首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Measurement of energy balance during voluntary overeating in rats unequivocally establishes the quantitative importance of diet-induced thermogenesis in energy balance. Like cold-induced thermogenesis, this form of heat production involves changes in the activity of the sympathetic nervous system and brown adipose tissue which suggest that this tissue may determine metabolic efficiency and resistance to obesity.  相似文献   

2.
3.
Ephrin-B1 is critical in T-cell development   总被引:1,自引:0,他引:1  
Yu G  Mao J  Wu Y  Luo H  Wu J 《The Journal of biological chemistry》2006,281(15):10222-10229
Eph kinases are the largest family of receptor tyrosine kinases, and their ligands, ephrins (EFNs), are also cell surface molecules. In this study, we investigated the role of EFNB1 and the Ephs it interacts with (collectively called EFNB1 receptors) in mouse T-cell development. In the thymus, CD8 single positive (SP) and CD4CD8 double positive (DP) cells expressed high levels of EFNB1 and EFNB1 receptors, whereas CD4 SP cells had moderate expression of both. Soluble EFNB1-Fc in fetal thymus organ culture caused significant subpopulation ratio skew, with increased CD4 SP and CD8 SP and decreased DP percentage, while the cellularity of the thymus remained constant. Moreover, in EFNB1-treated fetal thymus organ culture, CD117(+), CD25(+), DP, CD4 SP, and CD8 SP cells all had significantly enhanced proliferation history, according to bromodeoxyuridine uptake. In vitro culture of isolated thymocytes revealed that EFNB1-Fc on solid-phase protected thymocytes from anti-CD3-induced apoptosis, with concomitant augmentation of several antiapoptotic factors, particularly in CD4 SP and CD8 SP cells; on the other hand, soluble EFNB1-Fc promoted anti-CD3-induced apoptosis, as was the case in vivo. This study reveals that EFNB1 and EFNB1 receptors are critical in thymocyte development.  相似文献   

4.
5.
Bacterial flagellin triggers inflammatory responses. Phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) regulate the production of pro- and anti-inflammatory cytokines that are induced by extrinsic antigens, but the function of mTORC1 in flagellin-induced inflammatory response is unknown. The purpose of this study was to examine the role and the mechanism of PI3K/Akt/mTOR pathway in flagellin-induced cytokine expression in mouse macrophages. We observed that flagellin upregulated TNF-α time- and dose-dependently. Flagellin stimulated rapid (<15 min) PI3K/Akt/mTOR phosphorylation that was mediated by TLR5. Inhibition of PI3K with LY294002 and wortmannin, and of mTORC1 with rapamycin decreased flagellin-induced TNF-α and IL-6 expression and cell proliferation. The activation of NF-κB p65 and STAT3 was regulated by mTORC1 via degradation of IκBα and phosphorylation of STAT3 in response to flagellin, respectively. Thus, the PI3K/Akt/mTORC1 pathway regulates the innate immune response to bacterial flagellin. Rapamycin is potential therapy that can regulate host defense against pathogenic infections.  相似文献   

6.
7.
《Autophagy》2013,9(5):505-507
We recently showed that Ambra1, a WD40-containing ~130 KDa protein, is a novel activating molecule in Beclin 1-regulated autophagy and plays a role in the development of the nervous system. Ambra1 binds to Beclin 1 and favors Beclin 1/Vps34 interaction. At variance with these factors, Ambra1 is highly conserved among vertebrates only, and its expression is mostly confined to the neuroepithelium during early neurogenesis. Ambra1 functional inactivation in mouse led to lethality in utero (starting from embryonic day 14.5), characterized by severe neural tube defects associated with autophagy impairment, unbalanced cell proliferation, accumulation of ubiquitinated proteins, and excessive apoptosis. We also demonstrated that hyperproliferation was the earliest detectable abnormality in the developing neuroepithelium, followed by a wave of caspase-dependent cell death. These findings provided in vivo evidence supporting the existence of a complex interplay between autophagy, cell proliferation and cell death during neural development in mammals. In this Addendum, we review our findings in the contexts of autophagy and neurodevelopment and consider some of the issues raised.

Addendum to:

Ambra1 Regulates Autophagy and the Development of the Nervous System

G.M. Fimia, A. Stoykova, A. Romagnoli, L. Giunta, S. Di Bartolomeo, R. Nardacci, M. Corazzari, C. Fuoco, A. Ucar, P. Schwartz, P. Gruss, M. Piacentini, K. Chowdhury and F. Cecconi

Nature 2007; In press  相似文献   

8.
9.
目的:既往研究显示SePP1具有一定的抗氧化作用,而随着年龄的增加机体逐步出现一个慢性低氧、炎症状态,我们通过4%O2浓度体外培养大鼠脂肪前体细胞模拟其体内的低氧状态,进而观察常氧(21%O2)及低氧(4%02)状态下大鼠脂肪前体细胞中炎症因子(IL-6,MCP-1,SePP1)水平的变化及不同状态下硒蛋白SePP1水平的变化。方法:取6—8周SD大鼠肾周脂肪前体细胞,分别于常氧(21%O2)及低氧(4%O2)状态下进行体外培养,诱导分化后采用油红0染色进行鉴定,至第三代后,分别采用PCR及Westem Blot技术检测两种状态下脂肪前体细胞中1L-6,MCP-1,SePPl基因及蛋白表达的不同变化,同时观察不同氧浓度对脂肪前体细胞增殖的影响。结果:4%氧浓度状态下培养的脂肪前体细胞中IL-6,MCP-1的基因及蛋白表达均明显高于正常氧浓度下的脂肪前体细胞,而SePP1的基因及蛋白表达均下降,且低氧状态下脂肪前体细胞增殖较常氧状态下加快。结论:低氧培养可进一步使机体内脏脂肪组织堆积加重,造成脂肪前体细胞的炎症状态,并且可导致SePP1的表达下降,而SePP1具有一定的抗氧化作用,与机体动脉粥样硬化等心血管疾病的发生、发展有一定的关联,本实验结论为通过干预体内SePP1的水平为靶点治疗动脉粥样硬化提供了一定的实验依据,为进一步研究SePP1在低氧状态下对动脉粥样硬化的影响及作用机制提供了一定的试验基础。  相似文献   

10.
11.
Therapies that target leukocyte trafficking pathways can reduce disease activity and improve clinical outcomes in multiple sclerosis (MS). Experimental autoimmune encephalomyelitis (EAE) is a widely studied animal model that shares many clinical and histological features with MS. Chemokine-like receptor-1 (CMKLR1) is a chemoattractant receptor that is expressed by key effector cells in EAE and MS, including macrophages, subsets of dendritic cells, natural killer cells and microglia. We previously showed that CMKLR1-deficient (CMKLR1 KO) mice develop less severe clinical and histological EAE than wild-type mice. In this study, we sought to identify CMKLR1 inhibitors that would pharmaceutically recapitulate the CMKLR1 KO phenotype in EAE. We identified 2-(α-naphthoyl) ethyltrimethylammonium iodide (α-NETA) as a CMKLR1 small molecule antagonist that inhibits chemerin-stimulated β-arrestin2 association with CMKLR1, as well as chemerin-triggered CMKLR1+ cell migration. α-NETA significantly delayed the onset of EAE induced in C57BL/6 mice by both active immunization with myelin oligodendrocyte glycoprotein peptide 35-55 and by adoptive transfer of encephalitogenic T cells. In addition, α-NETA treatment significantly reduced mononuclear cell infiltrates within the CNS. This study provides additional proof-of-concept data that targeting CMKLR1:chemerin interactions may be beneficial in preventing or treating MS.  相似文献   

12.
应用免疫细胞化学染色及Western印迹检测血管平滑肌细胞(vascular smooth muscle cells,VSMC)环加氧酶-2(cyclo—oxygenase-2,COX-2)表达、NF-kB抑制蛋白α(IkB-α)水平和NF—kB p65核转位的变化:电泳迁移率改变分析(electrophoretic mobility shift assay,EMSA)确定旋覆花内酯(1—o-acetylbritannilactone,ABL)对核内NF-kB p65与DNA调控元件的结合活性的影响。结果表明,脂多糖(lipopolysaccharide,LPS)处理的VSMC,p65核转位加快,细胞核内的NF-kB p65水平快速升高,同时伴有IkB3—α的减少;用ABL预处理VSMC后,LPS诱导的p65核转位增加及IkB3—α减少受到明显抑制,抑制作用呈剂量依赖性。EMSA结果显示,LPS处理VSMC,其核蛋白与含有NF—kB结合位点的探针的结合活性升高;而用ABL预处理的VSMC,LPS诱导的核蛋白与探针结合活性的升高受到明显抑制。进而,ABL对NF—kB活化启动的下游炎性基因COX-2表达也具有较强的抑制效果。因此,ABL是一种抗炎物质,通过抑制NF—kB活化和炎性基因COX-2的表达而减弱或消除LPS诱导的VSMC炎症应答反应。  相似文献   

13.
Sepsis is a leading cause of death that is characterized by uncontrolled inflammatory response. In this study, we report that scavenger receptor BI (SR-BI), a high density lipoprotein receptor, is a critical survival factor of sepsis. We induced sepsis using an established septic animal model, cecal ligation and puncture (CLP). CLP induced 100% fatality in SR-BI-null mice but only 21% fatality in wild type littermates. SR-BI-null mice exhibited aberrant inflammatory responses with delayed inflammatory cytokine generation at the early stage of sepsis and highly elevated inflammatory cytokine production 20 h after CLP treatment. To understand the mechanisms underlying SR-BI protection, we elucidated the effect of mac ro phage SR-BI on inflammatory cytokine generation. Macrophages from SR-BI-null mice produced significantly higher levels of inflammatory cytokines than those of wild type controls in response to LPS. Importantly, transgenic mice overexpressing SR-BI were more resistant to CLP-induced septic death. Using an HEK-BlueTM cell system, we demonstrated that expression of SR-BI suppressed TLR4-mediated NF-κB activation. To understand why SR-BI-null mice had a delayed inflammatory response, we elucidated the effect of SR-BI on LPS clearance during sepsis. Compared with wild type controls, SR-BI-null mice had lower plasma LPS levels in the early stage of sepsis and elevated plasma LPS levels 20 h following CLP treatment. In conclusion, our findings demonstrate that SR-BI is a critical protective modulator of sepsis in mice. SR-BI exerts its protective function through its role in modulating inflammatory response in mac ro phages and facilitating LPS recruitment and clearance.Sepsis is one of the major causes of death that claims over 215,000 lives and costs $16.7 billion per year in America alone (14). The death rate from sepsis is high, exceeding 50%, due to poor understanding of the disease (5). Identifying molecules involved in sepsis, especially endogenous protective modulators, is of great importance not only in understanding the mechanisms but also in providing new insights for efficient therapies.Scavenger receptor BI (SR-BI2 or Scarb1) is a 75-kDa membrane protein expressed in the liver, endothelial cells, macrophages, and steroidogenic tissues (6, 7). It is a well established high density lipoprotein (HDL) receptor. It mediates intracellular uptake of cholesterol ester from HDL, which plays a key role in regulating plasma cholesterol levels and steroidogenesis (811). Mice deficient in SR-BI have a 2-fold increase in plasma cholesterol levels and develop cardiovascular diseases (10, 1216). Recent studies reveal that SR-BI is a multifunctional protein. It activates endothelial nitric-oxide synthase in endothelial cells in the presence of HDL (1720), induces apoptosis in the absence of HDL/endothelial nitric-oxide synthase (21), and protects against nitric oxide (NO)-induced oxidative damage (22). Emerging evidence indicates that specific expression of SR-BI in macrophages provides protection against the development of atherosclerosis, and importantly, it seems that SR-BI exerts this protection independently of its role in regulating lipoprotein metabolism or cholesterol efflux (2325). The mechanisms underlying the protection of macrophage SR-BI against atherosclerosis are unclear.We recently reported that SR-BI protects against endotoxin-induced animal death through suppression of NO-induced cytotoxicity (22). A recent study by Cai et al. (26) confirmed the protective role of SR-BI in LPS-induced animal death, and the authors demonstrated that SR-BI-mediated glucocorticoid synthesis contributes to its protective function. These studies suggest that SR-BI might play a role in sepsis. Interestingly, using in vitro cell culture, Vishnyakova et al. (27) reported recently that SR-BI enhances the uptake of Gram-negative bacteria, which raises a possibility that this SR-BI-mediated bacterial uptake may facilitate bacterial infection and therefore play a deleterious role in sepsis. Given the limitations of endotoxemia animal model (28), it is of importance to determine whether and how SR-BI plays a protective role in sepsis. In this study, we assessed the role of SR-BI in sepsis using an established septic animal model, cecal ligation and puncture (CLP). We demonstrated that SR-BI is a critical survival factor of sepsis in mice. In contrast to significant protection against LPS-induced animal death by SR-BI-mediated corticosterone generation, corticosterone did not provide protection against CLP-induced septic animal death, indicating that SR-BI has other functions than regulating corticosterone production in sepsis. Using a transgenic animal model, primary macrophages, and HEK-Blue cell system, we demonstrated that SR-BI modulates inflammatory response in macrophages via TLR4 signaling, which contributes to protection against septic death.  相似文献   

14.

Background

L-arginine (L-ARG) effectively protects against diabetic impediments. In addition, silent information regulator (SIRT-1) activators are emerging as a new clinical concept in treating diabetic complications. Accordingly, this study aimed at delineating a role for SIRT-1 in mediating L-ARG protection against streptozotocin (STZ) induced myocardial fibrosis.

Methods

Male Wistar rats were allocated into five groups; (i) normal control rats received 0.1 M sodium citrate buffer (pH 4.5); (ii) STZ at the dose of 60 mg/kg dissolved in 0.1 M sodium citrate buffer (pH 4.5); (iii) STZ + sirtinol (Stnl; specific inhibitor of SIRT-1; 2 mg/Kg, i.p.); (iv) STZ + L-ARG given in drinking water (2.25%) or (v) STZ + L-ARG + Stnl.

Results

L-ARG increased myocardial SIRT-1 expression as well as its protein content. The former finding was paralleled by L-ARG induced reduction in myocardial fibrotic area compared to STZ animals evidenced histopathologically. The reduction in the fibrotic area was accompanied by a decline in fibrotic markers as evident by a decrease in expression of collagen-1 along with reductions in myocardial TGF-β, fibronectin, CTGF and BNP expression together with a decrease in TGF-β and hydroxyproline contents. Moreover, L-ARG increased MMP-2 expression in addition to its protein content while decreasing expression of PAI-1. Finally, L-ARG protected against myocardial cellular death by reduction in NFκ-B mRNA as well as TNF-α level in association with decline in Casp-3 and FAS expressions andCasp-3protein content in addition to reduction of FAS positive cells. However, co-administration of L-ARG and Stnl diminished the protective effect of L-ARG against STZ induced myocardial fibrosis.

Conclusion

Collectively, these findings associate a role for SIRT-1 in L-ARG defense against diabetic cardiac fibrosis via equilibrating the balance between profibrotic and antifibrotic mediators.  相似文献   

15.
Due to wide spreading of inflammatory disease and imperfection of available anti-inflammatory drugs, mainly associated with their serious side effects, searching for new anti-inflammatory agents is a pressing problem. Natural triterpenoids and their synthetic analogs are a promising source of new drugs. In this study, we have investigated the anti-inflammatory and antitumor effects in vivo of the glycyrrhetinic acid derivative soloxolone methyl (SM), or methyl 2-cyano-3,12-dioxo-18βH-olean-9(11),1(2)-dien-30-oate. SM was shown to efficiently suppress the development of edema in a mouse model of carrageenan- or histamine- induced acute inflammation. SM also inhibited the tumor growth and reduced the tumor cell count in the ascitic fluid in mice bearing Krebs-2 carcinoma, the development of which is accompanied by an inflammatory process in the surrounding tissues.  相似文献   

16.
17.
Alphaviruses are RNA viruses transmitted between vertebrate hosts by arthropod vectors, primarily mosquitoes. How arthropods counteract alphaviruses or viruses per se is not very well understood. Drosophila melanogaster is a powerful model system for studying innate immunity against bacterial and fungal infections. In this study we report the use of a novel system to analyze replication of Sindbis virus (type species of the alphavirus genus) RNA following expression of a Sindbis virus replicon RNA from the fly genome. We demonstrate deficits in the immune deficiency (Imd) pathway enhance viral replication while mutations in the Toll pathway fail to affect replication. Similar results were observed with intrathoracic injections of whole virus and confirmed in cultured mosquito cells. These findings show that the Imd pathway mediates an antiviral response to Sindbis virus replication. To our knowledge, this is the first demonstration of an antiviral role for the Imd pathway in insects.  相似文献   

18.

Introduction

Cigarette smoke is a profound pro-inflammatory stimulus that contributes to acute lung injuries and to chronic lung disease including COPD (emphysema and chronic bronchitis). Until recently, it was assumed that resolution of inflammation was a passive process that occurred once the inflammatory stimulus was removed. It is now recognized that resolution of inflammation is a bioactive process, mediated by specialized lipid mediators, and that normal homeostasis is maintained by a balance between pro-inflammatory and pro-resolving pathways. These novel small lipid mediators, including the resolvins, protectins and maresins, are bioactive products mainly derived from dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFA). We hypothesize that resolvin D1 (RvD1) has potent anti-inflammatory and pro-resolving effects in a model of cigarette smoke-induced lung inflammation.

Methods

Primary human lung fibroblasts, small airway epithelial cells and blood monocytes were treated with IL-1β or cigarette smoke extract in combination with RvD1 in vitro, production of pro-inflammatory mediators was measured. Mice were exposed to dilute mainstream cigarette smoke and treated with RvD1 either concurrently with smoke or after smoking cessation. The effects on lung inflammation and lung macrophage populations were assessed.

Results

RvD1 suppressed production of pro-inflammatory mediators by primary human cells in a dose-dependent manner. Treatment of mice with RvD1 concurrently with cigarette smoke exposure significantly reduced neutrophilic lung inflammation and production of pro-inflammatory cytokines, while upregulating the anti-inflammatory cytokine IL-10. RvD1 promoted differentiation of alternatively activated (M2) macrophages and neutrophil efferocytosis. RvD1 also accelerated the resolution of lung inflammation when given after the final smoke exposure.

Conclusions

RvD1 has potent anti-inflammatory and pro-resolving effects in cells and mice exposed to cigarette smoke. Resolvins have strong potential as a novel therapeutic approach to resolve lung injury caused by smoke and pulmonary toxicants.  相似文献   

19.
Breast cancer is the most common non-cutaneous malignancy in American women, and better preventative strategies are needed. Epidemiological and laboratory studies point to vitamin D3 as a promising chemopreventative agent for breast cancer. Vitamin D3 metabolites induce anti-proliferative effects in breast cancer cells in vitro and in vivo, but few studies have investigated their effects in normal mammary epithelial cells. We hypothesized that 1,25(OH)2D3, the metabolically active form of vitamin D3, is growth suppressive in normal mouse mammary epithelial cells. In addition, we have previously established a role for the cytokine interleukin-1 alpha (IL1α) in the anti-proliferative effects of 1,25(OH)2D3 in normal prostate cells, and so we hypothesized that IL1α is involved in the 1,25(OH)2D3 response in mammary cells. Evaluation of cell viability, clonogenicity, senescence, and induction of cell cycle regulators p21 and p27 supported an anti-proliferative role for 1,25(OH)2D3 in mammary epithelial cells. Furthermore, 1,25(OH)2D3 increased the intracellular expression of IL1α, which was necessary for the anti-proliferative effects of 1,25(OH)2D3 in mammary cells. Together, these findings support the chemopreventative potential of vitamin D3 in the mammary gland and present a role for IL1α in regulation of mammary cell proliferation by 1,25(OH)2D3.  相似文献   

20.
锌指蛋白A20及其对炎症反应的调控   总被引:3,自引:0,他引:3  
炎症反应是机体的一种正常免疫防御机制,一旦炎症反应超出了机体对炎症的调控阈,表现为临床常见的系统性炎症反应综合征,甚至发畏成为多器官功能障碍综合征,是导致临床危重病例死亡的重要厚因。失控性炎症反直主要由NF-κB、AP-1等核转录因子过度活化以及他们之间的协同效应立导致促炎因子大量释放昕致。A20是一种Cys2/Cys2型胞液锌指蛋白,炎症时体内昕有组织细胞都能够诱导性表达,旨在限制NF-κB和AP-1活性,是炎症反应的内源性调控蛋白和组织细胞保护性蛋白。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号