共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Probing conformational changes in human DNA topoisomerase IIα by pulsed alkylation mass spectrometry
Chen YT Collins TR Guan Z Chen VB Hsieh TS 《The Journal of biological chemistry》2012,287(30):25660-25668
Type II topoisomerases are essential enzymes for solving DNA topological problems by passing one segment of DNA duplex through a transient double-strand break in a second segment. The reaction requires the enzyme to precisely control DNA cleavage and gate opening coupled with ATP hydrolysis. Using pulsed alkylation mass spectrometry, we were able to monitor the solvent accessibilities around 13 cysteines distributed throughout human topoisomerase IIα by measuring the thiol reactivities with monobromobimane. Most of the measured reactivities are in accordance with the predicted ones based on a homology structural model generated from available crystal structures. However, these results reveal new information for both the residues not covered in the structural model and potential differences between the modeled and solution holoenzyme structures. Furthermore, on the basis of the reactivity changes of several cysteines located at the N-gate and DNA gate, we could monitor the movement of topoisomerase II in the presence of cofactors and detect differences in the DNA gate between two closed clamp enzyme conformations locked by either 5'-adenylyl β,γ-imidodiphosphate or the anticancer drug ICRF-193. 相似文献
3.
Ee Phie Tan Maria T. Villar Lezi E Jianghua Lu J. Eva Selfridge Antonio Artigues Russell H. Swerdlow Chad Slawson 《The Journal of biological chemistry》2014,289(21):14719-14730
Mitochondrial impairment is commonly found in many diseases such as diabetes, cancer, and Alzheimer disease. We demonstrate that the enzymes responsible for the addition or removal of the O-GlcNAc modification, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively, are critical regulators of mitochondrial function. Using a SILAC (stable isotope labeling of amino acids in cell culture)-based proteomics screen, we quantified the changes in mitochondrial protein expression in OGT- and OGA-overexpressing cells. Strikingly, overexpression of OGT or OGA showed significant decreases in mitochondria-localized proteins involved in the respiratory chain and the tricarboxylic acid cycle. Furthermore, mitochondrial morphology was altered in these cells. Both cellular respiration and glycolysis were reduced in OGT/OGA-overexpressing cells. These data demonstrate that alterations in O-GlcNAc cycling profoundly affect energy and metabolite production. 相似文献
4.
Li L Carrie C Nelson C Whelan J Millar AH 《The Journal of biological chemistry》2012,287(31):25749-25757
F(1) subcomplex in mitochondrial samples is often considered to be a breakage product of the F(1)F(O) ATP synthase during sample handling and electrophoresis. We have used a progressive (15)N incorporation strategy to investigate the plant F(1)F(O) ATP synthase assembly model and the apparently free F(1) in plant mitochondria which is found in both the inner membrane and matrix. We show that subunits within F(1) in the inner membrane and matrix had a relatively higher (15)N incorporation rate than corresponding subunits in intact membrane F(1)F(O). This demonstrates that free F(1) was a newer pool with a faster turnover rate consistent with it being an assembly intermediate in vivo. Import of [(35)S]Met-labeled F(1) subunit precursors into Arabidopsis mitochondria showed the rapid accumulation of F(1) assembly intermediates. The different (15)N incorporation rate in matrix F(1), inner membrane F(1) and intact F(1)F(O) demonstrates these three represent different protein populations and are likely step by step intermediates during the assembly process of plant mitochondrial ATP synthase. The potential biological implications of in vivo accumulation of enzymatically active F(1) in mitochondria are discussed. 相似文献
5.
Yu Sun Ajay A. Vashisht Jason Tchieu James A. Wohlschlegel Lars Dreier 《The Journal of biological chemistry》2012,287(48):40652-40660
Mutations in the ubiquitin ligase Parkin and the serine/threonine kinase PINK1 can cause Parkinson disease. Both proteins function in the elimination of defective mitochondria by autophagy. In this process, activation of PINK1 mediates translocation of Parkin from the cytosol to mitochondria by an unknown mechanism. To better understand how Parkin is targeted to defective mitochondria, we purified affinity-tagged Parkin from mitochondria and identified Parkin-associated proteins by mass spectrometry. The three most abundant interacting proteins were the voltage-dependent anion channels 1, 2, and 3 (VDACs 1, 2, and 3), pore-forming proteins in the outer mitochondrial membrane. We demonstrate that Parkin specifically interacts with VDACs when the function of mitochondria is disrupted by treating cells with the proton uncoupler carbonyl cyanide p-chlorophenylhydrazone. In the absence of all three VDACs, the recruitment of Parkin to defective mitochondria and subsequent mitophagy are impaired. Each VDAC is sufficient to support Parkin recruitment and mitophagy, suggesting that VDACs can function redundantly. We hypothesize that VDACs serve as mitochondrial docking sites to recruit Parkin from the cytosol to defective mitochondria. 相似文献
6.
Jonathan A. Trujillo Nathan P. Croft Nadine L. Dudek Rudragouda Channappanavar Alex Theodossis Andrew I. Webb Michelle A. Dunstone Patricia T. Illing Noah S. Butler Craig Fett David C. Tscharke Jamie Rossjohn Stanley Perlman Anthony W. Purcell 《The Journal of biological chemistry》2014,289(40):27979-27991
Cysteine-containing peptides represent an important class of T cell epitopes, yet their prevalence remains underestimated. We have established and interrogated a database of around 70,000 naturally processed MHC-bound peptides and demonstrate that cysteine-containing peptides are presented on the surface of cells in an MHC allomorph-dependent manner and comprise on average 5–10% of the immunopeptidome. A significant proportion of these peptides are oxidatively modified, most commonly through covalent linkage with the antioxidant glutathione. Unlike some of the previously reported cysteine-based modifications, this represents a true physiological alteration of cysteine residues. Furthermore, our results suggest that alterations in the cellular redox state induced by viral infection are communicated to the immune system through the presentation of S-glutathionylated viral peptides, resulting in altered T cell recognition. Our data provide a structural basis for how the glutathione modification alters recognition by virus-specific T cells. Collectively, these results suggest that oxidative stress represents a mechanism for modulating the virus-specific T cell response. 相似文献
7.
Hanschmann EM Lönn ME Schütte LD Funke M Godoy JR Eitner S Hudemann C Lillig CH 《The Journal of biological chemistry》2010,285(52):40699-40705
The proteins from the thioredoxin family are crucial actors in redox signaling and the cellular response to oxidative stress. The major intracellular source for oxygen radicals are the components of the respiratory chain in mitochondria. Here, we show that the mitochondrial 2-Cys peroxiredoxin (Prx3) is not only substrate for thioredoxin 2 (Trx2), but can also be reduced by glutaredoxin 2 (Grx2) via the dithiol reaction mechanism. Grx2 reduces Prx3 exhibiting catalytic constants (K(m), 23.8 μmol·liter(-1); V(max), 1.2 μmol·(mg·min)(-1)) similar to Trx2 (K(m), 11.2 μmol·liter(-1); V(max), 1.1 μmol·(mg·min)(-1)). The reduction of the catalytic disulfide of the atypical 2-Cys Prx5 is limited to the Trx system. Silencing the expression of either Trx2 or Grx2 in HeLa cells using specific siRNAs did not change the monomer:dimer ratio of Prx3 detected by a specific 2-Cys Prx redox blot. Only combined silencing of the expression of both proteins led to an accumulation of oxidized protein. We further demonstrate that the distribution of Prx3 in different mouse tissues is either linked to the distribution of Trx2 or Grx2. These results introduce Grx2 as a novel electron donor for Prx3, providing further insights into pivotal cellular redox signaling mechanisms. 相似文献
8.
9.
Yatao Du Huihui Zhang Xu Zhang Jun Lu Arne Holmgren 《The Journal of biological chemistry》2013,288(45):32241-32247
The mammalian cytosolic thioredoxin system, comprising thioredoxin (Trx), Trx reductase, and NADPH, is the major protein-disulfide reductase of the cell and has numerous functions. Besides the active site thiols, human Trx1 contains three non-active site cysteine residues at positions 62, 69, and 73. A two-disulfide form of Trx1, containing an active site disulfide between Cys-32 and Cys-35 and a non-active site disulfide between Cys-62 and Cys-69, is inactive either as a disulfide reductase or as a substrate for Trx reductase. This could possibly provide a structural switch affecting Trx1 function during oxidative stress and redox signaling. We found that two-disulfide Trx1 was generated in A549 cells under oxidative stress. In vitro data showed that two-disulfide Trx1 was generated from oxidation of Trx1 catalyzed by peroxiredoxin 1 in the presence of H2O2. The redox Western blot data indicated that the glutaredoxin system protected Trx1 in HeLa cells from oxidation caused by ebselen, a superfast oxidant for Trx1. Our results also showed that physiological concentrations of glutathione, NADPH, and glutathione reductase reduced the non-active site disulfide in vitro. This reaction was stimulated by glutaredoxin 1 via the so-called monothiol mechanism. In conclusion, reversible oxidation of the non-active site disulfide of Trx1 is suggested to play an important role in redox regulation and cell signaling via temporal inhibition of its protein-disulfide reductase activity for the transmission of oxidative signals under oxidative stress. 相似文献
10.
Rana NA Nita-Lazar A Takeuchi H Kakuda S Luther KB Haltiwanger RS 《The Journal of biological chemistry》2011,286(36):31623-31637
Notch activity is regulated by both O-fucosylation and O-glucosylation, and Notch receptors contain multiple predicted sites for both. Here we examine the occupancy of the predicted O-glucose sites on mouse Notch1 (mN1) using the consensus sequence C(1)XSXPC(2). We show that all of the predicted sites are modified, although the efficiency of modifying O-glucose sites is site- and cell type-dependent. For instance, although most sites are modified at high stoichiometries, the site at EGF 27 is only partially glucosylated, and the occupancy of the site at EGF 4 varies with cell type. O-Glucose is also found at a novel, non-traditional consensus site at EGF 9. Based on this finding, we propose a revision of the consensus sequence for O-glucosylation to allow alanine N-terminal to cysteine 2: C(1)XSX(A/P)C(2). We also show through biochemical and mass spectral analyses that serine is the only hydroxyamino acid that is modified with O-glucose on EGF repeats. The O-glucose at all sites is efficiently elongated to the trisaccharide Xyl-Xyl-Glc. To establish the functional importance of individual O-glucose sites in mN1, we used a cell-based signaling assay. Elimination of most individual sites shows little or no effect on mN1 activation, suggesting that the major effects of O-glucose are mediated by modification of multiple sites. Interestingly, elimination of the site in EGF 28, found in the Abruptex region of Notch, does significantly reduce activity. These results demonstrate that, like O-fucose, the O-glucose modifications of EGF repeats occur extensively on mN1, and they play important roles in Notch function. 相似文献
11.
Lukasz Skora Luis Fonseca-Ornelas Romina V. Hofele Dietmar Riedel Karin Giller Jens Watzlawik Walter J. Schulz-Schaeffer Henning Urlaub Stefan Becker Markus Zweckstetter 《The Journal of biological chemistry》2013,288(5):2994-3002
Misfolding of the natively α-helical prion protein into a β-sheet rich isoform is related to various human diseases such as Creutzfeldt-Jakob disease and Gerstmann-Sträussler-Scheinker syndrome. In humans, the disease phenotype is modified by a methionine/valine polymorphism at codon 129 of the prion protein gene. Using a combination of hydrogen/deuterium exchange coupled to NMR spectroscopy, hydroxyl radical probing detected by mass spectrometry, and site-directed mutagenesis, we demonstrate that stop mutants of the human prion protein have a conserved amyloid core. The 129 residue is deeply buried in the amyloid core structure, and its mutation strongly impacts aggregation. Taken together the data support a critical role of the polymorphic residue 129 of the human prion protein in aggregation and disease. 相似文献
12.
Jay S. Kirkwood LeeCole L. Legette Cristobal L. Miranda Yuan Jiang Jan F. Stevens 《The Journal of biological chemistry》2013,288(26):19000-19013
Mild, mitochondrial uncoupling increases energy expenditure and can reduce the generation of reactive oxygen species (ROS). Activation of cellular, adaptive stress response pathways can result in an enhanced capacity to reduce oxidative damage. Together, these strategies target energy imbalance and oxidative stress, both underlying factors of obesity and related conditions such as type 2 diabetes. Here we describe a metabolomics-driven effort to uncover the anti-obesity mechanism(s) of xanthohumol (XN), a prenylated flavonoid from hops. Metabolomics analysis of fasting plasma from obese, Zucker rats treated with XN revealed decreases in products of dysfunctional fatty acid oxidation and ROS, prompting us to explore the effects of XN on muscle cell bioenergetics. At low micromolar concentrations, XN acutely increased uncoupled respiration in several different cell types, including myocytes. Tetrahydroxanthohumol also increased respiration, suggesting electrophilicity did not play a role. At higher concentrations, XN inhibited respiration in a ROS-dependent manner. In myocytes, time course metabolomics revealed acute activation of glutathione recycling and long term induction of glutathione synthesis as well as several other changes indicative of short term elevated cellular stress and a concerted adaptive response. Based on these findings, we hypothesize that XN may ameliorate metabolic syndrome, at least in part, through mitochondrial uncoupling and stress response induction. In addition, time course metabolomics appears to be an effective strategy for uncovering metabolic events that occur during a stress response. 相似文献
13.
Klemmer P Meredith RM Holmgren CD Klychnikov OI Stahl-Zeng J Loos M van der Schors RC Wortel J de Wit H Spijker S Rotaru DC Mansvelder HD Smit AB Li KW 《The Journal of biological chemistry》2011,286(29):25495-25504
Fragile X syndrome (FXS), the most common form of hereditary mental retardation, is caused by a loss-of-function mutation of the Fmr1 gene, which encodes fragile X mental retardation protein (FMRP). FMRP affects dendritic protein synthesis, thereby causing synaptic abnormalities. Here, we used a quantitative proteomics approach in an FXS mouse model to reveal changes in levels of hippocampal synapse proteins. Sixteen independent pools of Fmr1 knock-out mice and wild type mice were analyzed using two sets of 8-plex iTRAQ experiments. Of 205 proteins quantified with at least three distinct peptides in both iTRAQ series, the abundance of 23 proteins differed between Fmr1 knock-out and wild type synapses with a false discovery rate (q-value) <5%. Significant differences were confirmed by quantitative immunoblotting. A group of proteins that are known to be involved in cell differentiation and neurite outgrowth was regulated; they included Basp1 and Gap43, known PKC substrates, and Cend1. Basp1 and Gap43 are predominantly expressed in growth cones and presynaptic terminals. In line with this, ultrastructural analysis in developing hippocampal FXS synapses revealed smaller active zones with corresponding postsynaptic densities and smaller pools of clustered vesicles, indicative of immature presynaptic maturation. A second group of proteins involved in synaptic vesicle release was up-regulated in the FXS mouse model. In accordance, paired-pulse and short-term facilitation were significantly affected in these hippocampal synapses. Together, the altered regulation of presynaptically expressed proteins, immature synaptic ultrastructure, and compromised short-term plasticity points to presynaptic changes underlying glutamatergic transmission in FXS at this stage of development. 相似文献
14.
Fauquant C Redeker V Landrieu I Wieruszeski JM Verdegem D Laprévote O Lippens G Gigant B Knossow M 《The Journal of biological chemistry》2011,286(38):33358-33368
15.
Patterson AD Bonzo JA Li F Krausz KW Eichler GS Aslam S Tigno X Weinstein JN Hansen BC Idle JR Gonzalez FJ 《The Journal of biological chemistry》2011,286(22):19511-19522
To enhance understanding of the metabolic indicators of type 2 diabetes mellitus (T2DM) disease pathogenesis and progression, the urinary metabolomes of well characterized rhesus macaques (normal or spontaneously and naturally diabetic) were examined. High-resolution ultra-performance liquid chromatography coupled with the accurate mass determination of time-of-flight mass spectrometry was used to analyze spot urine samples from normal (n = 10) and T2DM (n = 11) male monkeys. The machine-learning algorithm random forests classified urine samples as either from normal or T2DM monkeys. The metabolites important for developing the classifier were further examined for their biological significance. Random forests models had a misclassification error of less than 5%. Metabolites were identified based on accurate masses (<10 ppm) and confirmed by tandem mass spectrometry of authentic compounds. Urinary compounds significantly increased (p < 0.05) in the T2DM when compared with the normal group included glycine betaine (9-fold), citric acid (2.8-fold), kynurenic acid (1.8-fold), glucose (68-fold), and pipecolic acid (6.5-fold). When compared with the conventional definition of T2DM, the metabolites were also useful in defining the T2DM condition, and the urinary elevations in glycine betaine and pipecolic acid (as well as proline) indicated defective re-absorption in the kidney proximal tubules by SLC6A20, a Na(+)-dependent transporter. The mRNA levels of SLC6A20 were significantly reduced in the kidneys of monkeys with T2DM. These observations were validated in the db/db mouse model of T2DM. This study provides convincing evidence of the power of metabolomics for identifying functional changes at many levels in the omics pipeline. 相似文献
16.
Ambara R. Pradipta Yukari Fujimoto Mizuho Hasegawa Naohiro Inohara Koichi Fukase 《The Journal of biological chemistry》2010,285(31):23607-23613
Nucleotide-binding oligomerization domain protein 1 (Nod1) is an intracellular protein involved in recognition of the bacterial component peptidoglycan. This recognition event induces a host defense response to eliminate invading pathogens. The genetic variation of Nod1 has been linked to several inflammatory diseases and allergies, which are strongly affected by environmental factors. We have found that many of the bacteria that contain DAP-type peptidoglycan release Nod1 ligands into the environment. However, the structures of natural Nod1 ligands in the environment are not well understood. Herein, we report the isolation and structural elucidation of natural human Nod1 (hNod1) ligands from the Escherichia coli K-12 culture supernatant. The supernatant was fractionated with reversed-phase high performance liquid chromatography (RP-HPLC), resulting in the isolation of several hNod1 stimulatory fractions. Structural characterization studies demonstrated that the molecular structure of the most active fraction was the native hNod1 ligand GlcNAc-(β1–4)-(anhydro)MurNAc-l-Ala-γ-d-Glu-meso-DAP. We also found other peptidoglycan fragments using the 7-(diethylamino)coumarin-3-carbonyl labeling method to enhance sensitivity in mass spectroscopy studies. These results suggested that DAP-containing bacteria release certain hNod1 ligands to the environment, and these ligands would accumulate in the environment and regulate the immune system through Nod1. 相似文献
17.
Horn PJ Ledbetter NR James CN Hoffman WD Case CR Verbeck GF Chapman KD 《The Journal of biological chemistry》2011,286(5):3298-3306
An expanding appreciation for the varied functions of neutral lipids in cellular organisms relies on a more detailed understanding of the mechanisms of lipid production and packaging into cytosolic lipid droplets (LDs). Conventional lipid profiling procedures involve the analysis of tissue extracts and consequently lack cellular or subcellular resolution. Here, we report an approach that combines the visualization of individual LDs, microphase extraction of lipid components from droplets, and the direct identification of lipid composition by nanospray mass spectrometry, even to the level of a single LD. The triacylglycerol (TAG) composition of LDs from several plant sources (mature cotton (Gossypium hirsutum) embryos, roots of cotton seedlings, and Arabidopsis thaliana seeds and leaves) were examined by direct organelle mass spectrometry and revealed the heterogeneity of LDs derived from different plant tissue sources. The analysis of individual LDs makes possible organellar resolution of molecular compositions and will facilitate new studies of LD biogenesis and functions, especially in combination with analysis of morphological and metabolic mutants. Furthermore, direct organelle mass spectrometry could be applied to the molecular analysis of other subcellular compartments and macromolecules. 相似文献
18.
MTMR2 is a member of the myotubularin family of inositol lipid phosphatases, a large protein-tyrosine phosphatase subgroup that is conserved from yeast to humans. Furthermore, the peripheral neuromuscular disease Charcot-Marie Tooth disease type 4B has been attributed to mutations in the mtmr2 gene. Because the molecular mechanisms regulating MTMR2 have been poorly defined, we investigated whether reversible phosphorylation might regulate MTMR2 function. We used mass spectrometry-based methods to identify a high stoichiometry phosphorylation site on serine 58 of MTMR2. Phosphorylation at Ser(58), or a phosphomimetic S58E mutation, markedly decreased MTMR2 localization to endocytic vesicular structures. In contrast, a phosphorylation-deficient MTMR2 mutant (S58A) displayed constitutive localization to early endocytic structures. This localization pattern was accompanied by displacement of a PI(3)P-specific sensor protein and an increase in signal transduction pathways. Thus, MTMR2 phosphorylation is likely to be a critical mechanism by which MTMR2 access to its lipid substrate(s) is temporally and spatially regulated, thereby contributing to the control of downstream endosome maturation events. 相似文献
19.
Je-Hyun Baek Moran Rubinstein Todd Scheuer James S. Trimmer 《The Journal of biological chemistry》2014,289(22):15363-15373
Voltage-gated sodium (Nav) channels initiate action potentials in brain neurons and are primary therapeutic targets for anti-epileptic drugs controlling neuronal hyperexcitability in epilepsy. The molecular mechanisms underlying abnormal Nav channel expression, localization, and function during development of epilepsy are poorly understood but can potentially result from altered posttranslational modifications (PTMs). For example, phosphorylation regulates Nav channel gating, and has been proposed to contribute to acquired insensitivity to anti-epileptic drugs exhibited by Nav channels in epileptic neurons. However, whether changes in specific brain Nav channel PTMs occur acutely in response to seizures has not been established. Here, we show changes in PTMs of the major brain Nav channel, Nav1.2, after acute kainate-induced seizures. Mass spectrometry-based proteomic analyses of Nav1.2 purified from the brains of control and seizure animals revealed a significant down-regulation of phosphorylation at nine sites, primarily located in the interdomain I-II linker, the region of Nav1.2 crucial for phosphorylation-dependent regulation of activity. Interestingly, Nav1.2 in the seizure samples contained methylated arginine (MeArg) at three sites. These MeArgs were adjacent to down-regulated sites of phosphorylation, and Nav1.2 methylation increased after seizure. Phosphorylation and MeArg were not found together on the same tryptic peptide, suggesting reciprocal regulation of these two PTMs. Coexpression of Nav1.2 with the primary brain arginine methyltransferase PRMT8 led to a surprising 3-fold increase in Nav1.2 current. Reciprocal regulation of phosphorylation and MeArg of Nav1.2 may underlie changes in neuronal Nav channel function in response to seizures and also contribute to physiological modulation of neuronal excitability. 相似文献
20.
Ofir Tal Beny Trabelcy Yoram Gerchman Noam Adir 《The Journal of biological chemistry》2014,289(48):33084-33097
The phycobilisome (PBS) is an extremely large light-harvesting complex, common in cyanobacteria and red algae, composed of rods and core substructures. These substructures are assembled from chromophore-bearing phycocyanin and allophycocyanin subunits, nonpigmented linker proteins and in some cases additional subunits. To date, despite the determination of crystal structures of isolated PBS components, critical questions regarding the interaction and energy flow between rods and core are still unresolved. Additionally, the arrangement of minor PBS components located inside the core cylinders is unknown. Different models of the general architecture of the PBS have been proposed, based on low resolution images from electron microscopy or high resolution crystal structures of isolated components. This work presents a model of the assembly of the rods onto the core arrangement and for the positions of inner core components, based on cross-linking and mass spectrometry analysis of isolated, functional intact Thermosynechococcus vulcanus PBS, as well as functional cross-linked adducts. The experimental results were utilized to predict potential docking interactions of different protein pairs. Combining modeling and cross-linking results, we identify specific interactions within the PBS subcomponents that enable us to suggest possible functional interactions between the chromophores of the rods and the core and improve our understanding of the assembly, structure, and function of PBS. 相似文献