首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor regulating adipogenesis, glucose homeostasis and inflammatory responses. The activity of PPARγ is controlled by post-translational modifications including SUMOylation and phosphorylation that affects its biological and molecular functions. Several important aspects of PPARγ SUMOylation including SUMO isoform-specificity and the impact of ligand binding on SUMOylation remain unresolved or contradictory. Here, we present a comprehensive study of PPARγ1 SUMOylation. We show that PPARγ1 can be modified by SUMO1 and SUMO2. Mutational analyses revealed that SUMOylation occurs exclusively within the N-terminal activation function 1 (AF1) domain predominantly at lysines 33 and 77. Ligand binding to the C-terminal ligand-binding domain (LBD) of PPARγ1 reduces SUMOylation of lysine 33 but not of lysine 77. SUMOylation of lysine 33 and lysine 77 represses basal and ligand-induced activation by PPARγ1. We further show that lysine 365 within the LBD is not a target for SUMOylation as suggested in a previous report, but it is essential for full LBD activity. Our results suggest that PPARγ ligands negatively affect SUMOylation by interdomain communication between the C-terminal LBD and the N-terminal AF1 domain. The ability of the LBD to regulate the AF1 domain may have important implications for the evaluation and mechanism of action of therapeutic ligands that bind PPARγ.  相似文献   

3.
4.
5.
6.
7.
Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory condition and a leading cause of death, with no available cure. We assessed the actions in pulmonary epithelial cells of peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor with anti-inflammatory effects, whose role in COPD is largely unknown. We found that PPARγ was down-regulated in lung tissue and epithelial cells of COPD patients, via both reduced expression and phosphorylation-mediated inhibition, whereas pro-inflammatory nuclear factor-κB (NF-κB) activity was increased. Cigarette smoking is the main risk factor for COPD, and exposing airway epithelial cells to cigarette smoke extract (CSE) likewise down-regulated PPARγ and activated NF-κB. CSE also down-regulated and post-translationally inhibited the glucocorticoid receptor (GR-α) and histone deacetylase 2 (HDAC2), a corepressor important for glucocorticoid action and whose down-regulation is thought to cause glucocorticoid insensitivity in COPD. Treating epithelial cells with synthetic (rosiglitazone) or endogenous (10-nitro-oleic acid) PPARγ agonists strongly up-regulated PPARγ expression and activity, suppressed CSE-induced production and secretion of inflammatory cytokines, and reversed its activation of NF-κB by inhibiting the IκB kinase pathway and by promoting direct inhibitory binding of PPARγ to NF-κB. In contrast, PPARγ knockdown via siRNA augmented CSE-induced chemokine release and decreases in HDAC activity, suggesting a potential anti-inflammatory role of endogenous PPARγ. The results imply that down-regulation of pulmonary epithelial PPARγ by cigarette smoke promotes inflammatory pathways and diminishes glucocorticoid responsiveness, thereby contributing to COPD pathogenesis, and further suggest that PPARγ agonists may be useful for COPD treatment.  相似文献   

8.
Thiazolidinedione class of anti-diabetic drugs which are known as peroxisome proliferator-activated receptor γ (PPARγ) ligands have been used to treat metabolic disorders, but thiazolidinediones can also cause several severe side effects, including congestive heart failure, fluid retention, and weight gain. In this study, we describe a novel synthetic PPARγ ligand UNIST HYUNDAI Compound 1 (UHC1) that binds tightly to PPARγ without the classical agonism and which blocks cyclin-dependent kinase 5 (CDK5)-mediated PPARγ phosphorylation. We modified the non-agonist PPARγ ligand SR1664 chemically to improve its solubility and then developed a novel PPARγ ligand, UHC1. According to our docking simulation, UHC1 occupied the ligand-binding site of PPARγ with a higher docking score than SR1664. In addition, UHC1 more potently blocked CDK5-mediated PPARγ phosphorylation at Ser-273. Surprisingly, UHC1 treatment effectively ameliorated the inflammatory response both in vitro and in high-fat diet-fed mice. Furthermore, UHC1 treatment dramatically improved insulin sensitivity in high-fat diet-fed mice without causing fluid retention and weight gain. Taken together, compared with SR1664, UHC1 exhibited greater beneficial effects on glucose and lipid metabolism by blocking CDK5-mediated PPARγ phosphorylation, and these data indicate that UHC1 could be a novel therapeutic agent for use in type 2 diabetes and related metabolic disorders.  相似文献   

9.
The recent discovery that peroxisome proliferator-activated receptor γ (PPARγ) targeted anti-diabetic drugs function by inhibiting Cdk5-mediated phosphorylation of the receptor has provided a new viewpoint to evaluate and perhaps develop improved insulin-sensitizing agents. Herein we report the development of a novel thiazolidinedione that retains similar anti-diabetic efficacy as rosiglitazone in mice yet does not elicit weight gain or edema, common side effects associated with full PPARγ activation. Further characterization of this compound shows GQ-16 to be an effective inhibitor of Cdk5-mediated phosphorylation of PPARγ. The structure of GQ-16 bound to PPARγ demonstrates that the compound utilizes a binding mode distinct from other reported PPARγ ligands, although it does share some structural features with other partial agonists, such as MRL-24 and PA-082, that have similarly been reported to dissociate insulin sensitization from weight gain. Hydrogen/deuterium exchange studies reveal that GQ-16 strongly stabilizes the β-sheet region of the receptor, presumably explaining the compound's efficacy in inhibiting Cdk5-mediated phosphorylation of Ser-273. Molecular dynamics simulations suggest that the partial agonist activity of GQ-16 results from the compound's weak ability to stabilize helix 12 in its active conformation. Our results suggest that the emerging model, whereby "ideal" PPARγ-based therapeutics stabilize the β-sheet/Ser-273 region and inhibit Cdk5-mediated phosphorylation while minimally invoking adipogenesis and classical agonism, is indeed a valid framework to develop improved PPARγ modulators that retain antidiabetic actions while minimizing untoward effects.  相似文献   

10.
Arachidonic acid is converted to prostaglandin E(2) (PGE(2)) by a sequential enzymatic reaction performed by two isoenzyme groups, cyclooxygenases (COX-1 and COX-2) and terminal prostaglandin E synthases (cPGES, mPGES-1, and mPGES-2). mPGES-1 is widely considered to be the final enzyme regulating COX-2-dependent PGE(2) synthesis. These generalizations have been based in most part on experiments utilizing gene expression analyses of cell lines and tumor tissue. To assess the relevance of these generalizations to a native mammalian tissue, we used isolated human and rodent pancreatic islets to examine interleukin (IL)-1β-induced PGE(2) production, because PGE(2) has been shown to mediate IL-1β inhibition of islet function. Rat islets constitutively expressed mRNAs of COX-1, COX-2, cPGES, and mPGES-1. As expected, IL-1β increased mRNA levels for COX-2 and mPGES-1, but not for COX-1 or cPGES. Basal protein levels of COX-1, cPGES, and mPGES-2 were readily detected in whole cell extracts but were not regulated by IL-1β. IL-1β increased protein levels of COX-2, but unexpectedly mPGES-1 protein levels were low and unaffected. In microsomal extracts, mPGES-1 protein was barely detectable in rat islets but clearly present in human islets; however, in neither case did IL-1β increase mPGES-1 protein levels. To further assess the importance of mPGES-1 to IL-1β regulation of an islet physiologic response, glucose-stimulated insulin secretion was examined in isolated islets of WT and mPGES-1-deficient mice. IL-1β inhibited glucose-stimulated insulin secretion equally in both WT and mPGES-1(-/-) islets, indicating that COX-2, not mPGES-1, mediates IL-1β-induced PGE(2) production and subsequent inhibition of insulin secretion.  相似文献   

11.
Tumor cell mitochondria are key biosynthetic hubs that provide macromolecules for cancer progression and angiogenesis. Soluble decorin protein core, hereafter referred to as decorin, potently attenuated mitochondrial respiratory complexes and mitochondrial DNA (mtDNA) in MDA-MB-231 breast carcinoma cells. We found a rapid and dynamic interplay between peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and the decorin-induced tumor suppressor gene, mitostatin. This interaction stabilized mitostatin mRNA with concurrent accumulation of mitostatin protein. In contrast, siRNA-mediated abrogation of PGC-1α-blocked decorin-evoked stabilization of mitostatin. Mechanistically, PGC-1α bound MITOSTATIN mRNA to achieve rapid stabilization. These processes were orchestrated by the decorin/Met axis, as blocking the Met-tyrosine kinase or knockdown of Met abrogated these responses. Furthermore, depletion of mitostatin blocked decorin- or rapamycin-evoked mitophagy, increased vascular endothelial growth factor A (VEGFA) production, and compromised decorin-evoked VEGFA suppression. Collectively, our findings underscore the complexity of PGC-1α-mediated mitochondrial homeostasis and establish mitostatin as a key regulator of tumor cell mitophagy and angiostasis.  相似文献   

12.
PFKFB3 is the gene that codes for the inducible isoform of 6-phosphofructo-2-kinase (iPFK2), a key regulatory enzyme of glycolysis. As one of the targets of peroxisome proliferator-activated receptor γ (PPARγ), PFKFB3/iPFK2 is up-regulated by thiazolidinediones. In the present study, using PFKFB3/iPFK2-disrupted mice, the role of PFKFB3/iPFK2 in the anti-diabetic effect of PPARγ activation was determined. In wild-type littermate mice, PPARγ activation (i.e. treatment with rosiglitazone) restored euglycemia and reversed high fat diet-induced insulin resistance and glucose intolerance. In contrast, PPARγ activation did not reduce high fat diet-induced hyperglycemia and failed to reverse insulin resistance and glucose intolerance in PFKFB3+/− mice. The lack of anti-diabetic effect in PFKFB3+/− mice was associated with the inability of PPARγ activation to suppress adipose tissue lipolysis and proinflammatory cytokine production, stimulate visceral fat accumulation, enhance adipose tissue insulin signaling, and appropriately regulate adipokine expression. Similarly, in cultured 3T3-L1 adipocytes, knockdown of PFKFB3/iPFK2 lessened the effect of PPARγ activation on stimulating lipid accumulation. Furthermore, PPARγ activation did not suppress inflammatory signaling in PFKFB3/iPFK2-knockdown adipocytes as it did in control adipocytes. Upon inhibition of excessive fatty acid oxidation in PFKFB3/iPFK2-knockdown adipocytes, PPARγ activation was able to significantly reverse inflammatory signaling and proinflammatory cytokine expression and restore insulin signaling. Together, these data demonstrate that PFKFB3/iPFK2 is critically involved in the anti-diabetic effect of PPARγ activation.  相似文献   

13.
Activation of peroxisome proliferator-activated receptor α (PPARα) has been demonstrated to inhibit tumor growth and angiogenesis, yet the mechanisms behind these actions remain to be characterized. In this study, we examined the effects of PPARα activation on the hypoxia-inducible factor-1α (HIF-1α) signaling pathway in human breast (MCF-7) and ovarian (A2780) cancer cells under hypoxia. Incubation of cancer cells under 1% oxygen for 16 h significantly induced HIF-1α expression and activity as assayed by Western blotting and reporter gene analysis. Treatment of the cells with PPARα agonists, but not a PPARγ agonist, prior to hypoxia diminished hypoxia-induced HIF-1α expression and activity, and addition of a PPARα antagonist attenuated the suppression of HIF-1α signaling. Activation of PPARα attenuated hypoxia-induced HA-tagged HIF-1α protein expression without affecting the HA-tagged HIF-1α mutant protein level, indicating that PPARα activation promotes HIF-1α degradation in these cells. This was further confirmed using proteasome inhibitors, which reversed PPARα-mediated suppression of HIF-1α expression under hypoxia. Using the co-immunoprecipitation technique, we found that activation of PPARα enhances the binding of HIF-1α to von Hippel-Lindau tumor suppressor (pVHL), a protein known to mediate HIF-1α degradation through the ubiquitin-proteasome pathway. Following PPARα-mediated suppression of HIF-1α signaling, VEGF secretion from the cancer cells was significantly reduced, and tube formation by endothelial cells was dramatically impaired. Taken together, these findings demonstrate for the first time that activation of PPARα suppresses hypoxia-induced HIF-1α signaling in cancer cells, providing novel insight into the anticancer properties of PPARα agonists.  相似文献   

14.
15.
16.
Gastric cancer (GC) is a lethal malignancy and the second most common cause of cancer-related deaths. Although treatment options such as chemotherapy, radiotherapy, and surgery have led to a decline in the mortality rate due to GC, chemoresistance remains as one of the major causes for poor prognosis and high recurrence rate. In this study, we investigated the potential effects of isorhamnetin (IH), a 3′-O-methylated metabolite of quercetin on the peroxisome proliferator-activated receptor γ (PPAR-γ) signaling cascade using proteomics technology platform, GC cell lines, and xenograft mice model. We observed that IH exerted a strong antiproliferative effect and increased cytotoxicity in combination with chemotherapeutic drugs. IH also inhibited the migratory/invasive properties of GC cells, which could be reversed in the presence of PPAR-γ inhibitor. We found that IH increased PPAR-γ activity and modulated the expression of PPAR-γ regulated genes in GC cells. Also, the increase in PPAR-γ activity was reversed in the presence of PPAR-γ-specific inhibitor and a mutated PPAR-γ dominant negative plasmid, supporting our hypothesis that IH can act as a ligand of PPAR-γ. Using molecular docking analysis, we demonstrate that IH formed interactions with seven polar residues and six nonpolar residues within the ligand-binding pocket of PPAR-γ that are reported to be critical for its activity and could competitively bind to PPAR-γ. IH significantly increased the expression of PPAR-γ in tumor tissues obtained from xenograft model of GC. Overall, our findings clearly indicate that antitumor effects of IH may be mediated through modulation of the PPAR-γ activation pathway in GC.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号