首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of CD4+ helper T cells in modulating the acquired immune response to herpes simplex virus type 1 (HSV-1) remains ill defined; in particular, it is unclear whether CD4+ T cells are needed for the generation of the protective HSV-1-specific CD8+-T-cell response. This study examined the contribution of CD4+ T cells in the generation of the primary CD8+-T-cell responses following acute infection with HSV-1. The results demonstrate that the CD8+-T-cell response generated in the draining lymph nodes of CD4+-T-cell-depleted C57BL/6 mice and B6-MHC-II−/− mice is quantitatively and qualitatively distinct from the CD8+ T cells generated in normal C57BL/6 mice. Phenotypic analyses show that virus-specific CD8+ T cells express comparable levels of the activation marker CD44 in mice lacking CD4+ T cells and normal mice. In contrast, CD8+ T cells generated in the absence of CD4+ T cells express the interleukin 2 receptor α-chain (CD25) at lower levels. Importantly, the CD8+ T cells in the CD4+-T-cell-deficient environment are functionally active with respect to the expression of cytolytic activity in vivo but exhibit a diminished capacity to produce gamma interferon and tumor necrosis factor alpha. Furthermore, the primary expansion of HSV-1-specific CD8+ T cells is diminished in the absence of CD4+-T-cell help. These results suggest that CD4+-T-cell help is essential for the generation of fully functional CD8+ T cells during the primary response to HSV-1 infection.Infection due to herpes simplex virus type 1 (HSV-1) results in a wide spectrum of clinical presentations depending on the host''s age, the host''s immune status, and the route of inoculation (47). HSV-1 typically causes mild and self-limited lesions on the orofacial areas or genital sites. However, the disease can be life-threatening, as in the case of neonatal and central nervous system infections (18). The host''s immune responses, particularly CD8+ T cells, play an important role in determining the outcome of HSV infections in both the natural human host (18, 19, 28) and experimental murine models (11, 43). Immunodepletion and adoptive transfer studies have demonstrated the role of CD8+ T cells in reducing viral replication, resolving cutaneous disease, and providing overall protection upon rechallenge (6, 25, 26). CD8+ T cells play a particularly important role in preventing infection of the peripheral nervous system (PNS) and the reactivation of latent virus from neurons in the sensory ganglia of infected mice (21, 24, 36). The mechanisms that CD8+ T cells employ include gamma interferon (IFN-γ) production and functions associated with cytolytic granule content at the sites of primary infection (23, 31, 38). In the PNS of infected mice, the mechanisms primarily involve IFN-γ secretion (16, 20, 29), particularly against infected neurons expressing surface Qa-1 (41). Histopathological evidence from HSV-1-infected human ganglion sections show a large CD8+-T-cell infiltrate and the presence of inflammatory cytokines, suggesting that the presence of activated, effector memory cells within the PNS is important for maintaining HSV-1 latency in the natural human host (10, 42).The generation of a robust CD8+-T-cell response is essential for the control of various infectious pathogens. Some studies suggest that a brief interaction with antigen-presenting cells (APCs) is sufficient for CD8+-T-cell activation and expansion into functional effectors (44). However, the magnitude and quality of the overall CD8+-T-cell response generated may be dependent on additional factors (49). Recent evidence suggests that CD4+ T cells facilitate the activation and development of CD8+-T-cell responses either directly through the provision of cytokines or indirectly by the conditioning of dendritic cells (DC) (8, 48, 51). Those studies suggested that the latter mechanism is the dominant pathway, wherein CD4+ T cells assist CD8+-T-cell priming via the engagement of CD40 ligand (CD154) on CD4+ T cells and CD40 expressed on DC (4, 30, 33). This interaction results in the activation and maturation of DC, making them competent to stimulate antigen-specific CD8+-T-cell responses (35, 37).The requirement for CD4+-T-cell help in the generation of primary and secondary CD8+-T-cell responses to antigen varies. Primary CD8+-T-cell responses to infectious pathogens, such as Listeria monocytogenes, lymphocytic choriomeningitis virus (LCMV), influenza virus, and vaccinia virus, can be mounted effectively independently of CD4+-T-cell help (3, 12, 22, 34). In contrast, primary CD8+-T-cell responses to nonmicrobial antigens display an absolute dependence on CD4+-T-cell help (4, 5, 30, 33, 46). This observed difference in the requirement for CD4+-T-cell help may ultimately be a product of the initial inflammatory stimulus generated following immunization (49). Microbial antigens trigger an inflammatory response that can lead to the direct activation and priming of APCs, such as DC, thereby bypassing the need for CD4+-T-cell help. Nonmicrobial antigens, however, trigger an attenuated inflammatory response that does not directly activate and prime DCs. In the absence of this inflammation, CD4+ T cells are thought to condition and license DC functions through CD154/CD40 interactions, which leads to the subsequent activation of antigen-specific CD8+-T-cell responses (5, 49). Even in the case of pathogens where primary CD8+-T-cell responses were independent of CD4+-T-cell help, the secondary responses to these pathogens were found to be defective in the absence of CD4+-T-cell help (3, 12, 34, 40).The requirement for CD4+-T-cell help in priming CD8+-T-cell responses against HSV-1 infection is not well defined. Earlier studies with HSV-1 suggested that CD4+ T cells play an important role in the generation of primary CD8+-T-cell responses, detected in vitro, to acute infection with HSV-1 (14), principally through the provision of interleukin 2 (IL-2) for optimal CD8+-T-cell differentiation and proliferation. Subsequent studies, utilizing an in vivo approach, indicated that CD4+ T cells were not required for CD8+-T-cell-mediated cytolytic function (23). CD4+ T cells are thought to provide help by conditioning DC in a cognate, antigen-specific manner, thereby making them competent to stimulate HSV-1-specific CD8+-T-cell responses (37). By contrast, findings from other studies show that CD4+-T-cell-depleted mice were able to fully recover from acute infection with HSV-1 (38). These studies imply that the absence of CD4+ T cells does not prevent priming of CD8+ T cells in vivo.Studies from this laboratory have identified two distinct HSV-1-specific CD8+-T-cell subpopulations generated during the primary response, based upon the ability to synthesize IFN-γ following antigenic stimulation in vitro (1). To better understand the need for CD4+-T-cell help, we examined the functional characteristics and phenotypes of these CD8+-T-cell populations generated during a primary response to acute infection with HSV-1 in mice lacking CD4+ T cells. Our findings show that primary CD8+-T-cell responses to HSV-1 are compromised in the absence of CD4+-T-cell help. Specifically, the HSV-1 gB-specific CD8+ T cells produced in the absence of CD4+ T cells were found to be active with regard to cytolysis in vivo but were functionally impaired in the production of IFN-γ and TNF-α compared with intact C57BL/6 mice. Virus-specific CD8+ T cells were also reduced in number in CD4-depleted mice and in B6 mice lacking major histocompatibility complex (MHC) class II expression (B6-MHC-II−/−) compared to wild-type (WT) mice. In addition, our data showed higher virus burdens in the infectious tissues obtained from mice lacking CD4+ T cells than in those from intact mice. Collectively, these findings demonstrate that CD4+-T-cell help is essential for the generation of primary CD8+-T-cell responses following acute cutaneous infection with HSV-1.  相似文献   

2.
In contrast to the ability of long-lived CD8+ memory T cells to mediate protection against systemic viral infections, the relationship between CD4+ T cell memory and acquired resistance against infectious pathogens remains poorly defined. This is especially true for T helper 1 (Th1) concomitant immunity, in which protection against reinfection coincides with a persisting primary infection. In these situations, pre-existing effector CD4 T cells generated by ongoing chronic infection, not memory cells, may be essential for protection against reinfection. We present a systematic study of the tissue homing properties, functionality, and life span of subsets of memory and effector CD4 T cells activated in the setting of chronic Leishmania major infection in resistant C57Bl/6 mice. We found that pre-existing, CD44+CD62LT-bet+Ly6C+ effector (TEFF) cells that are short-lived in the absence of infection and are not derived from memory cells reactivated by secondary challenge, mediate concomitant immunity. Upon adoptive transfer and challenge, non-dividing Ly6C+ TEFF cells preferentially homed to the skin, released IFN-γ, and conferred protection as compared to CD44+CD62LLy6C effector memory or CD44+CD62L+Ly6C central memory cells. During chronic infection, Ly6C+ TEFF cells were maintained at high frequencies via reactivation of TCM and the TEFF themselves. The lack of effective vaccines for many chronic diseases may be because protection against infectious challenge requires the maintenance of pre-existing TEFF cells, and is therefore not amenable to conventional, memory inducing, vaccination strategies.  相似文献   

3.
4.
5.
CD4+CD25+调节性T细胞(Treg)是一种有免疫抑制功能的T淋巴细胞,其在炎症性肠病(IBD)中的功能机制已成为近年免疫学和临床研究的热点。目前,Treg细胞新的表型和作用机制逐渐被大量的实验和研究证实。本文就Treg在IBD发病过程中的作用机理及益生菌对Treg功能的影响做一综述。  相似文献   

6.
7.
The association between the host immune environment and the size of the HIV reservoir during effective antiretroviral therapy is not clear. Progress has also been limited by the lack of a well-accepted assay for quantifying HIV during therapy. We examined the association between multiple measurements of HIV and T cell activation (as defined by markers including CD38, HLA-DR, CCR5 and PD-1) in 30 antiretroviral-treated HIV-infected adults. We found a consistent association between the frequency of CD4+ and CD8+ T cells expressing HLA-DR and the frequency of resting CD4+ T cells containing HIV DNA. This study highlights the need to further examine this relationship and to better characterize the biology of markers commonly used in HIV studies. These results may also have implications for reactivation strategies.  相似文献   

8.
The peripheral Foxp3+ Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4+ T cells can be readily converted to Foxp3+ iTreg in vitro, and memory CD4+ T cells are resistant to conversion. In this study, we investigated the induction of Foxp3+ T cells from various CD4+ T-cell subsets in human peripheral blood. Though naive CD4+ T cells were readily converted to Foxp3+ T cells with TGF-β and IL-2 treatment in vitro, such Foxp3+ T cells did not express the memory marker CD45RO as do Foxp3+ T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4+ T cells, defined as CD62L+ central memory T cells, could be induced by TGF-β to differentiate into Foxp3+ T cells. It is well known that Foxp3+ T cells derived from human CD4+CD25- T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4+CD62L+ central memory T cell-derived Foxp3+ T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4+ T cell-derived Foxp3+ T cells. But further research showed that mouse CD4+ central memory T cells also could be induced to differentiate into Foxp3+ T cells, such Foxp3+ T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4+CD62L+ central memory T cells as a novel potential source of iTreg.  相似文献   

9.
The exact mechanism of glatiramer acetate (GA, Copaxone®), an FDA-approved immunomodulatory therapy for multiple sclerosis (MS), remains unclear after decades of research. Previously, we have shown that GA therapy of MS induces CD8+ T cell responses that can potentially suppress pathogenic CD4+ T cell responses. Using a murine model of MS, experimental autoimmune encephalomyelitis (EAE), we now demonstrate that CD8+ T cells are necessary in mediating the therapeutic effects of GA. Further, adoptive transfer of GA-induced CD8+ T cells resulted in amelioration of EAE, establishing a role as a viable immunotherapy in demyelinating disease. Generation of these cells required indoleamine-2,3-dioxygenase (IDO), while suppressive function depended on non-classical MHC class I, IFN-γ, and perforin expression. GA-induced regulatory myeloid cells, previously shown to activate CD4+ regulatory T cells in an antigen-independent manner, required CD8+ T cells for disease suppression in vivo. These studies demonstrate an essential role for CD8+ T cells in GA therapy and identify their potential as an adoptive immunotherapeutic agent.  相似文献   

10.

Background

The Trypanosoma cruzi infection is associated with severe T cell unresponsiveness to antigens and mitogens characterized by decreased IL-2 synthesis. Trypanosoma cruzi mucin (Tc Muc) has been implicated in this phenomenom. These molecules contain a unique type of glycosylation consisting of several sialylated O-glycans linked to the protein backbone via N-acetylglucosamine residues.

Methodology/Principal Findings

In this study, we evaluated the ability of Tc Muc to modulate the activation of CD4+ T cells. Our data show that cross-linking of CD3 on naïve CD4+ T cells in the presence of Tc Muc resulted in the inhibition of both cytokine secretion and proliferation. We further show that the sialylated O-Linked Glycan residues from tc mucin potentiate the suppression of T cell response by inducing G1-phase cell cycle arrest associated with upregulation of mitogen inhibitor p27kip1. These inhibitory effects cannot be reversed by the addition of exogenous IL-2, rendering CD4+ T cells anergic when activated by TCR triggering. Additionally, in vivo administration of Tc Muc during T. cruzi infection enhanced parasitemia and aggravated heart damage. Analysis of recall responses during infection showed lower frequencies of IFN-γ producing CD4+ T cells in the spleen of Tc Muc treated mice, compared to untreated controls.

Conclusions/Significance

Our results indicate that Tc Muc mediates inhibitory efects on CD4+ T expansion and cytokine production, by blocking cell cycle progression in the G1 phase. We propose that the sialyl motif of Tc Muc is able to interact with sialic acid-binding Ig-like lectins (Siglecs) on CD4+ T cells, which may allow the parasite to modulate the immune system.  相似文献   

11.
Chlamydia trachomatis infection is the most common bacterial sexually transmitted disease in the United States. Chlamydia infections that ascend to the upper genital tract can persist, trigger inflammation, and result in serious sequelae such as infertility. However, mouse models in which the vaginal vault is inoculated with C. trachomatis do not recapitulate the course of human disease. These intravaginal infections of the mouse do not ascend efficiently to the upper genital tract, do not cause persistent infection, do not induce significant inflammation, and do not induce significant CD4(+) T cell infiltration. In this article, we describe a noninvasive transcervical infection model in which we bypass the cervix and directly inoculate C. trachomatis into the uterus. We show that direct C. trachomatis infection of the murine upper genital tract stimulates a robust Chlamydia-specific CD4(+) T cell response that is both necessary and sufficient to clear infection and provide protection against reinfection.  相似文献   

12.

Background

IL-9 is a growth factor for T- and mast-cells that is secreted by human Th2 cells. We recently reported that IL-4+TGF-β directs mouse CD4+CD25CD62L+ T cells to commit to inflammatory IL-9 producing CD4+ T cells.

Methodology/Principal Findings

Here we show that human inducible regulatory T cells (iTregs) also express IL-9. IL-4+TGF-β induced higher levels of IL-9 expression in plate bound-anti-CD3 mAb (pbCD3)/soluble-anti-CD28 mAb (sCD28) activated human resting memory CD4+CD25CD45RO+ T cells as compared to naïve CD4+CD25CD45RA+ T cells. In addition, as compared to pbCD3/sCD28 plus TGF-β stimulation, IL-4+TGF-β stimulated memory CD4+CD25CD45RO+ T cells expressed reduced FOXP3 protein. As analyzed by pre-amplification boosted single-cell real-time PCR, human CD4+IL-9+ T cells expressed GATA3 and RORC, but not IL-10, IL-13, IFNγ or IL-17A/F. Attempts to optimize IL-9 production by pbCD3/sCD28 and IL-4+TGF-β stimulated resting memory CD4+ T cells demonstrated that the addition of IL-1β, IL-12, and IL-21 further enhance IL-9 production.

Conclusions/Significance

Taken together these data show both the differences and similarities between mouse and human CD4+IL9+ T cells and reaffirm the powerful influence of inflammatory cytokines to shape the response of activated CD4+ T cells to antigen.  相似文献   

13.
Loss of intestinal CD4+ T cells was associated with decreased production of several T-helper 1 (TH1) and TH2 cytokines and increased production of interleukin 17 (IL-17), gamma interferon (IFN-γ), CCL4, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by CD8+ T cells 21 days after simian immunodeficiency virus (SIV) infection in rhesus macaques. Shifting of mucosal TH1 to TH2 or T-cytotoxic 1 (TC1) to TC2 cytokine profiles was not evident. Additionally, both CD4+ and CD8+ T cells showed upregulation of macrophage migration inhibition factor (MIF) and basic fibroblast growth factor (FGF-basic) cytokines that have been linked to HIV disease progression.  相似文献   

14.
The ehrlichiae are small Gram-negative obligate intracellular bacteria in the family Anaplasmataceae. Ehrlichial infection in an accidental host may result in fatal diseases such as human monocytotropic ehrlichiosis, an emerging, tick-borne disease. Although the role of adaptive immune responses in the protection against ehrlichiosis has been well studied, the mechanism by which the innate immune system is activated is not fully understood. Using Ehrlichia muris as a model organism, we show here that MyD88-dependent signaling pathways play a pivotal role in the host defense against ehrlichial infection. Upon E. muris infection, MyD88-deficient mice had significantly impaired clearance of E. muris, as well as decreased inflammation, characterized by reduced splenomegaly and recruitment of macrophages and neutrophils. Furthermore, MyD88-deficient mice produced markedly lower levels of IL-12, which correlated well with an impaired Th1 immune response. In vitro, dendritic cells, but not macrophages, efficiently produced IL-12 upon E. muris infection through a MyD88-dependent mechanism. Therefore, MyD88-dependent signaling is required for controlling ehrlichial infection by playing an essential role in the immediate activation of the innate immune system and inflammatory cytokine production, as well as in the activation of the adaptive immune system at a later stage by providing for optimal Th1 immune responses.  相似文献   

15.
CD4+CD25+调节性T细胞   总被引:13,自引:0,他引:13  
调节性T细胞(regulatory T cells,Treg)是机体维持自身耐受的重要组成部分。CD4^ CD25^ Treg细胞来源于胸腺,其主要功能是抑制自身反应性T细胞,并且其作用是通过直接的Treg-T效应细胞之间的相互接触方式来实现的。CD4^ CD25^ Treg细胞可分泌多种抑制性细胞因子,但与其抑制功能关系并不明确,目前有证据表明GITR和Foxp3与CD4^ CD25^ Treg细胞的抑制功能有关,并且Foxp3已作为CD4^ CD25^ Treg细胞的特异性标志。通过IL-10、TGF-β等抑制性细胞因子、imDC以及转基因技术可以产生具有免疫抑制功能的调节性T细胞。调节性T细胞在免疫相关性疾病、肿瘤免疫和抗感染免疫等方面具有重要意义。  相似文献   

16.
Lentivirus infection activates CD4+ CD25+ T regulatory (Treg) cells. Activation of Treg cells may be due to direct virus infection or chronic antigenic stimulation. Herein we demonstrate that in vitro feline immunodeficiency virus (FIV) infection, but not UV-inactivated virus, activates Treg cells as measured by immunosuppressive function and upregulation of GARP, FoxP3, and membrane-bound transforming growth factor β (TGF-β). These data demonstrate for the first time that AIDS lentiviruses infect and activate Treg cells, potentially contributing to immune dysfunction.  相似文献   

17.
《Cell reports》2020,30(7):2284-2296.e3
  1. Download : Download high-res image (230KB)
  2. Download : Download full-size image
  相似文献   

18.
In solid-organ transplant recipients (SOTR) the protective role of human cytomegalovirus (HCMV)-specific CD4+, CD8+ and γδ T-cells vs. HCMV reactivation requires better definition. The aim of this study was to investigate the relevant role of HCMV-specific CD4+, CD8+ and γδ T-cells in different clinical presentations during the post-transplant period. Thirty-nine SOTR underwent virologic and immunologic follow-up for about 1 year after transplantation. Viral load was determined by real-time PCR, while immunologic monitoring was performed by measuring HCMV-specific CD4+ and CD8+ T cells (following stimulation with autologous HCMV-infected dendritic cells) and γδ T-cells by flow cytometry. Seven patients had no infection and 14 had a controlled infection, while both groups maintained CD4+ T-cell numbers above the established cut-off (0.4 cell/µL blood). Of the remaining patients, 9 controlled the infection temporarily in the presence of HCMV-specific CD8+ only, until CD4+ T-cell appearance; while 9 had to be treated preemptively due to a viral load greater than the established cut-off (3×105 DNA copies/mL blood) in the absence of specific CD4+ T-cells. Polyfunctional CD8+ T-cells as well as Vδ2 γδ T-cells were not associated with control of infection. In conclusion, in the absence of HCMV-specific CD4+ T-cells, no long-term protection is conferred to SOTR by either HCMV-specific CD8+ T-cells alone or Vδ2 γδ T-cell expansion.  相似文献   

19.
During Yersinia pseudotuberculosis infection of C57BL/6 mice, an exceptionally large CD8+ T cell response to a protective epitope in the type III secretion system effector YopE is produced. At the peak of the response, up to 50% of splenic CD8+ T cells recognize the epitope YopE69-77. The features of the interaction between pathogen and host that result in this large CD8+ T cell response are unknown. Here, we used Y. pseudotuberculosis strains defective for production, secretion and/or translocation of YopE to infect wild-type or mutant mice deficient in specific dendritic cells (DCs). Bacterial colonization of organs and translocation of YopE into spleen cells was measured, and flow cytometry and tetramer staining were used to characterize the cellular immune response. We show that the splenic YopE69-77-specific CD8+ T cells generated during the large response are polyclonal and are produced by a “translocation-dependent” pathway that requires injection of YopE into host cell cytosol. Additionally, a smaller YopE69-77-specific CD8+ T cell response (~10% of the large expansion) can be generated in a “translocation-independent” pathway in which CD8α+ DCs cross present secreted YopE. CCR2-expressing inflammatory DCs were required for the large YopE69-77-specific CD8+ T cell expansion because this response was significantly reduced in Ccr2-/- mice, YopE was translocated into inflammatory DCs in vivo, inflammatory DCs purified from infected spleens activated YopE69-77-specific CD8+ T cells ex vivo and promoted the expansion of YopE69-77-specific CD8+ T cells in infected Ccr2-/- mice after adoptive transfer. A requirement for inflammatory DCs in producing a protective CD8+ T cell response to a bacterial antigen has not previously been demonstrated. Therefore, the production of YopE69-77-specific CD8+ T cells by inflammatory DCs that are injected with YopE during Y. pseudotuberculosis infection represents a novel mechanism for generating a massive and protective adaptive immune response.  相似文献   

20.
为探讨CD4 CD25 调节性T细胞(Treg细胞)在夏氏疟原虫感染过程中的活化特点及其与疾病进展的相关性,用夏氏疟原虫分别感染BALB/c和DBA/2小鼠,Giemsa染色制备薄血膜,镜检计数红细胞感染率;以流式细胞术检测脾细胞悬液中Treg细胞百分含量;ELISA测定脾细胞培养上清IFN-γ水平。BALB/c小鼠原虫血症于感染后第8d达到峰值34.4%后迅速下降,于感染后第15d左右小鼠自愈;其IFN-γ水平和Treg细胞百分含量均在感染后第5d明显增加后开始下降(P<0.01);DBA/2小鼠原虫血症于感染后第9~11d一直维持在峰值38%左右,并在感染后约第10d小鼠死亡;其IFN-γ水平在感染后第3d明显升高后迅速回落(P<0.01),Treg细胞百分含量在感染后的前8d平稳升高,但于感染后第8~11d出现骤然上升。结果提示,CD4 CD25 调节性T细胞数量异常变化与宿主感染结局呈密切相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号