend on each other suggesting actively balanced cytoplasmic Ago – TNRC6 levels.  相似文献   

2.
Argonaute (Ago) proteins function in RNA silencing as components of the RNA-induced silencing complex (RISC). In lower organisms, the small interfering RNA and miRNA pathways diverge due in part to sorting mechanisms that direct distinct small RNA (sRNA) duplexes onto specific Ago-RISCs. However, such sorting mechanisms appear to be lost in mammals. miRNAs appear not to distinguish among Ago1–4. To determine the effect of viral infection on the sorting system, we compared the content of deep-sequenced RNA extracted from immunoprecipitation experiments with the Ago1 and Ago2 proteins using Epstein–Barr virus (EBV)-infected cells. Consistent with previous observations, sequence tags derived from miRNA loci in EBV and humans globally associate in approximately equivalent amounts with Ago1 and Ago2. Interestingly, additional sRNAs, which have not been registered as miRNAs, were associated with Ago1. Among them, some unique sequence tags derived from tandem loci in the human genome associate exclusively with Ago1 but not, or rarely, with Ago2. This is supported by the observation that the expression of the unique sRNAs in the cells is highly dependent on Ago1 proteins. When we knocked down Ago1, the expression of the Ago1-specific sRNAs decreased dramatically. Most importantly, the Ago1-specific sRNAs bound to mRNAs and regulated target genes and were dramatically upregulated, depending on the EBV life cycle. Therefore, even in mammals, the sorting mechanism in the Ago1–4 family is functional. Moreover, the existence of Ago1-specific sRNAs implies vital roles in some aspects of mammalian biology.  相似文献   

3.
4.
It is known that siRNAs are capable of reducing expression of non-target genes due to the interaction of the siRNA guide strand with a partially complementary site on the ‘off-target’ mRNA. In the current study, we show that reduction of cellular Ago2 levels has no effect on off-target reduction of endogenous genes and that off-target degradation of mRNA can occur even in an Ago2 knockout cell line. Using antisense mediated reduction of Ago proteins and chemically modified cleavage- and binding-deficient siRNAs, we demonstrate that siRNA mediated off-target reduction is Ago2 cleavage independent, but does require siRNA interaction with either Ago1 or Ago2 and the RISC-loading complex. We also show that depletion of P-body associated proteins results in a reduction of off-target siRNA-mediated degradation of mRNA. Finally, we present data suggesting that a significant portion of on-target siRNA activity is also Ago2 cleavage independent, however, this activity does not appear to be P-body associated.  相似文献   

5.
GW182 family proteins play important roles in microRNA (miRNA)-mediated RNA silencing. They directly interact with Argonaute (Ago) proteins in processing bodies (P bodies), cytoplasmic foci involved in mRNA degradation and storage. Recently, we revealed that a human GW182 family protein, TNRC6A, is a nuclear-cytoplasmic shuttling protein, and its subcellular localization is regulated by its own nuclear localization signal and nuclear export signal. Regarding the further controlling mechanism of TNRC6A subcellular localization, we found that TNRC6A protein is tethered in P bodies by direct interaction with Ago2 under Ago2 overexpression condition in HeLa cells. Furthermore, it was revealed that such Ago proteins might be strongly tethered in the P bodies through Ago-bound small RNAs. Thus, our results indicate that TNRC6A subcellular localization is substantially controlled by the interaction with Ago proteins. Furthermore, it was also revealed that the TNRC6A subcellular localization affects the RNA silencing activity.  相似文献   

6.
Complexes of Piwi proteins and Piwi-interacting RNAs (piRNAs) carry out the repression of transposable elements in animal gonads. The Piwi protein clade is represented in D. melanogaster by three members: Piwi, Aub and Ago3. Piwi protein functions in the nuclei of somatic and germinal ovarian cells, whereas Aub and Ago3 are cytoplasmic proteins of germinal cells. Aub and Ago3 interact with each other in the perinuclear nuage organelle to perform piRNA amplification via the ping-pong mechanism. Previously, derepression of several transposable elements as a result of mutations in the piRNA silencing system was shown. Here we quantify the increase in expression level of an enlarged number of retrotransposons due to the mutations in the piwi gene, nuage components coding aub, mael and spn-E genes and the RNA helicase armi gene mutation that impairs Piwi nuclear localization, but not the ping-pong cycle. We reveal that piwi, armi, aub, spn-E and mael genes participate together in the repression of several transposons (HMS-Beagle, Gate and HeT-A), whereas silencing of land G elements requires the same genes except piwi. We suggest that Armi has other functions besides the localizing of Piwi protein in the nuclei. Our data suggest also a role of cytoplasmic Aub, Spn-E and Mael nuage proteins in Piwi-mediated repression of Gate and HMS-Beagle transposons in the germline nuclei. As a whole, our results corroborate the idea that genome stabilization in the germline is realized by different silencing strategies specific for different transposable elements. At the same time, our data suggest the existence of yet unknown mechanisms of interplay between nuclear and cytoplasmic components of the piRNA machinery in the germline.  相似文献   

7.
8.
9.
Complexes of Piwi family proteins with short piRNAs (Piwi-interacting RNAs) are responsible for silencing transposable elements in animal reproductive organs. In Drosophila melanogaster, three proteins (Piwi, Aub, and Ago3) are members of the Piwi family. Piwi is the nuclear protein of somatic and germinal ovarian cells, whereas Aub and Ago3 are cytoplasmic proteins involved in piRNA amplification in perinuclear granules that constitute special organelles of germinal cells called nuage. Mutations in genes of the piRNA system are known to cause derepression of several transposable elements. In this study, we compared quantitatively changes in expression of a larger number of elements in the case of mutations in the piwi gene, genes aub, mael, and spn-E, which encode proteins of nuage granules, and armi gene coding an RNA helicase, the lack of which does not interfere with cytoplasmic piRNA amplification but disturbs nuclear localization of Piwi protein. We found that the genes piwi, armi, aub, spn-E, and mael interact to induce silencing of some retrotransposons (HMS-Beagle, Gate and HeT-A); the same genes, except piwi, are involved in repression of I and G elements. We propose that Armi is involved in control of not only nuclear Piwi localization. Our data suggest the relation of nuage proteins Aub, Spn-E, and Mael to Piwi-mediated silencing of retrotransposons Gate and HMS-Beagle in the nucleus. In general, our results corroborate the idea of genome stabilization by means of various silencing strategies specific to different transposable elements. At the same time, our data suggest the existence of yet unknown mechanisms of interplay between nuclear and cytoplasmic components of the piRNA machinery in germinal cells.  相似文献   

10.
Transposable elements (TEs) are silenced in germ cells by a mechanism in which PIWI proteins generate and use PIWI-interacting ribonucleic acid (piRNA) to repress expression of TE genes. piRNA biogenesis occurs by an amplification cycle in microscopic organelles called nuage granules, which are localized to the outer face of the nuclear envelope. One cofactor required for amplification is the helicase Spindle-E (Spn-E). We found that the Spn-E protein physically associates with the Tudor domain protein Qin and the PIWI proteins Aubergine (Aub) and Argonaute3 (Ago3). Spn-E and Qin proteins are mutually dependent for their exit from nuage granules, whereas Spn-E and both Aub and Ago3 are mutually dependent for their entry or retention in nuage. The result is a dynamic cycling of Spn-E and its associated factors in and out of nuage granules. This implies that nuage granules can be considered to be hubs for active, mobile, and transient complexes. We suggest that this is in some way coupled with the execution of the piRNA amplification cycle.  相似文献   

11.
The Argonaute proteins are recently identified and evolutionarily conserved family with two subfamilies Ago and Piwi, which play important roles in small RNA pathways. Most species have eight Argonaute members in their genomes, ranging from 1 to 27. Here we report identification of six Argonaute genes in pig, four members of the Ago subfamily (Ago1, Ago2, Ago3 and Ago4) and two members of the Piwi subfamily (Piwil1 and Piwil2), which were predicted to encode proteins of 857, 860, 860, 861, 861 and 985 amino acids, respectively. Phylogenetic analysis showed that the porcine Ago and Piwi genes were clustered into relevant branch of mammalian Argonaute members. The porcine Ago4- Ago1-Ago3 genes are linked together at the p12 of the chromosome 6, while Ago2 is located at the p15 of the chromosome 4. The porcine Piwil1 and Piwil2 are mapped together onto the chromosome 14, at the q14 and q11 respectively. Comparatively mapping of the Argonaute members on chromosomes showed that linkage group of the Ago4-Ago1-Ago3 and several neighborhood genes is evolutionarily conserved from chicken to mammals. The genes Piwil1 and Piwil2 are separated onto different chromosomes from fish to mammals, with exception to this tendency in both pig and stickleback, indicating an opposite tendency of recombination together or non-disjunction of these two genes during speciation. Further expression analysis showed an ubiquitous expression pattern of Ago members, oppositely a restricted expression pattern in gonads of the Piwi members, suggesting distinct potential roles of the porcine Argonaute genes.  相似文献   

12.
Argonaute 2 (Ago2) is the only mammalian Ago protein capable of mRNA cleavage. It has been reported that the activity of the short interfering RNA targeting coding sequence (CDS), but not 3′ untranslated region (3′UTR) of an mRNA, is solely dependent on Ago2 in vitro. These studies utilized extremely high doses of siRNAs and overexpressed Ago proteins, as well as were directed at various highly expressed reporter transgenes. Here we report the effect of Ago2 in vivo on targeted knockdown of several endogenous genes by siRNAs, targeting both CDS and 3′UTR. We show that siRNAs targeting CDS lose their activity in the absence of Ago2, whereas both Ago1 and Ago3 proteins contribute to residual 3′UTR-targeted siRNA-mediated knockdown observed in the absence of Ago2 in mouse liver. Our results provide mechanistic insight into two components mediating RNAi under physiological conditions: mRNA cleavage dependent and independent. In addition our results contribute a novel consideration for designing most efficacious siRNA molecules with the preference given to 3′UTR targeting as to harness the activity of several Ago proteins.  相似文献   

13.
Argonaute (Ago) proteins form the core of RNA-induced silencing complexes (RISCs) and mediate small RNA-guided gene silencing. In RNAi, short interfering RNAs (siRNAs) guide RISCs to complementary target RNAs, leading to cleavage by the endonuclease Ago2. Noncatalytic Ago proteins, however, contribute to RNAi as well but cannot cleave target RNA and often generate off-target effects. Here we show that synthetic siRNA duplexes interact with all Ago proteins, but a functional RISC rapidly assembles only around Ago2. By stabilizing the siRNA duplex, we show that the noncatalytic Ago proteins Ago1, -3, and -4 can be selectively blocked and do not form functional RISCs. In addition, stabilized siRNAs form an Ago2-RISC more efficiently, leading to increased silencing activity. Our data suggest novel parameters for the design of siRNAs with selective activation of the endonuclease Ago2.  相似文献   

14.
MicroRNAs (miRNAs) are small noncoding RNAs that function in literally all cellular processes. miRNAs interact with Argonaute (Ago) proteins and guide them to specific target sites located in the 3′-untranslated region (3′-UTR) of target mRNAs leading to translational repression and deadenylation-induced mRNA degradation. Most miRNAs are processed from hairpin-structured precursors by the consecutive action of the RNase III enzymes Drosha and Dicer. However, processing of miR-451 is Dicer independent and cleavage is mediated by the endonuclease Ago2. Here we have characterized miR-451 sequence and structure requirements for processing as well as sorting of miRNAs into different Ago proteins. Pre-miR-451 appears to be optimized for Ago2 cleavage and changes result in reduced processing. In addition, we show that the mature miR-451 only associates with Ago2 suggesting that mature miRNAs are not exchanged between different members of the Ago protein family. Based on cloning and deep sequencing of endogenous miRNAs associated with Ago1–3, we do not find evidence for miRNA sorting in human cells. However, Ago identity appears to influence the length of some miRNAs, while others remain unaffected.  相似文献   

15.
Identification of novel argonaute-associated proteins   总被引:1,自引:0,他引:1  
RNA silencing processes are guided by small RNAs known as siRNAs and microRNAs (miRNAs) . They reside in ribonucleoprotein complexes, which guide the cleavage of complementary mRNAs or affect stability and translation of partial complementary mRNAs . Argonaute (Ago) proteins are at the heart of silencing effector complexes and bind the single-stranded siRNA and miRNA . Our biochemical analysis revealed that Ago2 is present in a pre-miRNA processing complex that is able to transfer the miRNA into a target-mRNA cleaving complex. To gain insight into the function and composition of RNA silencing complexes, we purified Ago1- and Ago2-containing complexes from human cells. Several known Ago1- and/or Ago2-associated proteins including Dicer were identified, but also two novel factors, the putative RNA helicase MOV10, and the RNA recognition motif (RRM)-containing protein TNRC6B/KIAA1093. The new proteins localize, similar to Ago proteins, to mRNA-degrading cytoplasmic P bodies, and they are functionally required to mediate miRNA-guided mRNA cleavage.  相似文献   

16.
Little is known about whether components of the RNA-induced silencing complex (RISC) mediate the biogenesis of RNAs other than miRNA. Here, we show that depletion of key proteins of the RISC pathway by antisense oligonucleotides significantly impairs pre-rRNA processing in human cells. In cells depleted of Drosha or Dicer, different precursors to 5.8S rRNA strongly accumulated, without affecting normal endonucleolytic cleavages. Moderate yet distinct processing defects were also observed in Ago2-depleted cells. Physical links between pre-rRNA and these proteins were identified by co-immunoprecipitation analyses. Interestingly, simultaneous depletion of Dicer and Drosha led to a different processing defect, causing slower production of 28S rRNA and its precursor. Both Dicer and Ago2 were detected in the nuclear fraction, and reduction of Dicer altered the structure of the nucleolus, where pre-rRNA processing occurs. Together, these results suggest that Drosha and Dicer are implicated in rRNA biogenesis.  相似文献   

17.
Argonaute proteins are essential components of the molecular machinery that drives RNA silencing. In Drosophila, different members of the Argonaute family of proteins have been assigned to distinct RNA silencing pathways. While Ago1 is required for microRNA function, Ago2 is a crucial component of the RNA-induced silencing complex in siRNA-triggered RNA interference. Drosophila Ago2 contains an unusual amino-terminus with two types of imperfect glutamine-rich repeats (GRRs) of unknown function. Here we show that the GRRs of Ago2 are essential for the normal function of the protein. Alleles with reduced numbers of GRRs cause specific disruptions in two morphogenetic processes associated with the midblastula transition: membrane growth and microtubule-based organelle transport. These defects do not appear to result from disruption of siRNA-dependent processes but rather suggest an interference of the mutant Ago2 proteins in an Ago1-dependent pathway. Using loss-of-function alleles, we further demonstrate that Ago1 and Ago2 act in a partially redundant manner to control the expression of the segment-polarity gene wingless in the early embryo. Our findings argue against a strict separation of Ago1 and Ago2 functions and suggest that these proteins act in concert to control key steps of the midblastula transition and of segmental patterning.  相似文献   

18.
piRNAs guide PIWI proteins to silence transposons in animal germ cells. Reciprocal cycles of piRNA-directed RNA cleavage--catalyzed by the PIWI proteins Aubergine (Aub) and Argonaute3 (Ago3) in Drosophila melanogaster--expand the population of antisense piRNAs in response to transposon expression, a process called the Ping-Pong cycle. Heterotypic Ping-Pong between Aub and Ago3 ensures that antisense piRNAs predominate. We show that qin, a piRNA pathway gene whose protein product contains both E3 ligase and Tudor domains, colocalizes with Aub and Ago3 in nuage, a perinuclear structure implicated in transposon silencing. In qin mutants, less Ago3 binds Aub, futile Aub:Aub homotypic Ping-Pong prevails, antisense piRNAs decrease, many families of mobile genetic elements are reactivated, and DNA damage accumulates in nurse cells and oocytes. We propose that Qin enforces heterotypic Ping-Pong between Aub and Ago3, ensuring that transposons are silenced and maintaining the integrity of the germline genome.  相似文献   

19.
20.
Argonaute (Ago) proteins are the effector proteins of RNA interference (RNAi) and related silencing mechanisms that are mediated by small RNAs. Ago proteins bind directly to microRNAs (miRNAs) and to short interfering RNAs and are the core protein components of RNA induced silencing complexes (RISCs) and microRNPs (miRNPs). Here we report that an ~70-nt RNA associates specifically with immunopurified Ago2 expressed in human 293 cells. By directional cloning we identified this RNA as the mitochondrial tRNA(Met) (mt tRNA(Met)). Various exported (mt) tRNAs were detected in the cytosol of 293 cells, but Ago2 was found selectively bound to (mt) tRNA(Met). The association in the cytosol of exported (mt) tRNA(Met) with Ago2 complements genetic and microscopic data that link mitochondria with RNAi-related components and events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号