首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
p53 mutations and binding of p53 to hepatitis B virus (HBV) x protein (HBx) have been suggested as alternative mechanisms of development of hepatocellular carcinomas (HCCs) in man, both processes resulting in intracellular accumulation of the protein which is detectable by immunohistochemical approaches. We have examined p53 expression in 149 explanted human livers, including 39 cases infected with HBV and 35 bearing HCC. p53 was demonstrated immunohistochemically in 51% of HCC samples (18/35), localized mainly in fast growing poorly differentiated areas. Accumulation of mutant p53 was verified by immunoprecipitation in most of the positive HCC samples (14/15), implying occurrence of p53 mutations. No cells positive for p53 were found in 354 preneoplastic hepatocellular lesions examined. This indicates that p53 mutation is associated with progression, rather than early development, of HCC in the low-aflatoxin B(1)-exposed region. The intracellular distribution patterns of p53 and HBx were different, with the former within nuclei and the latter confined to cytoplasmic compartment. HBx did not coimmunoprecipitate with p53. These data indicate that p53-HBx binding is infrequent, if it really occurs, in HBV-infected human liver, and that it cannot be a common mechanism of HBV-associated hepatocarcinogenesis. In addition, p53 accumulation was also observed in some parenchymal and ductular (oval) cells in cirrhotic livers and, more frequently, in fulminant hepatitis, being independent of HBx expression, and seemingly associated with the damage and/or regeneration of liver parenchyma, perhaps merely reflecting a cellular stress response.  相似文献   

2.
Hepatitis B virus X protein (HBx) is closely involved in the development of hepatocellular carcinoma (HCC). Tumor suppressor p53 was reported to induce HBx degradation and repress its oncogenic function recently, but the molecular mechanism is unknown. In this study, we attempted to identify the underlying mechanism. We found that overexpression of p53 protein reduces the level of HBx protein and shortens its half-life, however, in MDM2 knock out cells, p53 has no effects on degradation of HBx, meanwhile, overexpression of MDM2 in absence of p53 can accelerate turnover of HBx protein. These indicate that p53-mediated HBx degradation is MDM2-dependent. MDM2 interacts with HBx in vitro and in vivo but does not promote its ubiquitination. In consistent with the results above, HCC tissue samples with wild-type p53 hardly detect HBx protein, whereas, HBx always accumulate in the tissues with mutant p53. Our data provide a possible mechanism on how p53 regulate HBx stability and also a new clue for the study of p53 mutation and HCC development.  相似文献   

3.
Cyclin D1 is frequently overexpressed in hepatocellular carcinoma (HCC) exhibiting increased malignant phenotypes. It has also been known that the hepatitis Bx (HBx) protein is strongly associated with HCC development and progression. Although overexpression of both proteins is related to HCC, the relationship between the two has not been well studied. Here we show that HBx up-regulates cyclin D1 and that this process is mediated by the NF-kappaB2(p52)/BCL-3 complex. Our experiments indicate that HBx up-regulates BCL-3 in the mRNA level, which subsequently results in the up-regulation of the NF-kappaB2(p52)/BCL-3 complex in the nucleus. Moreover, impaired HBx-mediated BCL-3 up-regulation by small interfering RNA for BCL-3 reduced HBx-mediated cyclin D1 up-regulation. Down-regulation of the HBx protein level by p53 also reduced HBx-mediated cyclin D1 up-regulation. From these results, we conclude that the up-regulation of cyclin D1 by HBx is mediated by the up-regulation of NF-kappaB2(p52)/BCL-3 in the nucleus. This HBx-mediated-cyclin D1 up-regulation might play an important role in the HBx-mediated HCC development and progression.  相似文献   

4.
Hepatocarcinogenesis commonly involves the gradual progression from hepatitis to fibrosis and cirrhosis, and ultimately to hepatocellular carcinoma (HCC). Endothelin 1 (Edn1) has been identified as a gene that is significantly up-regulated in HBx-induced HCC in mice. In this study, we further investigated the role of edn1 in hepatocarcinogenesis using a transgenic zebrafish model and a cell culture system. Liver-specific edn1 expression caused steatosis, fibrosis, glycogen accumulation, bile duct dilation, hyperplasia, and HCC in zebrafish. Overexpression of EDN1 in 293T cells enhanced cell proliferation and cell migration in in vitro and xenotransplantation assays and was accompanied with up-regulation of several cell cycle/proliferation- and migration-specific genes. Furthermore, expression of the unfolded protein response (UPR) pathway-related mediators, such as spliced XBP1, ATF6, IRE1, and PERK, was also up-regulated at both the RNA and protein levels. In the presence of an EDN1 inhibitor or an AKT inhibitor, these increases were diminished and the EDN1-induced migration ability also was disappeared, suggesting that the EDN1 effects act through activation of the AKT pathway to enhance the UPR and subsequently activate the expression of downstream genes. Additionally, p-AKT is enhanced in the edn1 transgenic fish compared to the GFP-mCherry control. The micro RNA miR-1 was found to inhibit the expression of EDN1. We also observed an inverse correlation between EDN1 and miR-1 expression in HCC patients. In conclusion, our data suggest that EDN1 plays an important role in HCC progression by activating the PI3K/AKT pathway and is regulated by miR-1.  相似文献   

5.
Hepatocellular carcinoma (HCC) is currently one of the top lethal cancers with an increasing trend. Deregulation of MYC in HCC is frequently detected and always correlated with poor prognosis. As the zebrafish genome contains two differentially expressed zebrafish myc orthologs, myca and mycb, it remains unclear about the oncogenicity of the two zebrafish myc genes. In the present study, we developed two transgenic zebrafish lines to over-express myca and mycb respectively in the liver using a mifepristone-inducible system and found that both myc genes were oncogenic. Moreover, the transgenic expression of myca in hepatocytes caused robust liver tumors with several distinct phenotypes of variable severity. ~5% of myca transgenic fish developing multinodular HCC with cirrhosis after 8 months of induced myca expression. Apoptosis was also observed with myca expression; introduction of homozygous tp53-/- mutation into the myca transgenic fish reduced apoptosis and accelerated tumor progression. The malignant status of hepatocytes was dependent on continued expression of myca; withdrawal of the mifepristone inducer resulted in a rapid regression of liver tumors, and the tumor regression occurred even in the tp53-/- mutation background. Thus, our data demonstrated the robust oncogenicity of zebrafish myca and the requirement of sustained Myc overexpression for maintenance of the liver tumor phenotype in this transgenic model. Furthermore, tumor regression is independent of the function of Tp53.  相似文献   

6.
Long noncoding RNAs (lncRNAs) play crucial roles in human cancers. It has been reported that lncRNA highly up-regulated in liver cancer (HULC) is dramatically up-regulated in hepatocellular carcinoma (HCC). Hepatitis B virus X protein (HBx) contributes importantly to the development of HCC. However, the function of HULC in HCC mediated by HBx remains unclear. Here, we report that HULC is involved in HBx-mediated hepatocarcinogenesis. We found that the expression levels of HULC were positively correlated with those of HBx in clinical HCC tissues. Moreover, we revealed that HBx up-regulated HULC in human immortalized normal liver L-O2 cells and hepatoma HepG2 cells. Luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assay showed that HBx activated the HULC promoter via cAMP-responsive element-binding protein. We further demonstrated that HULC promoted cell proliferation by methyl thiazolyl tetrazolium, 5-ethynyl-2'-deoxyuridine, colony formation assay, and tumorigenicity assay. Next, we hypothesized that HULC might function through regulating a tumor suppressor gene p18 located near HULC in the same chromosome. We found that the mRNA levels of p18 were inversely correlated with those of HULC in the above clinical HCC specimens. Then, we validated that HULC down-regulated p18, which was involved in the HULC-enhanced cell proliferation in vitro and in vivo. Furthermore, we observed that knockdown of HULC could abolish the HBx-enhanced cell proliferation through up-regulating p18. Thus, we conclude that the up-regulated HULC by HBx promotes proliferation of hepatoma cells through suppressing p18. This finding provides new insight into the roles of lncRNAs in HBx-related hepatocarcinogenesis.  相似文献   

7.
The hepatitis B virus X‐protein (HBx), a multifunctional viral regulator, participates in the viral life cycle and in the development of hepatocellular carcinoma (HCC). We previously reported a high incidence of HCC in transgenic mice expressing HBx. In this study, proteomic analysis was performed to identify proteins that may be involved in hepatocarcinogenesis and/or that could be utilized as early detection biomarkers for HCC. Proteins from the liver tissue of HBx‐transgenic mice at early stages of carcinogenesis (dysplasia and hepatocellular adenoma) were separated by 2‐DE, and quantitative changes were analyzed. A total of 22 spots displaying significant quantitative changes were identified using LC‐MS/MS. In particular, several proteins involved in glucose and fatty acid metabolism, such as mitochondrial 3‐ketoacyl‐CoA thiolase, intestinal fatty acid‐binding protein 2 and cytoplasmic malate dehydrogenase, were differentially expressed, implying that significant metabolic alterations occurred during the early stages of hepatocarcinogenesis. The results of this proteomic analysis provide insights into the mechanism of HBx‐mediated hepatocarcinogenesis. Additionally, this study identifies possible therapeutic targets for HCC diagnosis and novel drug development for treatment of the disease.  相似文献   

8.
目的:探讨p16基因在由乙型肝炎病毒基因整合引起的小鼠肝细胞癌发生发展中的表达变化规律。方法:以乙肝病毒表面抗原基因(HBsAg)及X基因(HBx)定位整合转基因小鼠及对照小鼠的肝脏组织为标本,利用North-ern印迹、Western印迹及免疫组织化学检测p16在乙肝病毒基因定位整合转基因小鼠肝脏正常组织与肿瘤组织中的差异表达。结果:p16主要在小鼠胚胎期的肝脏中表达,在新生小鼠和成年小鼠的肝脏组织中几乎检测不到其表达;在HBsAg转基因小鼠和HBx转基因小鼠的肝脏肿瘤中,p16的表达明显升高。结论:p16基因在HBsAg或HBx诱导的肝细胞癌发生过程中被重新激活,也许发挥重要的作用。  相似文献   

9.
The oncogenic hepatitis B virus X protein (HBx) and cyclooxygenase (COX)-2 are highly co-expressed in chronic hepatitis, cirrhosis and well-differentiated hepatocellular carcinoma (HCC). Although HBx is shown to activate COX-2, the functional consequences of this interaction in hepatocarcinogenesis remain unknown. Using an engineered hepatoma cell system in which the expression of wild-type p53 can be chemically modulated, we show here that COX-2 mediates HBx actions in opposing p53. Enforced expression of HBx sequestrates p53 in the cytoplasm and significantly abolishes p53-induced apoptosis. The anti-apoptotic Mcl-1 protein is suppressed by p53 but reactivated by HBx. The abrogation of apoptosis is completely reversed by specific COX-2 inhibition, suggesting that HBx blocks p53-induced apoptosis via activation of COX-2/PGE2 pathway. We further show that COX-2 inhibition blocks HBx reactivation of Mcl-1, linking this protein to the anti-apoptotic function of COX-2. These results demonstrate that COX-2 is an important survival factor mediating the oncogenic actions of HBx. Over-expression of HBx and COX-2 may provide a selective clonal advantage for preneoplastic or neoplastic hepatocytes and contribute to the initiation and progression of HCC.  相似文献   

10.
The Hepatitis B virus X (HBx) protein has been strongly implicated in the carcinogenesis of hepatocellular carcinoma (HCC). However, effects of the HBx protein on cell proliferation and cell death are controversial. This study investigates the effects of the HBx protein on liver regeneration in two independent lines of HBx transgenic mice, which developed HCC at around 14 to 16 months of age. High mortality, lower liver mass restoration, and impaired liver regeneration were found in the HBx transgenic mice post-hepatectomy. The levels of alanine aminotransferase and alpha-fetoprotein detected post-hepatectomy increased significantly in the HBx transgenic livers, indicating that they were more susceptible to damage during the regenerative process. Prolonged activation of the immediate-early genes in the HBx transgenic livers suggested that the HBx protein creates a strong effect by promoting the transition of the quiescent hepatocytes from G0 to G1 phase. However, impaired DNA synthesis and mitosis, as well as inhibited activation of G1, S, and G2/M markers, were detected. These results indicated that HBx protein exerted strong growth arrest on hepatocytes and imbalanced cell-cycle progression resulting in the abnormal cell death; this was accompanied by severe fat accumulation and impaired glycogen storage in the HBx transgenic livers. In conclusion, this study provides the first physiological evidence that HBx protein blocks G1/S transition of the hepatocyte cell-cycle progression and causes both a failure of liver functionality and cell death in the regenerating liver of the HBx transgenic mice.  相似文献   

11.
Chronic hepatitis B virus (HBV) infection is the major risk for hepatocellular carcinomas (HCC). HBV X protein (HBx) and p53 tumor suppressor family interactions may be crucial for HCC induction. We compared p53 and p73 interactions with HBx in normal and HCC tumor cell lines differing in their p53 status. In the latter, HBx was pro-apoptotic but exhibited opposite effects in non-tumor cells. In these normal cells, p53 and p73 were retained in the cytoplasm. In hepatoma cells, however, HBx led to nuclear translocation of p53 and p73, followed by enhanced transactivation of p53-dependent promoters. The nuclear transfer of p53, but not of p73, was abrogated by protein kinase C inhibitor Gö6976. HBx overexpression in HCC cells led to strong p53 phosphorylation at Ser15, but not in non-tumor cells. Our results define ATM kinase as mediator for HBx-induced p53 phosphorylation. While HBx promotes cell death in p53/p73-positive hepatoma cells also in presence of increased levels of the oncogenic ΔTAp73 isoform, it significantly potentiates ΔTAp73-mediated proliferation and malignant transformation of fibroblasts. Our data suggest that prevention of apoptosis in normal cells by HBx through inhibition of pro-apoptotic p53 family members via direct interaction and coaction with anti-apoptotic ΔTAp73 seems to be the key element in the decision in favor of cell survival. The complex cell context-dependent interactions between p53 family members and HBx in the regulation of apoptosis may be essential in HBV-induced HCC and anticancer therapy.  相似文献   

12.
Na B  Huang Z  Wang Q  Qi Z  Tian Y  Lu CC  Yu J  Hanes MA  Kakar S  Huang EJ  Ou JH  Liu L  Yen TS 《PloS one》2011,6(10):e26240
Hepatocellular carcinoma (HCC), the third leading cause of cancer deaths worldwide, is most commonly caused by chronic hepatitis B virus (HBV) infection. However, whether HBV plays any direct role in carcinogenesis, other than indirectly causing chronic liver injury by inciting the host immune response, remains unclear. We have established two independent transgenic mouse lines expressing the complete genome of a mutant HBV ("preS2 mutant") that is found at much higher frequencies in people with HCC than those without. The transgenic mice show evidence of stress in the endoplasmic reticulum (ER) and overexpression of cyclin D1 in hepatocytes. These mice do not show any evidence of chronic liver injury, but by 2 years of age a majority of the male mice develop hepatocellular neoplasms, including HCC. Unexpectedly, we also found a significant increase in hepatocarcinogenesis independent of necroinflammation in a transgenic line expressing the entire wildtype HBV. As in the mutant HBV mice, HCC was found only in aged--2-year-old--mice of the wildtype HBV line. The karyotype in all the three transgenic lines appears normal and none of the integration sites of the HBV transgene in the mice is near an oncogene or tumor suppressor gene. The significant increase of HCC incidence in all the three transgenic lines--expressing either mutant or wildtype HBV--therefore argues strongly that in absence of chronic necroinflammation, HBV can contribute directly to the development of HCC.  相似文献   

13.
14.
The hepatitis B virus x (HBx) protein has been implicated in HBV-related hepatocellular carcinoma (HCC) pathogenesis. However, whether HBx regulates miRNA expression that plays important roles in gene regulation during hepatocarcinogenesis remains unknown. The expression of microRNA-101 (miR-101) in HBV-related HCC tissues and HCC cells was evaluated by real-time PCR. The direct target of miR-101, DNA methyltransferase 3A (DNMT3A), was identified in silico and validated using a 3′-UTR reporter assay. miR-101 was functionally characterized in cells with transiently altered miR-101 expression. HBx expression was found to have a significant inverse correlation with miR-101 expression in HBx-expressing HepG2 compared to control HepG2 cells. miR-101 expression was frequently down-regulated in HBV-related HCC tissues compared to adjacent noncancerous hepatic tissues and had a significant inverse correlation with DNMT3A expression in HBV-related HCCs. Further characterization of miR-101 revealed that it negatively regulated DNA methylation partly through targeting DNMT3A. HBx-mediated miR-101 down-regulation and DNMT3A up-regulation supported the enhanced DNA methylation of several tumor-suppressor genes in HBx-expressing cells. Our studies demonstrating the deregulation of miR-101 expression by HBx may provide novel mechanistic insights into HBV-mediated hepatocarcinogenesis and identify a potential miRNA-based targeted approach for treating HBV-related HCC.  相似文献   

15.
BackgroundLiver fibrosis is a consequence of chronic liver injury and can further progress to hepatocellular carcinoma (HCC). Fibrogenesis involves activation of hepatic stellate cells (HSC) and proliferation of hepatocytes upon liver injury. HCC is frequently associated with overexpression of the proto-oncogene c-myc. However, the impact of c-myc for initiating pathological precursor stages such as liver fibrosis is poorly characterized. In the present study we thus investigated the impact of c-myc for liver fibrogenesis.MethodsExpression of c-myc was measured in biopsies of patients with liver fibrosis of different etiologies by quantitative real-time PCR (qPCR). Primary HSC were isolated from mice with transgenic overexpression of c-myc in hepatocytes (alb-myctg) and wildtype (WT) controls and investigated for markers of cell cycle progression and fibrosis by qPCR and immunofluorescence microscopy. Liver fibrosis in WT and alb-myctg mice was induced by repetitive CCl4 treatment.ResultsWe detected strong up-regulation of hepatic c-myc in patients with advanced liver fibrosis. In return, overexpression of c-myc in alb-myctg mice resulted in increased liver collagen deposition and induction of α-smooth-muscle-actin indicating HSC activation. Primary HSC derived from alb-myctg mice showed enhanced proliferation and accelerated transdifferentiation into myofibroblasts in vitro. Accordingly, fibrosis initiation in vivo after chronic CCl4 treatment was accelerated in alb-myctg mice compared to controls.ConclusionOverexpression of c-myc is a novel marker of liver fibrosis in man and mice. We conclude that chronic induction of c-myc especially in hepatocytes has the potential to prime resident HSC for activation, proliferation and myofibroblast differentiation.  相似文献   

16.
17.
The mutant of virus is a frequent event. Hepatitis B virus X protein (HBx) plays a vital role in the development of hepatocellular carcinoma (HCC). Therefore, the identification of potent mutant of HBx in hepatocarcinogenesis is significant. Previously, we identified a natural mutant of the HBx gene (termed HBxΔ127). Relative to wild type HBx, HBxΔ127 strongly enhanced cell proliferation and migration in HCC. In this study, we aim to explore the mechanism of HBxΔ127 in promotion of proliferation of hepatoma cells. Our data showed that both wild type HBx and HBxΔ127 could increase the expression of miR-215 in hepatoma HepG2 and H7402 cells. However, HBxΔ127 was able to significantly increase miR-215 expression relative to wild type HBx in the cells. We identified that protein tyrosine phosphatase, receptor type T (PTPRT) was one of the target genes of miR-215 through targeting 3′UTR of PTPRT mRNA. In function, miR-215 was able to promote the proliferation of hepatoma cells. Meanwhile anti-miR-215 could partially abolish the enhancement of cell proliferation mediated by HBxΔ127 in vitro. Knockdown of PTPRT by siRNA could distinctly suppress the decrease of cell proliferation mediated by anti-miR-215 in HepG2-XΔ127/H7402-XΔ127 cells. Moreover, we found that anti-miR-215 remarkably inhibited the tumor growth of hepatoma cells in nude mice. Collectively, relative to wild type HBx, HBxΔ127 strongly enhances proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT. Our finding provides new insights into the mechanism of HBx mutant HBxΔ127 in promotion of proliferation of hepatoma cells.  相似文献   

18.
The smallest gene HBx of Hepatitis B virus (HBV) is recognized as an important viral oncogene (V-oncogene) in the hepatocarcinogenesis. Our previous work demonstrated that RMP is a cellular oncogene (C-oncogene) required for the proliferation of hepatocellular carcinoma (HCC) cells. Here we presented the collaboration between V-oncogene HBx and C-oncogene RMP in the development of HCC. The coexpression of HBx and RMP resulted in the cooperative effect of antiapoptosis and proliferation of HCC cells. In vivo, overexpression of RMP accelerated the growth of HBx-induced xenograft tumors in nude mice and vice versa HBx promoted the growth of RMP-driven xenograft tumors. Although HBx didn''t regulate the expression of RMP, HBx and RMP interact with each other and collocalized in the cytoplasm of HCC cells. HBx and RMP collaboratively inhibited the expression of apoptotic factors and promoted the expression of antiapoptotic factors. This finding suggests that HBV may induce, or at least partially contributes to the carcinogenesis of HCC, through its V-oncoprotein HBx interacting with the C-oncoprotein RMP.  相似文献   

19.
Seung-Oe Lim  Guhung Jung 《FEBS letters》2010,584(11):2231-4271
The tumor suppressor protein p53 is a key regulator of cell cycle arrest and apoptosis. Snail protein regulates cancer-associated malignancies. However, the relationship between p53 and Snail proteins in hepatocellular carcinoma (HCC) has not been completely understood. To determine whether Snail and p53 contribute to hepatocarcinogenesis, we analyzed the expression of Snail proteins in p53-overexpressing HCC cells. We found that p53 wild-type (WT) induced the degradation of Snail protein via murine double minute 2-mediated ubiquitination, whereas p53 mutant did not induce Snail degradation. As we expected, only p53WT induced endogenous Snail protein degradation and inhibited tumor cell invasion. These findings contribute to a better understanding of the role of p53 mutation and Snail overexpression as a late event in hepatocarcinogenesis.

Structured summary

MINT-7718917: p53 (uniprotkb:P04637) physically interacts (MI:0915) with Snai1 (uniprotkb:O95863) by anti bait coimmunoprecipitation (MI:0006)MINT-7719877: Snai1 (uniprotkb:O95863) physically interacts (MI:0915) with ubiquitin (uniprotkb:P62988) by anti tag coimmunoprecipitation (MI:0007)MINT-7718928: Snai1 (uniprotkb:O95863) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by anti tag coimmunoprecipitation (MI:0007)MINT-7718939: Snai1 (uniprotkb:O95863) physically interacts (MI:0915) with MDM2 (uniprotkb:Q00987) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

20.
X Fu  D Tan  Z Hou  Z Hu  G Liu  Y Ouyang  F Liu 《PloS one》2012,7(8):e43204

Objective

Hepatitis B Virus (HBV) DNA integration and HBV X (HBx) deletion mutation occurs in HBV-positive liver cancer patients, and C-terminal deletion in HBx gene mutants are highly associated with hepatocarcinogenesis. Our previous study found that the HBx-d382 deletion mutant (deleted at nt 382–400) can down-regulate miR-338-3p expression in HBx-expressing cells. The aim of the present study is to examine the role of miR-338-3p in the HBx-d382-mediated liver-cell proliferation.

Methods

We established HBx-expressing LO2 cells by Lipofectamine 2000 transfection. A miR-338-3p mimics or inhibitor was transfected into LO2/HBx-d382 and LO2/HBx cells using miR-NC as a control miRNA. In silico analysis of potential miR-338-3p targets revealed that miR-338-3p could target the cell cycle regulatory protein CyclinD1. To confirm that CyclinD1 is negatively regulated by miR-338-3p, we constructed luciferase reporters with wild-type and mutated CyclinD1-3′UTR target sites for miR-338-3p binding. We examined the CyclinD1 expression by real-time PCR and western blot, and proliferation activity by flow cytometric cell cycle analysis, Edu incorporation, and soft agar colony.

Results

HBx-d382 exhibited enhanced proliferation and CyclinD1 expression in LO2 cells. miR-338-3p expression inhibited cell proliferation in LO2/HBx-d382 cells (and LO2/HBx cells), and also negatively regulated CyclinD1 protein expression. Of the two putative miR-338-3p binding sites in the CyclinD1-3′UTR region, the effect of miR-338-3p on the second binding site (nt 2397–2403) was required for the inhibition.

Conclusion

miR-338-3p can directly regulate CyclinD1 expression through binding to the CyclinD1-3′UTR region, mainly at nt 2397–2403. Down-regulation of miR-338-3p expression is required for liver cell proliferation in both LO2/HBx and LO2/HBx-d382 mutant cells, although the effect is more pronounced in LO2/HBx-d382 cells. Our study elucidated a novel mechanism, from a new miRNA-regulation perspective, underlying the propensity of HBx deletion mutants to induce hepatocarcinogenesis at a faster rate than HBx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号