首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Engin AB  Ergun MA  Yurtcu E  Kan D  Sahin G 《Mutation research》2005,585(1-2):184-192
Investigations carried out to estimate the effect of long-term occupational exposure to low levels of external ionizing radiation indicated that exposed hospital staff showed an increase in chromosome aberrations. The purpose of this study was to evaluate whether genomic instability or an alteration in pteridine synthesis could be used as a marker of the potential hazard of ionizing radiation in hospital workers. Twenty gamma-radiation- and 33 X-ray-exposed technicians working in radiotherapy and radio-diagnostic units were included in this study, along with 22 healthy matched individuals. Plasma concentrations of nitrite plus nitrate (NO(x)) were measured to estimate reactive nitrogen species. Urinary neopterin, biopterin and creatinine concentrations were measured by high-performance liquid chromatography to determine metabolic activity along the pteridine pathway. Sister chromatid exchange was used as a measure of mutagenicity. Apoptosis was evaluated morphologically and also with a DNA-fragmentation test. The plasma NO(x) levels of both gamma-radiation- and X-ray-exposed technicians were significantly higher than those of the healthy controls (p<0.05). While the urinary biopterin concentrations were significantly higher in radiation-exposed groups compared with the healthy subjects (p<0.05), urinary neopterin concentrations remained unchanged. The apoptosis rates of gamma-radiation- and X-ray-exposed workers were significantly elevated in comparison with those in the control group (both p<0.05). Also, the increase in sister chromatid exchange frequency was significant in each of the radiation-exposed groups (exposed groups versus controls; p<0.05). These results indicate that long-term exposure to low-dose ionizing radiation, even below the permitted levels, could result in increased oxidative stress, which may lead to DNA damage and mutagenicity.  相似文献   

2.
The health risk associated with low levels of ionizing radiation is still a matter of debate. A number of factors, such as non-target effects, adaptive responses and low-dose hypersensitivity, affect the long-term outcome of low-dose exposures. Cytogenetic bio-dosimetry provides a measure of the absorbed dose, taking into account the individual radiation sensitivity. The aim of the present study is to evaluate the value of the micronucleus (MN) test as a bio-dosimeter in hospital workers exposed to low doses of ionizing radiation. Blood samples were obtained from 30 subjects selected among workers exposed to X- and gamma-radiation, and 30 controls matched for sex, age and smoking from the same hospital. Micronucleus frequencies were analyzed by use of the cytokinesis-block method. The MN frequency was compared among the groups considering the confounding factors and the length of employment. No increase in the number of bi-nucleated cells with MN (BNMN), but a significant increase in the number of mono-nucleated cells with micronuclei (MOMN) was observed in exposed subjects compared with the controls. The relationship between MN frequency and accumulated dose (mSv) was evaluated. The length of employment did not affect the extent of MN frequency, but an increase of BNMN and MOMN cells was observed based on the accumulated radiation dose. Our study shows the sensitivity of the MN test in the detection of cytogenetic effects of cumulative exposure levels, suggesting the potential usefulness of this assay in providing a biological index in medical surveillance programs.  相似文献   

3.
Although no statistically significant hereditary effects have yet been detected in the children of survivors from the atomic bombings in Hiroshima and Nagasaki, recent animal studies have found that exposure to ionizing radiation can cause genomic and epigenomic instability in the exposed individuals, as well as their offspring, and therefore, may have much larger genetic effects than predicted by earlier studies. When individuals are exposed to various environmental insults, including radiation, individual sensitivity to the insults often varies. Variance in germ-line response to radiation among individuals has been widely recognized, but it is difficult to address due to the use of inbred strains and the limited number of offspring that can be produced by a pair of mice, the common model used to study genetic effects of radiation. Herein is the first study to examine individual family responses to ionizing radiation using a parent-pedigree approach in an outbred strain of a vertebrate model, the Japanese medaka fish. Changes in frequencies of radiation-induced germline mutations at nine microsatellite loci were examined in the same families before and after exposure to one of four acute doses of ionizing radiation (0.1, 0.5, 2.5, 5Gy, plus sham-exposed controls). Families varied significantly in pre-exposure mutation frequencies and responses to irradiation, but germline mutations were elevated in at least one family after 0.1, 0.5, and 5Gy exposures. Variance among individuals in sensitivity to radiation is well documented for many endpoints, and our work now extends these endpoints to include germ-line mutations. Further studies are needed to elucidate dose response, effects at varying stages of spermatogenesis, and the mechanisms underlying the variance in these individual responses to radiation.  相似文献   

4.
To clarify the low-dose limit at which the effect of radiation on health becomes undetectable is important in the regulation of radiation. As one of a series of cytogenetical studies on the effect of radiation on health, we present low-dose limits determined by analyzing the background frequencies of translocations in the lymphocytes of people living in normal circumstances. The frequencies of translocations in the lymphocytes were analyzed in 20 non-smokers (61.2-year-old on the average) in a large city, and 16 non-smokers (64.4-year-old on the average) and 8 children (12.3-year-old on the average) in a remote village. The radiation dose was calculated based on the background frequencies of translocations assuming that all the translocations had been induced by radiation. The calculated doses were 384+/-200, 336+/-124 and 128+/-80 mSv in the case of chronic exposure, and 248+/-153, 225+/-104 and 107+/-72 mSv in acute exposure. Standard deviation of the calculated doses is considered to be the dose level below which the effect of radiation becomes undetectable due to the background variation in the effects of all kind of mutagenic factors, i.e., the dose level below which an epidemiological study will not be able to show any significant increase in malignant diseases. The results obtained from epidemiological studies are in fairly good agreement with our results.  相似文献   

5.
Recent analyses of mortality among atomic bomb survivors have suggested a linear dose-response relationship between ionizing radiation and diseases of the circulatory system for exposures in the range 0-4 Sv. If confirmed, this has substantial implications. We have therefore reviewed the published literature to see if other epidemiological data support this finding. Other studies allowing a comparison of the rates of circulatory disease in individuals drawn from the same population but exposed to ionizing radiation at different levels within the range 0-5 Gy or 0-5 Sv were identified through systematic literature searches. Twenty-six studies were identified. In some, disease rates among those exposed at different levels may have differed for reasons unrelated to radiation exposure, while many had low power to detect effects of the relevant magnitude. Among the remainder, one study found appreciable evidence that exposure to low-dose radiation was associated with circulatory diseases, but five others, all with appreciable power, did not. We conclude that the other epidemiological data do not at present provide clear evidence of a risk of circulatory diseases at doses of ionizing radiation in the range 0-4 Sv, as suggested by the atomic bomb survivors. Further evidence is needed to characterize the possible risk.  相似文献   

6.
S Raman  C S Dulberg  R A Spasoff  T Scott 《CMAJ》1987,136(10):1051-1056
We carried out a cohort study of mortality among 954 Canadian military personnel exposed to low-dose ionizing radiation during nuclear reactor clean-up operations at Chalk River Nuclear Laboratories, Chalk River, Ont., and during observation of atomic test blasts in the United States and Australia in the 1950s. Two controls matched for age, service, rank and trade were selected for each exposed subject. Mortality among the exposed and control groups was ascertained by means of record linkage with the Canadian Mortality Data Base. Survival analysis with life-table techniques did not reveal any difference in overall mortality between the exposed and control groups. Analysis of cause-specific mortality showed similar mortality patterns in the two groups; there was no elevation in the exposed group in the frequency of death from leukemia or thyroid cancer, the causes of death most often associated with radiation exposure. Analysis of survival by recorded gamma radiation dose also did not show any effect of radiation dose on mortality. The findings are in agreement with the current scientific literature on the risk of death from exposure to low-dose radiation.  相似文献   

7.
Ionizing radiation has different biological effects according to dose and dose rate. In particular, the biological effect of low-dose radiation is unclear. Low-dose whole-body gamma irradiation activates immune responses in several ways. However, the effects and mechanism of low-dose radiation on allergic responses remain poorly understood. Previously, we reported that low-dose ionizing radiation inhibits mediator release in IgE-mediated RBL-2H3 mast cell activation. In this study, to have any physiological relevance, we investigated whether low-dose radiation inhibits allergic responses in activated human mast cells (HMC-1(5C6) and LAD2 cells), mouse models of passive cutaneous anaphylaxis and the late-phase cutaneous response. High-dose radiation induced cell death, but low-dose ionizing radiation of <0.5 Gy did not induce mast cell death. Low-dose ionizing radiation that did not induce cell death significantly suppressed mediator release from human mast cells (HMC-1(5C6) and LAD2 cells) that were activated by antigen-antibody reaction. To determine the inhibitory mechanism of mediator released by low-dose ionizing radiation, we examined the phosphorylation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, and protein kinase C, as well as the intracellular free Ca2+ concentration ([Ca2+]i). The phosphorylation of signaling molecules and [Ca2+]i following stimulation of FcεRI receptors was inhibited by low dose ionizing radiation. In agreement with its in vitro effect, ionizing radiation also significantly inhibited inflammatory cells infiltration, cytokine mRNA expression (TNF-α, IL-4, IL-13), and symptoms of passive cutaneous anaphylaxis reaction and the late-phase cutaneous response in anti-dinitrophenyl IgE-sensitized mice. These results indicate that ionizing radiation inhibits both mast cell-mediated immediate- and delayed-type allergic reactions in vivo and in vitro.  相似文献   

8.
Although in vitro studies have been previously conducted to determine the biological effects of radio frequency (RF) radiation, it has not yet been determined whether or not RF radiation poses a potential hazard. This study was conducted to determine whether RF radiation exposure exerts detectable effects on cell cycle distribution, cellular invasion, and migration. NIH3T3 mouse fibroblasts were exposed to 849 MHz of RF radiation at average SAR values of 2 or 10 W/kg for either 1 h, or for 1 h per day for 3 days. During the exposure period, the temperature in the exposure chamber was maintained isothermally by circulating water throughout the cavity. Cell cycle distribution was analyzed at 24 and 48 h after exposure, by flow cytometry. We detected no statistically significant differences between the sham-exposed and RF radiation-exposed cells. Cellular invasion and migration were assessed by in vitro Matrigel invasion and Transwell migration assays. The RF radiation-exposed groups evidenced no significant changes in motility and invasiveness compared to the sham-exposed group. However, the ionizing radiation-exposed cells, used as a positive control group, manifested dramatic alterations in their cell cycle distribution, cellular invasiveness, and migration characteristics. Our results show that 849 MHz RF radiation exposure exerts no detectable effects on cell cycle distribution, cellular migration, or invasion at average SAR values of 2 or 10 W/kg.  相似文献   

9.
Current recommendations for limiting exposure to ionizing radiation are based on the linear-no-threshold (LNT) model for radiation carcinogenesis under which every dose, no matter how low, carries with it some cancer risk. In this review, epidemiological evidences are discussed that the LNT hypothesis is incorrect at low doses. A large set of data was accumulated that showed that cancer risk after ordinarily encountered radiation exposure (natural background radiation, medical X-rays, etc.) is much lower than projections based on the LNT model. The discovery of the low-level radiation hormesis (stimulating effect) implies a non-linear dose-response curve in the low-dose region. The further studies in this field will provide new insights about the mechanisms of radiation carcinogenesis.  相似文献   

10.
Radiation exposure is known to have profound effects on the brain, leading to precursor cell dysfunction and debilitating cognitive declines [Nat. Med. 8 (2002) 955]. Although a plethora of data exist on the effects of high radiation doses, the effects of low-dose irradiation, such as ones received during repetitive diagnostic and therapeutic exposures, are still under-investigated [Am. J. Otolaryngol. 23 (2002) 215; Proc. Natl. Acad. Sci. USA 97 (2000) 889; Curr. Opin. Neurol. 16 (2003) 129]. Furthermore, most studies of the biological effects of ionizing radiation have been performed using a single acute dose, while clinically and environmentally relevant exposures occur predominantly under chronic/repetitive conditions. Here, we have used a mouse model to compare the effects of chronic/repetitive and acute low-dose radiation (LDR) exposure (0.5Gy) to ionizing radiation on the brain in vivo. We examined the LDR effects on p42/44 MAPK (ERK1/ERK2), CaMKII, and AKT signaling-the interconnected pathways that have been previously shown to be crucial for neuronal survival upon irradiation. We report perturbations in ERK1/2, AKT, and CREB upon acute and chronic/repetitive low-dose exposure in the hippocampus and frontal cortex of mice. These studies were paralleled by the analysis of radiation effects on neurogenesis and cellular proliferation. Repetitive exposure had a much more pronounced effect on cellular signaling and neurogenesis than acute exposure. These results suggest that studies of single acute exposures might be limited in terms of their predictive value. We also present the first evidence of sex differences in radiation-induced signaling in the hippocampus and frontal cortex. We show the role of estrogens in brain radiation responses and discuss the implications of the observed changes.  相似文献   

11.
The changes in genome conformational state (GCS) induced by low-dose ionizing radiation in E. coli cells were measured by the method of anomalous viscosity time dependence (AVTD) in cellular lysates. Effects of X-rays at doses 0.1 cGy--1 Gy depended on post-irradiation time. Significant relaxation of DNA loops followed by a decrease in AVTD. The time of maximum relaxation was between 5-80 min depending on the dose of irradiation. U-shaped dose response was observed with increase of AVTD in the range of 0.1-4 Gy and decrease in AVTD at higher doses. No such increase in AVTD was seen upon irradiation of cells at the beginning of cell lysis while the AVTD decrease was the same. Significant differences in the effects of X-rays and gamma-rays at the same doses were observed suggesting a strong dependence of low-dose effects on LET. Effects of 0.01 cGy gamma-rays were studied at different cell densities during irradiation. We show that the radiation-induced changes in GCS lasted longer at higher cell density as compared to lower cell density. Only small amount of cells were hit at this dose and the data suggest cell-to-cell communication in response to low-dose ionizing radiation. This prolonged effect was also observed when cells were irradiated at high cell density and diluted to low cell density immediately after irradiation. These data suggest that cell-to-cell communication occur during irradiation or within 3 min post-irradiation. The cell-density dependent response to low-dose ionizing radiation was compared with previously reported data on exposure of E. coli cells to electromagnetic fields of extremely low frequency and extremely high frequency (millimeter waves). The body of our data show that cells can communicate in response to electromagnetic fields and ionizing radiation, presumably by reemission of secondary photons in infrared-submillimeter frequency range.  相似文献   

12.
To clarify the low-dose limit at which the effect of radiation on health becomes undetectable is important in the regulation of radiation. As one of a series of cytogenetical studies on the effect of radiation on health, we present low-dose limits determined by analyzing the background frequencies of translocations in the lymphocytes of people living in normal circumstances.The frequencies of translocations in the lymphocytes were analyzed in 20 non-smokers (61.2-year-old on the average) in a large city, and 16 non-smokers (64.4-year-old on the average) and 8 children (12.3-year-old on the average) in a remote village. The radiation dose was calculated based on the background frequencies of translocations assuming that all the translocations had been induced by radiation. The calculated doses were 384 ± 200, 336 ± 124 and 128 ± 80 mSv in the case of chronic exposure, and 248 ± 153 , 225 ± 104  and 107 ± 72 mSv in acute exposure. Standard deviation of the calculated doses is considered to be the dose level below which the effect of radiation becomes undetectable due to the background variation in the effects of all kind of mutagenic factors, i.e., the dose level below which an epidemiological study will not be able to show any significant increase in malignant diseases. The results obtained from epidemiological studies are in fairly good agreement with our results.  相似文献   

13.
Several types of cellular responses to ionizing radiation, such as the adaptive response or the bystander effect, suggest that low-dose radiation may possess characteristics that distinguish it from its high-dose counterpart. Accumulated evidence also implies that the biological effects of low-dose and high-dose ionizing radiation are not linearly distributed. We have investigated, for the first time, global gene expression changes induced by ionizing radiation at doses as low as 2 cGy and have compared this to expression changes at 4 Gy. We applied cDNA microarray analyses to G1-arrested normal human skin fibroblasts subjected to X irradiation. Our data suggest that both qualitative and quantitative differences exist between gene expression profiles induced by 2 cGy and 4 Gy. The predominant functional groups responding to low-dose radiation are those involved in cell-cell signaling, signal transduction, development and DNA damage responses. At high dose, the responding genes are involved in apoptosis and cell proliferation. Interestingly, several genes, such as cytoskeleton components ANLN and KRT15 and cell-cell signaling genes GRAP2 and GPR51, were found to respond to low-dose radiation but not to high-dose radiation. Pathways that are specifically activated by low-dose radiation were also evident. These quantitative and qualitative differences in gene expression changes may help explain the non-linear correlation of biological effects of ionizing radiation from low dose to high dose.  相似文献   

14.
There is a well-established association between high doses (>5 Gy) of ionizing radiation exposure and damage to the heart and coronary arteries, although only recently have studies with high-quality individual dosimetry been conducted that would enable quantification of this risk adjusting for concomitant chemotherapy. The association between lower dose exposures and late occurring circulatory disease has only recently begun to emerge in the Japanese atomic bomb survivors and in various occupationally exposed cohorts and is still controversial. Excess relative risks per unit dose in moderate- and low-dose epidemiological studies are somewhat variable, possibly a result of confounding and effect modification by well-known (but unobserved) risk factors. Radiation doses of 1 Gy or more are associated with increased risk of posterior subcapsular cataract. Accumulating evidence from the Japanese atomic bomb survivors, Chernobyl liquidators, US astronauts, and various other exposed groups suggests that cortical cataracts may also be associated with ionizing radiation, although there is little evidence that nuclear cataracts are radiogenic. The dose–response appears to be linear, although modest thresholds (of no more than about 0.6 Gy) cannot be ruled out. A variety of other non-malignant effects have been observed after moderate/low-dose exposure in various groups, in particular respiratory and digestive disease and central nervous system (and in particular neuro-cognitive) damage. However, because these are generally only observed in isolated groups, or because the evidence is excessively heterogeneous, these associations must be treated with caution.  相似文献   

15.
Although the link between high doses of ionizing radiation and damage to the heart and coronary arteries has been well established for some time, the association between lower-dose exposures and late occurring cardiovascular disease has only recently begun to emerge, and is still controversial. In this paper, we extend an earlier systematic review by Little et al. on the epidemiological evidence for associations between low and moderate doses of ionizing radiation exposure and late occurring blood circulatory system disease. Excess relative risks per unit dose in epidemiological studies vary over at least two orders of magnitude, possibly a result of confounding and effect modification by well-known (but unobserved) risk factors, and there is statistically significant (p < 0.00001) heterogeneity between the risks. This heterogeneity is reduced, but remains significant, if adjustments are made for the effects of fractionated delivery or if there is stratification by endpoint (cardiovascular disease vs. stroke, morbidity vs. mortality). One possible biological mechanism is damage to endothelial cells and subsequent induction of an inflammatory response, although it seems unlikely that this would extend to low-dose and low-dose-rate exposure. A recent paper of Little et al. proposed an arguably more plausible mechanism for fractionated low-dose effects, based on monocyte cell killing in the intima. Although the predictions of the model are consistent with the epidemiological data, the experimental predictions made have yet to be tested. Further epidemiological and biological evidence will allow a firmer conclusion to be drawn.  相似文献   

16.
The problem of hereditary effects of mammal exposure to ionizing radiation has a 95-year history but to date, no simple final solution has been available. Many papers on this problem specify the dependence of the hereditary effects on dose rate, regime, physical nature of radiation exposure, type, line and age of mammals that were studied. Over many years it was studied mainly as an aspect of hereditary radiation effects in progeny of one irradiated and the second non-irradiated parents. Recently due to the large-scale expansion of ionizing irradiation, it has turned out urgent to study hereditary radiation effects in progeny of both irradiated parents. However, the original studies on this problem are not numerous, and in the summarized articles, the problem practically had no specified presentation.  相似文献   

17.
Radiation effects on cancer risks in a cohort of Taiwanese residents who received protracted low-dose-rate gamma-radiation exposures from (60)Co-contaminated reinforcing steel used to build their apartments were studied, and risks were compared to those in other radiation-exposed cohorts. Analyses were based on a more extended follow-up of the cohort population in which 117 cancer cases diagnosed between 1983 and 2005 among 6,242 people with an average excess cumulative exposure estimate of about 48 mGy. Cases were identified from Taiwan's National Cancer Registry. Radiation effects on cancer risk were estimated using proportional hazards models and were summarized in terms of the hazard ratio associated with a 100-mGy increase in dose (HR(100mGy)). A significant radiation risk was observed for leukemia excluding chronic lymphocytic leukemia (HR(100mGy) 1.19, 90% CI 1.01-1.31). Breast cancer exhibited a marginally significant dose response (HR(100mGy) 1.12, 90% CI 0.99-1.21). The results further strengthen the association between protracted low-dose radiation and cancer risks, especially for breast cancers and leukemia, in this unique cohort population.  相似文献   

18.
Tucker JD 《Mutation research》2008,659(3):211-220
Chromosome translocations are a molecular signature of ionizing radiation exposure. Translocations persist significantly longer after exposure than other types of chromosome exchanges such as dicentrics. This persistence makes translocations the preferred aberration type for performing radiation dosimetry under conditions of protracted exposure or when exposure assessments are temporally delayed. Low doses of radiation are inherently difficult to quantify because the frequency of induced events is low and the background level of translocations among unexposed subjects can show considerable variability. Analyses of translocation frequencies can be confounded by several factors, including age of the subject, lifestyle choices such as cigarette smoking, the presence of clones of abnormal cells, and possibly genotypic variability among subjects. No significant effects of gender or race have been observed, but racial differences have not been completely ruled out. Translocation analyses may be complicated by the presence of different types of exchanges, i.e., reciprocal or non-reciprocal, and because translocations sometimes occur as a component of complex exchanges that include other forms of chromosome rearrangements. Rates of radiation exposure, ranging from acute to chronic, are known to influence the accumulation of translocations and may also affect their persistence. The influences on translocation frequencies of low-dose radiation hypersensitivity as well as the bystander effect and the adaptive response remain poorly characterized. Thus, quantifying the relationship between radiation dose and the frequency of translocations in any given subject requires attention to multiple issues. Part of the solution to understanding the in vivo dose-response relationship is to have accurate estimates of the baseline levels of translocations in healthy unexposed subjects, and some work in this area has been accomplished. Long-term cytogenetic follow-up of exposed subjects is needed to characterize translocation persistence, which is especially relevant for risk analyses. More work also needs to be done in the area of quantifying the role of known confounders. Characterizing the role of genotype will be especially important. Improvements in the ability to use translocation frequencies for low-dose biological dosimetry will require scoring very large numbers of cells per subject, which may be accomplished by developing a rapid automated image analysis system. This work would enhance our comprehension of the effects of low-dose radiation exposure and could lead to significant improvements in understanding the relationship between chromosome damage and human health.  相似文献   

19.
A study was made of the effect of alternating magnetic field (AMF) and ionizing radiation delivered separately or in a combination on the microorganisms differing in radio-resistance. AMF (240 and 750 E) had no pronounced bactericidal action. A synergistic increase in the sterilizing effect of ionizing radiation was demonstrated after incubation of irradiated bacteria in AMF. The radiation-magnetic technique is proposed for sterilization of preparations and articles made of non-thermoresistant materials which permits to decrease by 1.5 times the bactericidal dose of ionizing radiation.  相似文献   

20.
Given the complexity of the carcinogenic process and the lack of any mechanistic understanding of how ionizing radiation at low-level exposures affects the multistage, multimechanism processes of carcinogenesis, it is imperative that concepts and paradigms be reexamined when extrapolating from high dose to low dose. Any health effect directly linked to low-dose radiation exposure must have molecular/biochemical and biological bases. On the other hand, demonstrating some molecular/biochemical or cellular effect, using surrogate systems for the human being, does not necessarily imply a corresponding health effect. Given the general acceptance of an extrapolated LNT model, our current understanding of carcinogenesis cries out for a resolution of a real problem. How can a low-level acute, or even a chronic, exposure of ionizing radiation bring about all the different mechanisms (mutagenic, cytotoxic, and epigenetic) and genotypic/phenotypic changes needed to convert normal cells to an invasive, malignant cell, given all the protective, repair, and suppressive systems known to exist in the human body? Until recently, the prevailing paradigm that ionizing radiation brings about cancer primarily by DNA damage and its conversion to gene and chromosomal mutations, drove our interpretation of radiation carcinogenesis. Today, our knowledge includes the facts both that epigenetic events play a major role in carcinogenesis and that low-dose radiation can also induce epigenetic events in and between cells in tissues. This challenges any simple extrapolation of the LNT model. Although a recent delineation of “hallmarks” of the cancer process has helped to focus on how ionizing radiation might contribute to the induction of cancers, several other hallmarks, previously ignored—namely, the stem cells in tissues as targets for carcinogenesis and the role of cell–cell communication processes in modulating the radiation effects on the target cell—must be considered, particularly for the adaptive response, bystander effects, and genomic instability phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号