首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Several agents are available to treat osteoporosis while addressing patient-specific medical needs. Individuals'' residual risk to severe fracture may require changes in treatment strategy. Data at osseous cellular and microstructural levels due to a therapy switch between agents with different modes of action are rare. Our study on a series of five consecutively taken bone biopsies from an osteoporotic individual over a six-year period analyzes changes in cellular characteristics, bone microstructure and mineralization caused by a therapy switch from an antiresorptive (bisphosphonate) to a dual action bone agent (strontium ranelate).

Methodology/Principal Findings

Biopsies were progressively taken from the iliac crest of a female patient. Four biopsies were taken during bisphosphonate therapy and one biopsy was taken after one year of strontium ranelate (SR) treatment. Furthermore, serum bone markers and dual x-ray absorptiometry measurements were acquired. Undecalcified histology was used to assess osteoid parameters and bone turnover. Structural indices and degree of mineralization were determined using microcomputed tomography, quantitative backscattered electron imaging, and combined energy dispersive x-ray/µ-x-ray-fluorescence microanalysis.

Conclusions/Significance

Microstructural data revealed a notable increase in bone volume fraction after one year of SR treatment compared to the bisphosphonate treatment period. Indices of connectivity density, structure model index and trabecular bone pattern factor were predominantly enhanced indicating that the architectural transformation from trabecular rods to plates was responsible for the bone volume increase and less due to changes in trabecular thickness and number. Administration of SR following bisphosphonates led to a maintained mineralization profile with an uptake of strontium on the bone surface level. Reactivated osteoclasts designed tunneling, hook-like intratrabecular resorption sites. The appearance of tunneling resorption lacunae and the formation of both mini-modeling units and osteon-like structures within increased plate-like cancellous bone mass provides additional information on the mechanisms of strontium ranelate following bisphosphonate treatment, which may deserve special attention when monitoring a treatment switch.  相似文献   

2.
To elucidate the influence of osteoporosis on the fracture healing, we produced a rat osteoporosis model by ovariectomy and by maintaining a low calcium diet; and monitored the healing process radiographically, histologically, and biomechanically for 12 weeks. Radiologic, histologic and biomechanical findings of the fracture areas 6 weeks after making the fractures were almost identical in both the osteoporosis group and the control group. However, 12 weeks after making the fractures, newly generated bones in the osteoporosis group showed histological osteoporotic changes and their bone mineral density on the fracture site decreased. These findings show that estrogen-deficient and low calcium conditions greatly affect the bone in the later period of the healing process, but do not affect remarkably the early healing period. This is clinically important when we consider fracture treatments for patients with osteoporosis due to menopause.  相似文献   

3.
Fractures to the osteoporotic bone feature a delay in callus formation and reduced enchondral ossification. Human mesenchymal stem cells (hMSC), the cellular source of fracture healing, are recruited to the fracture site by cytokines, such as BMP-2 and BMP-7. Aim of the study was to scrutinize hMSC for osteoporosis associated alterations in BMP mediated migration and invasion as well as in extracellular matrix (ECM) binding integrin expression.  相似文献   

4.
Biomechanical tests are widely used in animal studies on osteoporotic fracture healing. However, the biomechanical recovery process is still unknown, leading to difficulty in choosing time points for biomechanical tests and in correctly assessing osteoporotic fracture healing. To determine the biomechanical recovery process during osteoporotic fracture healing, studies on osteoporotic femur fracture healing with biomechanical tests in ovariectomized rat (OVX) models were collected from PUBMED, EMBASE, and Chinese databases. Quadratic curves of fracture healing time and maximum load were fitted with data from the analyzed studies. In the fitted curve for normal fractures, the predicted maximum load was 145.56 N, and the fracture healing time was 88.0 d. In the fitted curve for osteoporotic fractures, the predicted maximum load was 122.30 N, and the fracture healing time was 95.2 d. The maximum load of fractured femurs in OVX rats was also lower than that in sham rats at day 84 post-fracture (D84 PF). The fracture healing time was prolonged and maximum load at D84 PF decreased in OVX rats with closed fractures. The maximum load of Wister rats was higher than that of Sprague-Dawley (SD) rats, but the fracture healing time of SD and Wister rats was similar. Osteoporotic fracture healing was delayed in rats that were < = 12 weeks old when ovariectomized, and at D84 PF, the maximum load of rats < = 12 weeks old at ovariectomy was lower than that of rats >12 weeks old at ovariectomy. There was no significant difference in maximum load at D84 PF between rats with an osteoporosis modeling time <12 weeks and > = 12 weeks. In conclusion, fracture healing was delayed and biomechanical property decreased by osteoporosis. Time points around D95.2 PF should be considered for biomechanical tests of osteoporotic femur fracture healing in OVX rat models. Osteoporotic fracture healing in OVX rats was affected by the fracture type but not by the strain of the rat.  相似文献   

5.
Osteoporosis is one of the most prevalent skeletal system diseases. It is characterized by a decrease in bone mass and microarchitectural changes in bone tissue that lead to an attenuation of bone resistance and susceptibility to fracture. Vertebral fracture is by far the most prevalent osteoporotic fracture. In the musculoskeletal system, osteoblasts, originated from bone marrow stromal cells (BMSC), are responsible for osteoid synthesis and mineralization. In osteoporosis, BMSC osteogenic differentiation is defective. However, to date, what leads to the defective BMSC osteogenesis in osteoporosis remains an open question. In the current study, we made attempts to answer this question. A mouse model of glucocorticoid-induced osteoporosis (GIO) was established and BMSC were isolated from vertebral body. The impairment of osteogenesis was observed in BMSC of osteoporotic vertebral body. The expression profiles of thirty-six factors, which play important roles in bone metabolisms, were compared through antibody array between normal and osteoporotic BMSC. Significantly higher secretion level of IL-6 was observed in osteoporotic BMSCs compared with normal control. We provided evidences that IL-6 over-secretion impaired osteogenesis of osteoporotic BMSC. Further, it was observed that β-catenin activity was inhibited in response to IL-6 over-secretion. More importantly, in vivo administration of IL-6 neutralizing antibody was found to be helpful to rescue the osteoporotic phenotype of mouse vertebral body. Our study provides a deeper insight into the pathophysiology of osteoporosis and identifies IL-6 as a promising target for osteoporosis therapy.  相似文献   

6.
Recent studies demonstrate that the rate of periodontal breakdown significantly increased in patients compromised from both periodontal disease and osteoporosis. One pharmacological agent used for their treatment is strontium renalate due to its simultaneous ability to increase bone formation and halt bone resorption. The aim of the present study was to achieve periodontal regeneration of strontium-incorporated mesoporous bioactive glass (Sr-MBG) scaffolds in an osteoporotic animal model carried out by bilateral ovariectomy (OVX). 15 female Wistar rats were randomly assigned to three groups: control unfilled periodontal defects, 2) MBG alone and 3) Sr-MBG scaffolds. 10 weeks after OVX, bilateral fenestration defects were created at the buccal aspect of the first mandibular molar and assessed by micro-CT and histomorphometric analysis after 28 days. Periodontal fenestration defects treated with Sr-MBG scaffolds showed greater new bone formation (46.67%) when compared to MBG scaffolds (39.33%) and control unfilled samples (17.50%). The number of TRAP-positive osteoclasts was also significantly reduced in defects receiving Sr-MBG scaffolds. The results from the present study suggest that Sr-MBG scaffolds may provide greater periondontal regeneration. Clinical studies are required to fully characterize the possible beneficial effect of Sr-releasing scaffolds for patients suffering from a combination of both periodontal disease and osteoporosis.  相似文献   

7.
Osteoporosis is becoming a major health problem that is associated with increased fracture risk. Previous studies have shown that osteoporosis could delay fracture healing. Although there are potential agents available to promote fracture healing of osteoporotic bone such as statins and tocotrienol, studies on direct delivery of these agents to the fracture site are limited. This study was designed to investigate the effects of two potential agents, lovastatin and tocotrienol using targeted drug delivery system on fracture healing of postmenopausal osteoporosis rats. The fracture healing was evaluated using micro CT and biomechanical parameters. Forty-eight Sprague-Dawley female rats were divided into 6 groups. The first group was sham-operated (SO), while the others were ovariectomized (OVx). After two months, the right tibiae of all rats were fractured at metaphysis region using pulsed ultrasound and were fixed with plates and screws. The SO and OVxC groups were given two single injections of lovastatin and tocotrienol carriers. The estrogen group (OVx+EST) was given daily oral gavages of Premarin (64.5 µg/kg). The Lovastatin treatment group (OVx+Lov) was given a single injection of 750 µg/kg lovastatin particles. The tocotrienol group (OVx+TT) was given a single injection of 60 mg/kg tocotrienol particles. The combination treatment group (OVx+Lov+TT) was given two single injections of 750 µg/kg lovastatin particles and 60 mg/kg tocotrienol particles. After 4 weeks of treatment, the fractured tibiae were dissected out for micro-CT and biomechanical assessments. The combined treatment group (OVx+Lov+TT) showed significantly higher callus volume and callus strength than the OVxC group (p<0.05). Both the OVx+Lov and OVx+TT groups showed significantly higher callus strength than the OVxC group (p<0.05), but not for callus volume. In conclusion, combined lovastatin and tocotrienol may promote better fracture healing of osteoporotic bone.  相似文献   

8.
Bisphosphonates are highly effective agents for reducing osteoporotic fractures in women and men, decreasing fracture incidence at the hip and spine up to 50%. In a small subset of patients, however, these agents have recently been associated with ''atypical femoral fractures'' (AFFs) in the subtrochanteric region or the diaphysis. These fractures have several atypical characteristics, including occurrence with minimal trauma; younger age than typical osteoporotic fractures; occurrence at cortical, rather than cancellous sites; early radiographic appearance similar to that of a stress fracture; transverse fracture pattern rather than the familiar spiral or transverse-oblique morphologies; initiation on the lateral cortex; and high risk of fracture on the contralateral side, at the same location as the initial fracture. Fracture is a mechanical phenomenon that occurs when the loads applied to a structure such as a long bone exceed its load-bearing capacity, either due to a single catastrophic overload (traumatic failure) or as a result of accumulated damage and crack propagation at sub-failure loads (fatigue failure). The association of AFFs with no or minimal trauma suggests a fatigue-based mechanism that depends on cortical cross-sectional geometry and tissue material properties. In the case of AFFs, bisphosphonate treatment may alter cortical tissue properties, as these agents are known to alter bone remodeling. This review discusses the use of bisphosphonates, their effects on bone remodeling, mechanics and tissue composition, their significance as an effective therapy for osteoporosis, and why these agents may increase fracture risk in a small population of patients.  相似文献   

9.
Because changes in the mechanical properties of bone are closely related to trabecular bone remodeling, methods that consider the temporal morphological changes induced by adaptive remodeling of trabecular bone are needed to estimate long-term fracture risk and bone quality in osteoporosis. We simulated bone remodeling using simplified and pig trabecular bone models and estimated the morphology of healthy and osteoporotic cases. We then displayed the fracture risk of the remodeled models based on a cumulative histogram from high stress. The histogram showed more elements had higher stresses in the osteoporosis model, indicating that the osteoporosis model had a greater risk.  相似文献   

10.
Osteoporosis is a disorder characterized by reduced bone strength, diminished bone density, and altered macrogeometry and microscopic architecture. Adult bone mass is the integral measurement of the bone mass level achieved at the peak minus the rate and duration of subsequent bone loss. There is clearly a genetic predisposition to attained peak bone mass, which occurs by a person's mid-20s. Bone loss with age and menopause are universal, but rates vary among individuals. Both peak bone mass and subsequent bone loss can be modified by environmental factors, such as nutrition, physical activity, and concomitant diseases and medications. Osteoporosis prevention requires adequate calcium and vitamin D intake, regular physical activity, and avoiding smoking and excessive alcohol ingestion. Risk of fracture determines whether medication is also warranted. A previous vertebral or hip fracture is the most important predictor of fracture risk. Bone density is the best predictor of fracture risk for those without prior adult fractures. Age, weight, certain medications, and family history also help establish a person's risk for osteoporotic fractures. All women should have a bone density test by the age of 65 or younger (at the time of menopause) if risk factors are present. Guidelines for men are currently in development. Medications include both antiresorptive and anabolic types. Antiresorptive medications--estrogens, selective estrogen receptor modulators (raloxifene), bisphosphonates (alendronate, risedronate, and ibandronate) and calcitonins--work by reducing rates of bone remodeling. Teriparatide (parathyroid hormone) is the only anabolic agent currently approved for osteoporosis in the United States. It stimulates new bone formation, repairing architectural defects and improving bone density. All persons who have had osteoporotic vertebral or hip fractures and those with a bone mineral density diagnostic of osteoporosis should receive treatment. In those with a bone mineral density above the osteoporosis range, treatment may be indicated depending on the number and severity of other risk factors.  相似文献   

11.
The following is a two-part study. Part A evaluates biomechanically intramedullary (IM) nails vs. locking plates for fixation of femoral fractures in osteoporotic bone. Part B of this study introduces a deterministic finite element model of each construct type and investigates the probability of periprosthetic fracture of the locking plate compared with the retrograde IM nail using Monte Carlo simulation. For Part A, an extra-articular, metaphyseal wedge fracture pattern was created in 11 osteoporotic fourth-generation composite femurs. Fixation was performed with a locking plate or a retrograde IM nail. Axial, torsion and bending cyclic loading to simulate post-operative damage accumulation were performed followed by ramped load to failure. Locking plates proved to be more stable (using stiffness as the determining factor) in osteoporotic bone as observed under low load cycle conditions. However, some of these advantages were offset by a greater incidence of sudden periprosthetic fracture observed under ramped loading conditions. Cadaveric, osteoporotic femurs included as a case study also exhibited periprosthetic fracture, but failure was accompanied by catastrophic comminution of the cortex. Periprosthetic failure at the implant end including bone comminution is difficult to salvage with revision fixation. The weakened trabecular matrix and thinned cortex of osteoporotic bone may increase the incidence of periprosthetic fracture. It is, therefore, essential for the surgeon to consider all possible loading scenarios when recommending an ideal implant for the osteoporotic patient.  相似文献   

12.
A prospective study of fractures of the femoral neck was conducted over 12 months in order to ascertain the relevance of generalised osteoporosis as determined by metacarpal morphometry. A series of some 200 women sustaining a fracture of the femoral neck after minor trauma had bone mass measurements similar to those of a control population of normal women, and 16% were not osteoporotic. A history of previous fractures was documented in one third of the women, but this was unrelated to the presence or severity of osteoporosis, although over half of the fractures had occurred within the previous four years. Trochanteric fractures were seen more commonly in severely osteoporotic women (p less than 0.005), whereas cervical fractures predominated in those who were not osteoporotic. These findings support the hypothesis that postural instability is the major determinant for femoral neck fracture and that generalised osteoporosis, rather than being a prerequisite for fracture, merely determines the type of fracture sustained.  相似文献   

13.
ABSTRACT: INTRODUCTION: Osteoporosis is an asymptomatic disease characterized by bone weakening and predisposition to fragility (insufficiency) fractures and can have devastating effects on individual life and great financial impact on the economy. Bisphosphonates are used worldwide for the primary and secondary prevention of osteoporotic fractures. However, increasing evidence raises concern that bisphosphonates can be associated with atypical fractures. CASE PRESENTATION: A 65-year-old Caucasian woman on long-term steroid treatment for polymyalgia rheumatica was admitted with severe and constant pain in the right hip, radiating to the right knee. She had a history of steroid-induced osteoporosis, for which she was started on risedronate four years earlier. She had no history of trauma. Her blood results were unremarkable. Her X-rays confirmed that she had an incomplete right subtrochanteric femoral fracture. A bone scan confirmed the diagnosis and also ruled out any other associated fractures. Our patient successfully underwent internal nail fixation of the fracture. She was reviewed by a rheumatology team, which stopped the risedronate. She was started on treatment with denosumab injection. CONCLUSIONS: Previous case series have reported that long-term bisphosphonate use is associated with atypical fractures of the femur, and certain criteria have been established to help identify such rare fractures. Delayed union or non-union is expected in such fractures following definitive orthopedic treatment because of the long half life of bisphosphonates. In this case report, we try to raise questions related to this important subject, like the duration and safety of bisphosphonate use and the alternative medications used in osteoporosis in this rare condition. We consider this case report not only interesting but also important and unusual because it is about a patient who developed a potentially rare and serious side effect of long-term bisphosphonate use, estimated to affect 2.3 in every 10,000 patients, and who presented with a pelvic X-ray that showed the characteristic features of atypical fractures secondary to risedronate use. In addition, most of the documented cases have been associated with many years of bisphosphonate use whereas our patient had been on risedronate for only four years.  相似文献   

14.
Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus). 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX) and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8) were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs and growth factors in future fracture healing studies.  相似文献   

15.
The literature data on implant materials for recovering from osseous injuries and defects were reviewed. Hydroxyapatite and bioactive glass are the leading artificial implant materials. Chitosan, polylactide, adgelon, and salicylic acid have found application in this area as biocompatible surgical materials that also promote wound healing and regeneration. When using hydroxyapatite as an implant material, its active groups, such as phosphate, hydroxyl, and others provide contacts; cell migration and adhesion on the matrix surface, formation of an intermediate layer of osteoid type, and fusion of bone and implant then occur. In the case of bioactive glass, the silanol groups are involved in bond formation. The study of mechanisms of bond formation between biological tissue and implant material and search for new biocompatible materials are important tasks of medical research in the field of implantation and post-traumatic regeneration.  相似文献   

16.
Although tissue engineering has been attracted greatly for healing of critical-sized bone defects, great efforts for improvement are still being made in scaffold design. In particular, bone regeneration would be enhanced if a scaffold precisely matches the contour of bone defects, especially if it could be implanted into the human body conveniently and safely. In this study, polyurethane/hydroxyapatite-based shape memory polymer (SMP) foam was fabricated as a scaffold substrate to facilitate bone regeneration. The minimally invasive delivery and the self-fitting behavior of the SMP foam were systematically evaluated to demonstrate its feasibility in the treatment of bone defects in vivo. Results showed that the SMP foam could be conveniently implanted into bone defects with a compact shape. Subsequently, it self-matched the boundary of bone defects upon shape-recovery activation in vivo. Micro-computed tomography determined that bone ingrowth initiated at the periphery of the SMP foam with a constant decrease towards the inside. Successful vascularization and bone remodeling were also demonstrated by histological analysis. Thus, our results indicate that the SMP foam demonstrated great potential for bone regeneration.  相似文献   

17.
Strontium ranelate, a pharmaceutical agent shown in clinical trials to be effective in managing osteoporosis and reducing fracture risk in postmenopausal women, is relatively unique in its ability to both blunt bone resorption and stimulate bone formation. However, its mechanisms of action are largely unknown. As the nuclear factor-kappa B (NF-κB) activation antagonists both stimulate osteoblastic bone formation and repress osteoclastic bone resorption, we hypothesized that strontium ranelate may achieve its anabolic and anti-catabolic activities by modulating NF-κB activation in bone cells. In this study, osteoclast and osteoblast precursors were treated with intact strontium ranelate or its individual components sodium ranelate and/or strontium chloride, and its effect on in vitro osteoclastogenesis and osteoblastogenesis and on NF-κB activation quantified. Although the activity of strontium ranelate has been attributed to the release of strontium ions, low dose intact strontium ranelate complex, but not sodium ranelate and/or strontium chloride, potently antagonized NF-κB activation in osteoclasts and osteoblasts in vitro, and promoted osteoblast differentiation while suppressing osteoclast formation. Taken together, our data suggest a novel centralized mechanism by which strontium ranelate promotes osteoblast activity and suppresses osteoclastogenesis, based on suppression of NF-κB signal transduction. We further demonstrate that the biological actions of strontium ranelate may be related to low dose of the intact molecule rather than dissociation and release of strontium ions, as previously thought. These data may facilitate the development of additional novel pharmacological agents for the amelioration of osteoporosis, based on NF-κB blockade.  相似文献   

18.
This study aimed to investigate the impact of organic gallium (OG) on osteoporotic fracture healing in ovariectomized female Sprague-Dawley rats, as well as study the mechanisms of OG on osteoporotic fracture healing. Forty-five female Sprague-Dawley rats were divided into three groups: sham operation group (Sxas control group), ovariectomized group (Ovx), and Ovx treated with OG group (Ovx + OG). Rat femoral fractures were studied using a standardized fracture-healing model utilizing bone fixation with an intramedullary pin. Six weeks later, analyses of micro-CT, histomorphometric, RNA extraction, RT-qPCR, and serum were performed following sacrifice of all mice. In comparison with Ovx group, OG can significantly increase bone volume (BV), tissue volume (TV), BV/TV radio, bone strength, callus bony area, and as similar to BMP-2 expression. OG treatment elevated OPG messenger RNA (mRNA) and inhibited RANKL mRNA, and showed an effect on OPG/RANKL ratio. OG treatment can inhibit the expression of TNF-α and IL-6. In conclusion, current study results indicate that organic OG can positively affect the OPG/RANKL ratio and inhibit the expression of serum inflammatory cytokines; thus, it can improve osteoporotic fracture healing.  相似文献   

19.
Many older people, especially women, and their doctors still see osteoporosis as part of the natural course of ageing instead of as a preventable or treatable disorder. Height loss, hyperkyphosis, back pain, and fractures are accepted as consequences of ageing. The notion that it is too late to start treatment in a late stage of the disease forms another barrier to treatment. Although most studies of fracture reduction with medical treatment were not designed for the "geriatric" population, the average age of participants in most clinical trials was about 70 years. In all major studies patients also received calcium and vitamin D supplements. Nowadays, clinicians can choose from several effective treatments for the prevention of osteoporotic fractures in high-risk postmenopausal women. Data on the anti-fracture potential of calcium/vitamin D, raloxifene, bisphosphonates, strontium ralenate, and parathyroid hormone are now available. Bisphosphonates and strontium ralenate are good choices for first- or second-line treatment, while for the time being parathyroid hormone should only be used for the second-line treatment of osteoporosis in the elderly.  相似文献   

20.
Bisphosphonates suppress bone remodeling activity, increase bone volume, and significantly reduce fracture risk in individuals with osteoporosis and other metabolic bone diseases. The objectives of the current study were to develop a mathematical model that simulates control and 1 year experimental results following bisphosphonate treatment (alendronate or risedronate) in the canine fourth lumbar vertebral body, validate the model by comparing simulation predictions to 3 year experimental results, and then use the model to predict potential long term effects of bisphosphonates on remodeling and microdamage accumulation. To investigate the effects of bisphosphonates on bone volume and microdamage, a mechanistic biological model was modified from previous versions to simulate remodeling in a representative volume of vertebral trabecular bone in dogs treated with various doses of alendronate or risedronate, including doses equivalent to those used for treatment of post-menopausal osteoporosis in humans. Bisphosphonates were assumed to affect remodeling by suppressing basic multicellular unit activation and reducing resorption area. Model simulation results for trabecular bone volume fraction, microdamage, and activation frequency following 1 year of bisphosphonate treatment are consistent with experimental measurements. The model predicts that trabecular bone volume initially increases rapidly with 1 year of bisphosphonate treatment, and continues to slowly rise between 1 and 3 years of treatment. The model also predicts that microdamage initially increases rapidly, 0.5–1.5-fold for alendronate or risedronate during the first year of treatment, and reaches its maximum value by 2.5 years before trending downward for all dosages. The model developed in this study suggests that increasing bone volume fraction with long term bisphosphonate treatment may sufficiently reduce strain and damage formation rate so that microdamage does not accumulate above that which is initiated in the first two years of treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号