共查询到20条相似文献,搜索用时 10 毫秒
1.
Beth Marbois Letian X. Xie Samuel Choi Kathleen Hirano Kyle Hyman Catherine F. Clarke 《The Journal of biological chemistry》2010,285(36):27827-27838
Coenzyme Q (ubiquinone or Q) is a crucial mitochondrial lipid required for respiratory electron transport in eukaryotes. 4-Hydroxybenozoate (4HB) is an aromatic ring precursor that forms the benzoquinone ring of Q and is used extensively to examine Q biosynthesis. However, the direct precursor compounds and enzymatic steps for synthesis of 4HB in yeast are unknown. Here we show that para-aminobenzoic acid (pABA), a well known precursor of folate, also functions as a precursor for Q biosynthesis. A hexaprenylated form of pABA (prenyl-pABA) is normally present in wild-type yeast crude lipid extracts but is absent in yeast abz1 mutants starved for pABA. A stable 13C6-isotope of pABA (p- amino[aromatic-13C6]benzoic acid ([13C6]pABA)), is prenylated in either wild-type or abz1 mutant yeast to form prenyl-[13C6]pABA. We demonstrate by HPLC and mass spectrometry that yeast incubated with either [13C6]pABA or [13C6]4HB generate both 13C6-demethoxy-Q (DMQ), a late stage Q biosynthetic intermediate, as well as the final product 13C6-coenzyme Q. Pulse-labeling analyses show that formation of prenyl-pABA occurs within minutes and precedes the synthesis of Q. Yeast utilizing pABA as a ring precursor produce another nitrogen containing intermediate, 4-imino-DMQ6. This intermediate is produced in small quantities in wild-type yeast cultured in standard media and in abz1 mutants supplemented with pABA. We suggest a mechanism where Schiff base-mediated deimination forms DMQ6 quinone, thereby eliminating the nitrogen contributed by pABA. This scheme results in the convergence of the 4HB and pABA pathways in eukaryotic Q biosynthesis and has implications regarding the action of pABA-based antifolates. 相似文献
2.
Christopher M. Allan Agape M. Awad Jarrett S. Johnson Dyna I. Shirasaki Charles Wang Crysten E. Blaby-Haas Sabeeha S. Merchant Joseph A. Loo Catherine F. Clarke 《The Journal of biological chemistry》2015,290(12):7517-7534
Coenzyme Q (Q or ubiquinone) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail and is required for mitochondrial electron transport. In the yeast Saccharomyces cerevisiae, Q is synthesized by the products of 11 known genes, COQ1–COQ9, YAH1, and ARH1. The function of some of the Coq proteins remains unknown, and several steps in the Q biosynthetic pathway are not fully characterized. Several of the Coq proteins are associated in a macromolecular complex on the matrix face of the inner mitochondrial membrane, and this complex is required for efficient Q synthesis. Here, we further characterize this complex via immunoblotting and proteomic analysis of tandem affinity-purified tagged Coq proteins. We show that Coq8, a putative kinase required for the stability of the Q biosynthetic complex, is associated with a Coq6-containing complex. Additionally Q6 and late stage Q biosynthetic intermediates were also found to co-purify with the complex. A mitochondrial protein of unknown function, encoded by the YLR290C open reading frame, is also identified as a constituent of the complex and is shown to be required for efficient de novo Q biosynthesis. Given its effect on Q synthesis and its association with the biosynthetic complex, we propose that the open reading frame YLR290C be designated COQ11. 相似文献
3.
Magnus Bentinger 《Biochemical and biophysical research communications》2010,396(1):74-79
In addition to its role as a component of the mitochondrial respiratory chain and our only lipid-soluble antioxidant synthesized endogenously, in recent years coenzyme Q (CoQ) has been found to have an increasing number of other important functions required for normal metabolic processes. A number of genetic mutations that reduce CoQ biosynthesis are associated with serious functional disturbances that can be eliminated by dietary administration of this lipid, making CoQ deficiencies the only mitochondrial diseases which can be successfully treated at present. In connection with certain other diseases associated with excessive oxidative stress, the level of CoQ is elevated as a protective response. Aging, certain experimental conditions and several human diseases reduce this level, resulting in serious metabolic disturbances. Since dietary uptake of this lipid is limited, up-regulation of its biosynthetic pathway is of considerable clinical interest. One approach for this purpose is administration of epoxidated all-trans polyisoprenoids, which enhance both CoQ biosynthesis and levels in experimental systems. 相似文献
4.
Xie LX Ozeir M Tang JY Chen JY Jaquinod SK Fontecave M Clarke CF Pierrel F 《The Journal of biological chemistry》2012,287(28):23571-23581
Most of the Coq proteins involved in coenzyme Q (ubiquinone or Q) biosynthesis are interdependent within a multiprotein complex in the yeast Saccharomyces cerevisiae. Lack of only one Coq polypeptide, as in Δcoq strains, results in the degradation of several Coq proteins. Consequently, Δcoq strains accumulate the same early intermediate of the Q(6) biosynthetic pathway; this intermediate is therefore not informative about the deficient biosynthetic step in a particular Δcoq strain. In this work, we report that the overexpression of the protein Coq8 in Δcoq strains restores steady state levels of the unstable Coq proteins. Coq8 has been proposed to be a kinase, and we provide evidence that the kinase activity is essential for the stabilizing effect of Coq8 in the Δcoq strains. This stabilization results in the accumulation of several novel Q(6) biosynthetic intermediates. These Q intermediates identify chemical steps impaired in cells lacking Coq4 and Coq9 polypeptides, for which no function has been established to date. Several of the new intermediates contain a C4-amine and provide information on the deamination reaction that takes place when para-aminobenzoic acid is used as a ring precursor of Q(6). Finally, we used synthetic analogues of 4-hydroxybenzoic acid to bypass deficient biosynthetic steps, and we show here that 2,4-dihydroxybenzoic acid is able to restore Q(6) biosynthesis and respiratory growth in a Δcoq7 strain overexpressing Coq8. The overexpression of Coq8 and the use of 4-hydroxybenzoic acid analogues represent innovative tools to elucidate the Q biosynthetic pathway. 相似文献
5.
The oxidative stress possibly resulting from an inherited respiratory chain (RC) deficiency was investigated in a series of human cultured skin fibroblasts presenting either ubiquinone depletion or isolated defect of the various RC complexes. Taken as an index for superoxide overproduction, a significant induction of superoxide dismutase activity was observed in complex V-deficient fibroblasts harboring the NARP-mutation in the ATPase 6 gene. Superoxide dismutase induction was also noticed, albeit to a lesser extent, in complex II-deficient fibroblasts with a mutation in the nuclear gene encoding the flavoprotein subunit of the succinate dehydrogenase. No sign of oxidative stress could be found in ubiquinone-depleted fibroblasts. In all cases but complex IV-defect, increased oxidative stress was associated with increased cell death. In glucose-rich medium, apoptosis appeared as the main cell death process associated with all types of RC defect. However, similar to the great variations in oxidative stress associated with the various types of RC defect, we found that apoptotic features differed noticeably between defects. No indication of increased cell death was found in ubiquinone-depleted fibroblasts. 相似文献
6.
Coenzyme Q10 depletion is comparatively less detrimental to human cultured skin fibroblasts than respiratory chain complex deficiencies 总被引:1,自引:0,他引:1
The oxidative stress possibly resulting from an inherited respiratory chain (RC) deficiency was investigated in a series of human cultured skin fibroblasts presenting either ubiquinone depletion or isolated defect of the various RC complexes. Taken as an index for superoxide overproduction, a significant induction of superoxide dismutase activity was observed in complex V-deficient fibroblasts harboring the NARP-mutation in the ATPase 6 gene. Superoxide dismutase induction was also noticed, albeit to a lesser extent, in complex II-deficient fibroblasts with a mutation in the nuclear gene encoding the flavoprotein subunit of the succinate dehydrogenase. No sign of oxidative stress could be found in ubiquinone-depleted fibroblasts. In all cases but complex IV-defect, increased oxidative stress was associated with increased cell death. In glucose-rich medium, apoptosis appeared as the main cell death process associated with all types of RC defect. However, similar to the great variations in oxidative stress associated with the various types of RC defect, we found that apoptotic features differed noticeably between defects. No indication of increased cell death was found in ubiquinone-depleted fibroblasts. 相似文献
7.
Hsieh EJ Gin P Gulmezian M Tran UC Saiki R Marbois BN Clarke CF 《Archives of biochemistry and biophysics》2007,463(1):19-26
Coenzyme Q (Q) is a redox active lipid that is an essential component of the electron transport chain. Here, we show that steady state levels of Coq3, Coq4, Coq6, Coq7 and Coq9 polypeptides in yeast mitochondria are dependent on the expression of each of the other COQ genes. Submitochondrial localization studies indicate Coq9p is a peripheral membrane protein on the matrix side of the mitochondrial inner membrane. To investigate whether Coq9p is a component of a complex of Q-biosynthetic proteins, the native molecular mass of Coq9p was determined by Blue Native-PAGE. Coq9p was found to co-migrate with Coq3p and Coq4p at a molecular mass of approximately 1 MDa. A direct physical interaction was shown by the immunoprecipitation of HA-tagged Coq9 polypeptide with Coq4p, Coq5p, Coq6p and Coq7p. These findings, together with other work identifying Coq3p and Coq4p interactions, identify at least six Coq polypeptides in a multi-subunit Q biosynthetic complex. 相似文献
8.
Yeast App1p is a phosphatidate phosphatase (PAP) that associates with endocytic proteins at cortical actin patches. App1p, which catalyzes the conversion of phosphatidate (PA) to diacylglycerol, is unique among Mg2+-dependent PAP enzymes in that its reaction is not involved with de novo lipid synthesis. Instead, App1p PAP is thought to play a role in endocytosis because its substrate and product facilitate membrane fission/fusion events and regulate enzymes that govern vesicular movement. App1p PAP was purified from yeast and characterized with respect to its enzymological, kinetic, and regulatory properties. Maximum PAP activity was dependent on Triton X-100 (20 mm), PA (2 mm), Mg2+ (0.5 mm), and 2-mercaptoethanol (10 mm) at pH 7.5 and 30 °C. Analysis of surface dilution kinetics with Triton X-100/PA-mixed micelles yielded constants for surface binding (KsA = 11 mm), interfacial PA binding (KmB = 4.2 mol %), and catalytic efficiency (Vmax = 557 μmol/min/mg). The activation energy, turnover number, and equilibrium constant were 16.5 kcal/mol, 406 s−1, and 16.2, respectively. PAP activity was stimulated by anionic lipids (cardiolipin, phosphatidylglycerol, phosphatidylserine, and CDP-diacylglycerol) and inhibited by zwitterionic (phosphatidylcholine and phosphatidylethanolamine) and cationic (sphinganine) lipids, nucleotides (ATP and CTP), N-ethylmaleimide, propranolol, phenylglyoxal, and divalent cations (Ca2+, Mn2+, and Zn2+). App1p also utilized diacylglycerol pyrophosphate and lyso-PA as substrates with specificity constants 4- and 7-fold lower, respectively, when compared with PA. 相似文献
9.
10.
子痫前期是导致全球孕产妇和围生儿发病和死亡的主要原因之一.子痫前期的病因至今尚未明确,但是大量研究已证实多系统的氧化应激与子痫前期发病机制有关.辅酶Q10是目前受到广泛关注的一种抗氧化剂,并且已有辅酶Q10药品制剂问世.本文从细胞水平简要总结了氧化应激与子痫前期发病机制的关系,并讨论了辅酶Q10对予痫前期中氧化应激的防治作用.希望为子痫前期的早期治疗及改善预后提供新的思路. 相似文献
11.
12.
Beth Marbois Peter Gin Melissa Gulmezian Catherine F. Clarke 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2009,1791(1):69-75
Coenzyme Q is a redox active lipid essential for aerobic respiration. The Coq4 polypeptide is required for Q biosynthesis and growth on non-fermentable carbon sources, however its exact function in this pathway is not known. Here we probe the functional roles of Coq4p in a yeast Q biosynthetic polypeptide complex. A yeast coq4-1 mutant harboring an E226K substitution is unable to grow on nonfermentable carbon sources. The coq4-1 yeast mutant retains significant Coq3p O-methyltransferase activity, and mitochondria isolated from coq4-1 and coq4-2 (E121K) yeast point mutants contain normal steady state levels of Coq polypeptides, unlike the decreased levels of Coq polypeptides generally found in strains harboring coq gene deletions. Digitonin-solubilized mitochondrial extracts prepared from yeast coq4 point mutants show that Coq3p and Coq4 polypeptides no longer co-migrate as high molecular mass complexes by one- and two-dimensional Blue Native-PAGE. Similarly, gel filtration chromatography confirms that O-methyltransferase activity, Coq3p, Coq4p, and Coq7p migration are disorganized in the coq4-1 mutant mitochondria. The data suggest that Coq4p plays an essential role in organizing a Coq enzyme complex required for Q biosynthesis. 相似文献
13.
Lu-Sheng Hsieh Wen-Min Su Gil-Soo Han George M. Carman 《The Journal of biological chemistry》2015,290(18):11467-11478
Saccharomyces cerevisiae Pah1 phosphatidate phosphatase, which catalyzes the conversion of phosphatidate to diacylglycerol for triacylglycerol synthesis and simultaneously controls phosphatidate levels for phospholipid synthesis, is subject to the proteasome-mediated degradation in the stationary phase of growth. In this study, we examined the mechanism for its degradation using purified Pah1 and isolated proteasomes. Pah1 expressed in S. cerevisiae or Escherichia coli was not degraded by the 26S proteasome, but by its catalytic 20S core particle, indicating that its degradation is ubiquitin-independent. The degradation of Pah1 by the 20S proteasome was dependent on time and proteasome concentration at the pH optimum of 7.0. The 20S proteasomal degradation was conserved for human lipin 1 phosphatidate phosphatase. The degradation analysis using Pah1 truncations and its fusion with GFP indicated that proteolysis initiates at the N- and C-terminal unfolded regions. The folded region of Pah1, in particular the haloacid dehalogenase-like domain containing the DIDGT catalytic sequence, was resistant to the proteasomal degradation. The structural change of Pah1, as reflected by electrophoretic mobility shift, occurs through its phosphorylation by Pho85-Pho80, and the phosphorylation sites are located within its N- and C-terminal unfolded regions. Phosphorylation of Pah1 by Pho85-Pho80 inhibited its degradation, extending its half-life by ∼2-fold. The dephosphorylation of endogenously phosphorylated Pah1 by the Nem1-Spo7 protein phosphatase, which is highly specific for the sites phosphorylated by Pho85-Pho80, stimulated the 20S proteasomal degradation and reduced its half-life by 2.6-fold. These results indicate that the proteolysis of Pah1 by the 20S proteasome is controlled by its phosphorylation state. 相似文献
14.
Wen-Min Su Gil-Soo Han George M. Carman 《The Journal of biological chemistry》2014,289(50):34699-34708
Pah1 is the phosphatidate phosphatase in the yeast Saccharomyces cerevisiae that produces diacylglycerol for triacylglycerol synthesis and concurrently controls the levels of phosphatidate used for phospholipid synthesis. Phosphorylation and dephosphorylation of Pah1 regulate its subcellular location and phosphatidate phosphatase activity. Compared with its phosphorylation by multiple protein kinases, Pah1 is dephosphorylated by a protein phosphatase complex consisting of Nem1 (catalytic subunit) and Spo7 (regulatory subunit). In this work, we characterized the Nem1-Spo7 phosphatase complex for its enzymological, kinetic, and regulatory properties with phosphorylated Pah1. The dephosphorylation of Pah1 by Nem1-Spo7 phosphatase resulted in the stimulation (6-fold) of phosphatidate phosphatase activity. For Pah1 phosphorylated by the Pho85-Pho80 kinase complex, maximum Nem1-Spo7 phosphatase activity required Mg2+ ions (8 mm) and Triton X-100 (0.25 mm) at pH 5.0. The energy of activation for the reaction was 8.4 kcal/mol, and the enzyme was thermally labile at temperatures above 40 °C. The enzyme activity was inhibited by sodium vanadate, sodium fluoride, N-ethylmaleimide, and phenylglyoxal but was not significantly affected by lipids or nucleotides. Nem1-Spo7 phosphatase activity was dependent on the concentrations of Pah1 phosphorylated by Pho85-Pho80, Cdc28-cyclin B, PKA, and PKC with kcat and Km values of 0.29 s−1 and 81 nm, 0.11 s−1 and 127 nm, 0.10 s−1 and 46 nm, and 0.02 s−1 and 38 nm, respectively. Its specificity constant (kcat/Km) for Pah1 phosphorylated by Pho85-Pho80 was 1.6-, 4-, and 6-fold higher, respectively, than that phosphorylated by PKA, Cdc28-cyclin B, and PKC. 相似文献
15.
Arroyo A Santos-Ocaña C Ruiz-Ferrer M Padilla S Gavilán A Rodríguez-Aguilera JC Navas P 《FEBS letters》2006,580(7):1740-1746
A procedure was developed to isolate fractions enriched in plasma membrane from Caenorhabditis elegans. Coenzyme Q9 (Q9) was found in plasma membrane isolated from either wild-type or long-lived qm30 and qm51 clk-1 mutant strains of Caenorhabditis elegans, along with dietary coenzyme Q8 (Q8) and the biosynthetic intermediate demethoxy-Q9 (DMQ9). NADH was able to reduce both Q8 and Q9, but not DMQ9. Our results indicate that DMQ9 cannot achieve the same redox role of Q9 in plasma membrane, suggesting that proportion of all these Q isoforms in plasma membrane must be an important factor in establishing the clk-1 mutant phenotype. 相似文献
16.
Mahmoud Hajj Chehade Laurent Loiseau Murielle Lombard Ludovic Pecqueur Alexandre Ismail Myriam Smadja Béatrice Golinelli-Pimpaneau Caroline Mellot-Draznieks Olivier Hamelin Laurent Aussel Sylvie Kieffer-Jaquinod Natty Labessan Frédéric Barras Marc Fontecave Fabien Pierrel 《The Journal of biological chemistry》2013,288(27):20085-20092
Coenzyme Q (ubiquinone or Q) is a redox-active lipid found in organisms ranging from bacteria to mammals in which it plays a crucial role in energy-generating processes. Q biosynthesis is a complex pathway that involves multiple proteins. In this work, we show that the uncharacterized conserved visC gene is involved in Q biosynthesis in Escherichia coli, and we have renamed it ubiI. Based on genetic and biochemical experiments, we establish that the UbiI protein functions in the C5-hydroxylation reaction. A strain deficient in ubiI has a low level of Q and accumulates a compound derived from the Q biosynthetic pathway, which we purified and characterized. We also demonstrate that UbiI is only implicated in aerobic Q biosynthesis and that an alternative enzyme catalyzes the C5-hydroxylation reaction in the absence of oxygen. We have solved the crystal structure of a truncated form of UbiI. This structure shares many features with the canonical FAD-dependent para-hydroxybenzoate hydroxylase and represents the first structural characterization of a monooxygenase involved in Q biosynthesis. Site-directed mutagenesis confirms that residues of the flavin binding pocket of UbiI are important for activity. With our identification of UbiI, the three monooxygenases necessary for aerobic Q biosynthesis in E. coli are known. 相似文献
17.
18.
19.
20.
M. Battino G. P. Littarru A. Gorini R. F. Villa D.Sc. M.D. 《Neurochemical research》1996,21(12):1505-1514
The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration on respiratory chain features were studied
in synaptic and non-synaptic mitochondrial populations from cerebral cortex andhippocampus ofMacaca Fascicularis (Cynomolgus monkey). Enzymatic activity, cytochromea+a
3 content and turnover numbers of Complex IV, contents of Coenzyme Q10, of hydroperoxides and membrane fluidity were assessed in non-synaptic “perikaryal” and intra-synaptic “light” and “heavy”
mitochondria isolated: (a) from the dopaminergic ascending terminal areas of cerebral cortex of monkeys treatedp.o. with dihydroergocriptine at the dose of 2, 6 or 20 mg/kg/day for 52 weeks; (b) from the dopaminergic terminal areas ofhippocampus of monkeys treatedp.o. with dihydroergocriptine at the dose of 12 mg/kg/day before and during the induction of a Parkinson's-like syndrome by MPTP
administration (i.v., 0.3 mg/kg/day for 5 days). Dihydroergocriptine administration moderately increased both cytochrome oxidase activity and
cytochromea+a
3 content in “light” intra-synaptic mitochondria and hydroperoxides/CoQ10 ratio in all the types of mitochondria, as a consequence of the enhanced energy metabolism. The Parkinson's-like syndrome
by MPTP changed the biochemical investigated parameters, affecting both directly the respiratory chain structures,i.e. by respiratory chain complexes inhibition and indirectly,i.e. by free radical mediated damages. MPTP administration negatively influenced Complex IV activity and Turnover Number of intra-synaptic
mitochondria, without affecting the total cytochromea+a
3 amount. In all types of mitochondria and particularly on the “light” intra-synaptic ones, MPTP-induced lesion enhanced hydroperoxides/Coenzyme
Q10 molar ratio due to the fall in Coenzyme Q10 levels and the concomitant increase in hydroperoxides. Dihydroergocriptine treatment appeared to be effective in MPTP-treated
animals in improving those mitochondrial features that probably suffered free radical insults. 相似文献