首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
4.
Locomotion arises from the complex and coordinated function of limb muscles. Yet muscle function is dynamic over the course of a single stride and between strides for animals moving at different speeds or on variable terrain. While it is clear that motor unit recruitment can vary between and within muscles, we know little about how work is distributed within and between muscles under in vivo conditions. Here we show that the lateral gastrocnemius (LG) of helmeted guinea fowl (Numida meleagris) performs considerably more work than its synergist, the medial gastrocnemius (MG) and that the proximal region of the MG (pMG) performs more work than the distal region (dMG). Positive work done by the LG was approximately twice that of the proximal MG when the birds walked at 0.5 ms -1, and four times when running at 2.0 m s-1. This is probably due to different moments at the knee, as well as differences in motor unit recruitment. The dMG performed less work than the pMG because its apparent dynamic stiffness was greater, and because it exhibited a greater recruitment of slow-twitch fibres. The greater compliance of the pMG leads to increased stretch of its fascicles at the onset of force, further enhancing force production. Our results demonstrate the capacity for functional diversity between and within muscle synergists, which increases with changes in gait and speed.  相似文献   

5.
6.
A computer simulation technique was applied to make clear the mechanical characteristics of primate bipedal walking. A primate body and the walking mechanism were modeled mathematically with a set of dynamic equations. Using a digital computer, the following were calculated from these equations by substituting measured displacements and morphological data of each segment of the primate: the acceleration, joint angle, center of gravity, foot force, joint moment, muscular force, transmitted force at the joint, electric activity of the muscle, generated power by the leg and energy expenditure in walking.The model was evaluated by comparing some of the calculated results with the experimental results such as foot force and electromyographic data, and improved in order to obtain the agreement between them.The level bipedal walking of man, chimpanzee and Japanese monkey and several types of synthesized walking were analyzed from the viewpoint of biomechanics.It is concluded that the bipedal walking of chimpanzee is nearer to that of man than to that of the Japanese monkey because of its propulsive mechanism, but it requires large muscular force for supporting the body weight.  相似文献   

7.
Computational analyses of leg-muscle function in human locomotion commonly assume that contact between the foot and the ground occurs at discrete points on the sole of the foot. Kinematic constraints acting at these contact points restrict the motion of the foot and, therefore, alter model calculations of muscle function. The aim of this study was to evaluate how predictions of muscle function obtained from musculoskeletal models are influenced by the model used to simulate ground contact. Both single- and multiple-point contact models were evaluated. Muscle function during walking and running was determined by quantifying the contributions of individual muscles to the vertical, fore-aft and mediolateral components of the ground reaction force (GRF). The results showed that two factors – the number of foot-ground contact points assumed in the model and the type of kinematic constraint enforced at each point – affect the model predictions of muscle coordination. Whereas single- and multiple-point contact models produced similar predictions of muscle function in the sagittal plane, inconsistent results were obtained in the mediolateral direction. Kinematic constraints applied in the sagittal plane altered the model predictions of muscle contributions to the vertical and fore-aft GRFs, while constraints applied in the frontal plane altered the calculations of muscle contributions to the mediolateral GRF. The results illustrate the sensitivity of calculations of muscle coordination to the model used to simulate foot-ground contact.  相似文献   

8.
Clinical gait analysis allows the measurement and assessment of walking biomechanics, which facilitates the identification of abnormal characteristics and the recommendation of treatment alternatives. The predominant methods for this analysis currently include the tracking of external markers placed on the patient, the monitoring of patient/ground interaction (e.g. ground reaction forces), and the recording of muscle electromyographic (EMG) activity, all during gait. These data allow the computation of stride and temporal parameters, joint/segment kinematics, joint kinetics, and EMG plots that are used to gain a better understanding of a patient's walking difficulties. Gait interpretation involves a systemic evaluation of each of these types of data, noting both corroborating and conflicting information while identifying functionally significant deviations from the normal. Understanding the etiology of these abnormalities allows the formulation of a treatment plan that may involve physical therapy, bracing, and/or surgery. This process is challenging because of the complexity of the motion, neuromuscular involvement of the patient (e.g. dynamic spasticity), variability of treatment outcome, and on occasion, uncertainty about the quality of the gait data. The experience of the interpretation team with respect to gait biomechanics, a particular patient population, and the effectiveness of different treatment modalities is the principal determinant of the success of this approach. The clinical gait analysis process continues to evolve positively. It has become more comprehensive and meaningful because of an improved understanding of normal gait biomechanics and more rigorous data collection/reduction protocols that complement accumulated clinically relevant experience.  相似文献   

9.
10.
Small animals are remarkably efficient climbers but comparatively poor runners, a well-established phenomenon in locomotor energetics that drives size-related differences in locomotor ecology yet remains poorly understood. Here, I derive the energy cost of legged locomotion from two complementary components of muscle metabolism, Activation–Relaxation and Cross-bridge cycling. A mathematical model incorporating these costs explains observed patterns of locomotor cost both within and between species, across a broad range of animals (insects to ungulates), for a wide range of substrate slopes including level running and vertical climbing. This ARC model unifies work- and force-based models for locomotor cost and integrates whole-organism locomotor cost with cellular muscle physiology, creating a predictive framework for investigating evolutionary and ecological pressures shaping limb design and ranging behaviour.  相似文献   

11.
12.
Objective: The constant strain in obese children may increase the risks of articular problems in adulthood. In the short term, obesity in children could lead to modifications of the gait pattern. The purpose of this study was to compare biomechanical parameters between obese and non‐obese children during self‐paced walking. Research Methods and Procedures: Gait analysis was performed on 10 non‐obese and 10 obese (body weight > 95th percentile) children between 8 and 13 years of age. Subjects were asked to walk at their own pace on a 10‐m walkway with two embedded AMTI force plates (Advanced Mechanical Technology, Watertown, MA) sampling at 960 Hz. Kinematics were captured with eight VICON optoelectronic cameras (Oxford Metrics Limited, Oxford, United Kingdom) recording at 60 Hz. Results: Obese children modified their hip motor pattern by shifting from extensor to flexor moment earlier in the gait cycle. This led obese children to significantly decrease the mechanical work done by the hip extensors during weight acceptance and significantly increase the mechanical work done by the hip flexors compared with non‐obese children. The ratio of power‐absorption‐by‐hip‐flexors to power‐generation‐by‐hip‐flexors was also significantly increased in the obese group compared with non‐obese children. Finally, there was a significant decrease in the single support duration in the obese group compared with non‐obese. Discussion: The kinetics analyzed showed that obese children could take advantage of a passive hip strategy to achieve forward progression during walking. However, considering that they are mechanically less efficient to transfer energy, walking at a natural cadence should be an appropriate exercise to reduce weight in obese children.  相似文献   

13.
14.
The muscle work required to sustain steady-speed locomotion depends largely upon the mechanical energy needed to redirect the centre of mass and the degree to which this energy can be stored and returned elastically. Previous studies have found that large bipedal hoppers can elastically store and return a large fraction of the energy required to hop, whereas small bipedal hoppers can only elastically store and return a relatively small fraction. Here, we consider the extent to which large and small bipedal hoppers (tammar wallabies, approx. 7 kg, and desert kangaroo rats, approx. 0.1 kg) reduce the mechanical energy needed to redirect the centre of mass by reducing collisions. We hypothesize that kangaroo rats will reduce collisions to a greater extent than wallabies since kangaroo rats cannot elastically store and return as high a fraction of the mechanical energy of hopping as wallabies. We find that kangaroo rats use a significantly smaller collision angle than wallabies by employing ground reaction force vectors that are more vertical and center of mass velocity vectors that are more horizontal and thereby reduce their mechanical cost of transport. A collision-based approach paired with tendon morphometry may reveal this effect more generally among bipedal runners and quadrupedal trotters.  相似文献   

15.
Models are a principal tool of modern science. By definition, and in practice, models are not literal representations of reality but provide simplifications or substitutes of the events, scenarios or behaviours that are being studied or predicted. All models make assumptions, and palaeontological models in particular require additional assumptions to study unobservable events in deep time. In the case of functional analysis, the degree of missing data associated with reconstructing musculoskeletal anatomy and neuronal control in extinct organisms has, in the eyes of some scientists, rendered detailed functional analysis of fossils intractable. Such a prognosis may indeed be realized if palaeontologists attempt to recreate elaborate biomechanical models based on missing data and loosely justified assumptions. Yet multiple enabling methodologies and techniques now exist: tools for bracketing boundaries of reality; more rigorous consideration of soft tissues and missing data and methods drawing on physical principles that all organisms must adhere to. As with many aspects of science, the utility of such biomechanical models depends on the questions they seek to address, and the accuracy and validity of the models themselves.  相似文献   

16.
Humans tend to swing their arms when they walk, a curious behaviour since the arms play no obvious role in bipedal gait. It might be costly to use muscles to swing the arms, and it is unclear whether potential benefits elsewhere in the body would justify such costs. To examine these costs and benefits, we developed a passive dynamic walking model with free-swinging arms. Even with no torques driving the arms or legs, the model produced walking gaits with arm swinging similar to humans. Passive gaits with arm phasing opposite to normal were also found, but these induced a much greater reaction moment from the ground, which could require muscular effort in humans. We therefore hypothesized that the reduction of this moment may explain the physiological benefit of arm swinging. Experimental measurements of humans (n = 10) showed that normal arm swinging required minimal shoulder torque, while volitionally holding the arms still required 12 per cent more metabolic energy. Among measures of gait mechanics, vertical ground reaction moment was most affected by arm swinging and increased by 63 per cent without it. Walking with opposite-to-normal arm phasing required minimal shoulder effort but magnified the ground reaction moment, causing metabolic rate to increase by 26 per cent. Passive dynamics appear to make arm swinging easy, while indirect benefits from reduced vertical moments make it worthwhile overall.  相似文献   

17.
18.
Lacking an external shell and a rigid endoskeleton, octopuses exhibit a remarkable flexibility in their movements. Bipedal locomotion is perhaps the most iconic example in this regard. Until recently, this peculiar mode of locomotion had been observed only in two species of tropical octopuses: Amphioctopus marginatus and Abdopus aculeatus. Yet, recent evidence indicates that bipedal walking is also part of the behavioral repertoire of the common octopus, Octopus vulgaris. Here we report a further observation of a defense behavior that encompasses both postural and locomotory elements of bipedal locomotion in this cephalopod. By highlighting differences and similarities with the other recently published report, we provide preliminary considerations with regard to bipedal locomotion in the common octopus.  相似文献   

19.
Compared to other primates, modern humans face high rates of maternal and neonatal morbidity and mortality during childbirth. Since the early 20th century, this “difficulty” of human parturition has prompted numerous evolutionary explanations, typically assuming antagonistic selective forces acting on maternal and fetal traits, which has been termed the “obstetrical dilemma.” Recently, there has been a growing tendency among some anthropologists to question the difficulty of human childbirth and its evolutionary origin in an antagonistic selective regime. Partly, this stems from the motivation to combat increasing pathologization and overmedicalization of childbirth in industrialized countries. Some authors have argued that there is no obstetrical dilemma at all, and that the difficulty of childbirth mainly results from modern lifestyles and inappropriate and patriarchal obstetric practices. The failure of some studies to identify biomechanical and metabolic constraints on pelvic dimensions is sometimes interpreted as empirical support for discarding an obstetrical dilemma. Here we explain why these points are important but do not invalidate evolutionary explanations of human childbirth. We present robust empirical evidence and solid evolutionary theory supporting an obstetrical dilemma, yet one that is much more complex than originally conceived in the 20th century. We argue that evolutionary research does not hinder appropriate midwifery and obstetric care, nor does it promote negative views of female bodies. Understanding the evolutionary entanglement of biological and sociocultural factors underlying human childbirth can help us to understand individual variation in the risk factors of obstructed labor, and thus can contribute to more individualized maternal care.  相似文献   

20.
Over time, leg prostheses have improved in design, but have been incapable of actively adapting to different walking velocities in a manner comparable to a biological limb. People with a leg amputation using such commercially available passive-elastic prostheses require significantly more metabolic energy to walk at the same velocities, prefer to walk slower and have abnormal biomechanics compared with non-amputees. A bionic prosthesis has been developed that emulates the function of a biological ankle during level-ground walking, specifically providing the net positive work required for a range of walking velocities. We compared metabolic energy costs, preferred velocities and biomechanical patterns of seven people with a unilateral transtibial amputation using the bionic prosthesis and using their own passive-elastic prosthesis to those of seven non-amputees during level-ground walking. Compared with using a passive-elastic prosthesis, using the bionic prosthesis decreased metabolic cost by 8 per cent, increased trailing prosthetic leg mechanical work by 57 per cent and decreased the leading biological leg mechanical work by 10 per cent, on average, across walking velocities of 0.75-1.75 m s(-1) and increased preferred walking velocity by 23 per cent. Using the bionic prosthesis resulted in metabolic energy costs, preferred walking velocities and biomechanical patterns that were not significantly different from people without an amputation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号