首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The generation of active oxygen species by microsomes isolated from soybean seedlings was studied. NADPH-dependent superoxide anion production was 5.0 ± 0.4 nmol · min−1 mg−1 of microsomal protein. Hydrogen peroxide generation by microsomes was 1.40 ± 0.05 nmol · min−1 mg−1 of protein. Hydroxyl radical production, in the presence of ferric EDTA, evaluated through the generation of formaldehyde from dimethyl sulfoxide or tert-butyl alcohol was 0.50 ± 0.04 and 0.44 ± 0.03 nmol · min−1 mg−1, respectively. NADH proved to be suitable as cofactor for oxygen radical generation by microsomes from soybean seedlings. Because transition metals are implicated in radical generation by biological systems, the ability of microsomal membranes to reduce iron complexes was studied. Ferric ATP, ferric citrate, ferric ADP, ferric diethylenetriamine pentaacetic acid, and ferric EDTA were efficiently reduced in the presence of either NADPH or NADH as cofactor. The pattern of effectiveness of the different ferric complexes, on superoxide anion, hydrogen peroxide, and hydroxyl radical production, was similar to that found with animal microsomes. The data presented here indicate that microsomal ability to catalyze oxygen radical generation must be considered as an important contribution to cellular radical steady-state concentrations in cells from soybean seedlings.  相似文献   

2.
The Per–Arnt–Sim (PAS; named for the representative proteins: Period, Aryl hydrocarbon receptor nuclear translocator protein and Single-minded) domain of the dimeric Escherichia coli aerotaxis receptor Aer monitors cellular respiration through a redox-sensitive flavin adenine dinucleotide (FAD) cofactor. Conformational shifts in the PAS domain instigated by the oxidized FAD (FADOX)/FAD anionic semiquinone (FADASQ) redox couple traverse the HAMP (histidine kinases, adenylate cyclases, methyl-accepting chemotaxis proteins, and phosphatases) and kinase control domains of the Aer dimer to regulate CheA kinase activity. The PAS domain of Aer is unstable and has not been previously purified. Here, residue substitutions that rescue FAD binding in an FAD binding–deficient full-length Aer variant were used in combination to stabilize the Aer PAS domain. We solved the 2.4 Å resolution crystal structure of this variant, Aer-PAS-GVV, and revealed a PAS fold that contains distinct features associated with FAD-based redox sensing, such as a close contact between the Arg115 side chain and N5 of the isoalloxazine ring and interactions of the flavin with the side chains of His53 and Asn85 that are poised to convey conformational signals from the cofactor to the protein surface. In addition, we determined the FADox/FADASQ formal potentials of Aer-PAS-GVV and full-length Aer reconstituted into nanodiscs. The Aer redox couple is remarkably low at –289.6 ± 0.4 mV. In conclusion, we propose a model for Aer energy sensing based on the low potential of Aer-PAS–FADox/FADASQ couple and the inability of Aer-PAS to bind to the fully reduced FAD hydroquinone.  相似文献   

3.
Membrane-associated lipoxygenase from green tomato (Lycopersicon esculentum L. cv Caruso) fruit has been purified 49-fold to a specific activity of 8.3 μmol·min−1·mg−1 of protein by solubilization of microsomal membranes with Triton X-100, followed by anion- exchange and size-exclusion chromatography. The apparent molecular mass of the enzyme was estimated to be 97 and 102 kD by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size-exclusion chromatography, respectively. The purified membrane lipoxygenase preparation consisted of a single major band following sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which cross-reacts with immunoserum raised against soluble soybean lipoxygenase 1. It has a pH optimum of 6.5, an apparent Km of 6.2 μm, and Vmax of 103. μmol·min−1·mg−1 of protein with linoleic acid as substrate. Corresponding values for the partially purified soluble lipoxygenase from tomato are 3.8 μm and 1.3 μmol·min−1·mg−1 of protein, respectively. Thus, the membrane-associated enzyme is kinetically distinguishable from its soluble counterpart. Sucrose density gradient fractionation of the isolated membranes indicated that the membrane-associated lipoxygenase sediments with thylakoids. A lipoxygenase band with a corresponding apparent mol wt of 97,000 was identified immunologically in sodium dodecyl sulfate-polyacrylamide gel electrophoresis-resolved proteins of purified thylakoids prepared from intact chloroplasts isolated from tomato leaves and fruit.  相似文献   

4.
Ice Nucleation Activity in Lichens   总被引:7,自引:0,他引:7       下载免费PDF全文
A newly discovered form of biological ice nucleus associated with lichens is described. Ice nucleation spectra of a variety of lichens from the southwestern United States were measured by the drop-freezing method. Several epilithic lichen samples of the genera Rhizoplaca, Xanthoparmelia, and Xanthoria had nuclei active at temperatures as warm as −2.3°C and had densities of 2.3 × 106 to more than 1 × 108 nuclei g−1 at −5°C (2 to 4 orders of magnitude higher than any plants infected with ice nucleation-active bacteria). Most lichens tested had nucleation activity above −8°C. Lichen substrates (rocks, plants, and soil) showed negligible activity above −8°C. Ice nucleation-active bacteria were not isolated from the lichens, and activity was not destroyed by heat (70°C) or sonication, indicating that lichen-associated ice nuclei are nonbacterial in origin and differ chemically from previously described biological ice nuclei. An axenic culture of the lichen fungus Rhizoplaca chrysoleuca showed detectable ice nucleation activity at −1.9°C and an ice nucleation density of 4.5 × 106 nuclei g−1 at −5°C. It is hypothesized that these lichens, which are both frost tolerant and dependent on atmospheric moisture, derive benefit in the form of increased moisture deposition as a result of ice nucleation.  相似文献   

5.
Respiratory NADH dehydrogenase-2 (NDH-2) of Escherichia coli is a peripheral membrane-bound flavoprotein. By eliminating its C-terminal region, a water soluble truncated version was obtained in our laboratory. Overall conformation of the mutant version resembles the wild-type protein. Considering these data and the fact that the mutant was obtained as an apo-protein, the truncated version is an ideal model to study the interaction between the enzyme and its cofactor. Here, the FAD binding properties of this version were characterized using far-UV circular dichroism (CD), differential scanning calorimetry (DSC), limited proteolysis, and steady-state and dynamic fluorescence spectroscopy. CD spectra, thermal unfolding and DSC profiles did not reveal any major difference in secondary structure between apo- and holo-protein. In addition, digestion site accessibility and tertiary conformation were similar for both proteins, as seen by comparable chymotryptic cleavage patterns. FAD binding to the apo-protein produced a parallel increment of both FAD fluorescence quantum yield and steady-state emission anisotropy. On the other hand, addition of FAD quenched the intrinsic fluorescence emission of the truncated protein, indicating that the flavin cofactor should be closely located to the protein Trp residues. Analysis of the steady-state and dynamic fluorescence data confirms the formation of the holo-protein with a 1:1 binding stoichiometry and an association constant KA = 7.0(± 0.8) × 104 M− 1. Taken together, the FAD–protein interaction is energetically favorable and the addition of FAD is not necessary to induce the enzyme folded state. For the first time, a detailed characterization of the flavin:protein interaction was performed among alternative NADH dehydrogenases.  相似文献   

6.
Citrulline formation by both human neuronal nitric-oxide synthase (nNOS) and mouse macrophage inducible NOS was inhibited by the hydrogen sulfide (H2S) donor Na2S with IC50 values of ∼2.4·10−5 and ∼7.9·10−5 m, respectively, whereas human endothelial NOS was hardly affected at all. Inhibition of nNOS was not affected by the concentrations of l-arginine (Arg), NADPH, FAD, FMN, tetrahydrobiopterin (BH4), and calmodulin, indicating that H2S does not interfere with substrate or cofactor binding. The IC50 decreased to ∼1.5·10−5 m at pH 6.0 and increased to ∼8.3·10−5 m at pH 8.0. Preincubation of concentrated nNOS with H2S under turnover conditions decreased activity after dilution by ∼70%, suggesting irreversible inhibition. However, when calmodulin was omitted during preincubation, activity was not affected, suggesting that irreversible inhibition requires both H2S and NO. Likewise, NADPH oxidation was inhibited with an IC50 of ∼1.9·10−5 m in the presence of Arg and BH4 but exhibited much higher IC50 values (∼1.0–6.1·10−4 m) when Arg and/or BH4 was omitted. Moreover, the relatively weak inhibition of nNOS by Na2S in the absence of Arg and/or BH4 was markedly potentiated by the NO donor 1-(hydroxy-NNO-azoxy)-l-proline, disodium salt (IC50 ∼ 1.3–2.0·10−5 m). These results suggest that nNOS and inducible NOS but not endothelial NOS are irreversibly inhibited by H2S/NO at modest concentrations of H2S in a reaction that may allow feedback inhibition of NO production under conditions of excessive NO/H2S formation.  相似文献   

7.
Impairments in mitochondrial energy metabolism have been implicated in human genetic diseases associated with mitochondrial and nuclear DNA mutations, neurodegenerative and cardiovascular disorders, diabetes, and aging. Alteration in mitochondrial complex I structure and activity has been shown to play a key role in Parkinson''s disease and ischemia/reperfusion tissue injury, but significant difficulty remains in assessing the content of this enzyme complex in a given sample. The present study introduces a new method utilizing native polyacrylamide gel electrophoresis in combination with flavin fluorescence scanning to measure the absolute content of complex I, as well as α-ketoglutarate dehydrogenase complex, in any preparation. We show that complex I content is 19 ± 1 pmol/mg of protein in the brain mitochondria, whereas varies up to 10-fold in different mouse tissues. Together with the measurements of NADH-dependent specific activity, our method also allows accurate determination of complex I catalytic turnover, which was calculated as 104 min−1 for NADH:ubiquinone reductase in mouse brain mitochondrial preparations. α-ketoglutarate dehydrogenase complex content was determined to be 65 ± 5 and 123 ± 9 pmol/mg protein for mouse brain and bovine heart mitochondria, respectively. Our approach can also be extended to cultured cells, and we demonstrated that about 90 × 103 complex I molecules are present in a single human embryonic kidney 293 cell. The ability to determine complex I content should provide a valuable tool to investigate the enzyme status in samples after in vivo treatment in mutant organisms, cells in culture, or human biopsies.  相似文献   

8.
9.
A generic approach for flavoenzyme immobilization was developed in which the flavin cofactor is used for anchoring enzymes onto the carrier. It exploits the tight binding of flavin cofactors to their target apo proteins. The method was tested for phenylacetone monooxygenase (PAMO) which is a well-studied and industrially interesting biocatalyst. Also a fusion protein was tested: PAMO fused to phosphite dehydrogenase (PTDH-PAMO). The employed flavin cofactor derivative, N6-(6-carboxyhexyl)-FAD succinimidylester (FAD*), was covalently anchored to agarose beads and served for apo enzyme immobilization by their reconstitution into holo enzymes. The thus immobilized enzymes retained their activity and remained active after several rounds of catalysis. For both tested enzymes, the generated agarose beads contained 3 U per g of dry resin. Notably, FAD-immobilized PAMO was found to be more thermostable (40% activity after 1 h at 60 °C) when compared to PAMO in solution (no activity detected after 1 h at 60 °C). The FAD-decorated agarose material could be easily recycled allowing multiple rounds of immobilization. This method allows an efficient and selective immobilization of flavoproteins via the FAD flavin cofactor onto a recyclable carrier.  相似文献   

10.
Beneficial systemic effects of regular physical exercise have been demonstrated to reduce risks of a number of age-related disorders. Antioxidant capacity adaptations are amongst these fundamental changes in response to exercise training. However, it has been claimed that acute physical exercise performed at high intensity (>60% of maximal oxygen uptake) may result in oxidative stress, due to reactive oxygen species being generated excessively by enhanced oxygen consumption. The aim of this study was to evaluate the effect of high-intensity discontinuous training (HIDT), characterized by repeated variations of intensity and changes of redox potential, on oxidative damage. Twenty long-distance masters runners (age 47.8±7.8 yr) on the basis of the individual values of gas exchange threshold were assigned to a different 8-weeks training program: continuous moderate-intensity training (MOD, n = 10) or HIDT (n = 10). In both groups before (PRE) and after (POST) training we examined the following oxidative damage markers: thiobarbituric acid reactive substances (TBARS) as marker of lipid peroxidation; protein carbonyls (PC) as marker of protein oxidation; 8-hydroxy-2-deoxy-guanosine (8-OH-dG) as a biomarker of DNA base modifications; and total antioxidant capacity (TAC) as indicator of the overall antioxidant system. Training induced a significant (p<0.05) decrease in resting plasma TBARS concentration in both MOD (7.53±0.30 and 6.46±0.27 µM, PRE and POST respectively) and HIDT (7.21±0.32 and 5.85±0.46 µM, PRE and POST respectively). Resting urinary 8-OH-dG levels were significantly decreased in both MOD (5.50±0.66 and 4.16±0.40 ng mg−1creatinine, PRE and POST respectively) and HIDT (4.52±0.50 and 3.18±0.34 ng mg−1creatinine, PRE and POST respectively). Training both in MOD and HIDT did not significantly modify plasma levels of PC. Resting plasma TAC was reduced in MOD while no significant changes were observed in HIDT. In conclusion, these results suggest that in masters runners high-intensity discontinuous does not cause higher level of exercise-induced oxidative stress than continuous moderate-intensity training, inducing similar beneficial effects on redox homeostasis.  相似文献   

11.
3-Hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1 is an NADH-specific flavoprotein monooxygenase that catalyzes the para-hydroxylation of 3-hydroxybenzoate (3HB) to form 2,5-dihydroxybenzoate (2,5-DHB). Based on results from stopped-flow spectrophotometry, the reduced enzyme-3HB complex reacts with oxygen to form a C4a-peroxy flavin with a rate constant of 1.13 ± 0.01 × 106 m−1 s−1 (pH 8.0, 4 °C). This intermediate is subsequently protonated to form a C4a-hydroperoxyflavin with a rate constant of 96 ± 3 s−1. This step shows a solvent kinetic isotope effect of 1.7. Based on rapid-quench measurements, the hydroxylation occurs with a rate constant of 36 ± 2 s−1. 3HB6H does not exhibit substrate inhibition on the flavin oxidation step, a common characteristic found in most ortho-hydroxylation enzymes. The apparent kcat at saturating concentrations of 3HB, NADH, and oxygen is 6.49 ± 0.02 s−1. Pre-steady state and steady-state kinetic data were used to construct the catalytic cycle of the reaction. The data indicate that the steps of product release (11.7 s−1) and hydroxylation (36 ± 2 s−1) partially control the overall turnover.  相似文献   

12.
Interspecies electron transfer (IET) is important for many anaerobic processes, but is critically dependent on mode of transfer. In particular, direct IET (DIET) has been recently proposed as a metabolically advantageous mode compared with mediated IET (MIET) via hydrogen or formate. We analyse relative feasibility of these IET modes by modelling external limitations using a reaction-diffusion-electrochemical approach in a three-dimensional domain. For otherwise identical conditions, external electron transfer rates per cell pair (cp) are considerably higher for formate-MIET (317 × 103 e cp−1 s−1) compared with DIET (44.9 × 103 e cp−1 s−1) or hydrogen-MIET (5.24 × 103 e cp−1 s−1). MIET is limited by the mediator concentration gradient at which reactions are still thermodynamically feasible, whereas DIET is limited through redox cofactor (for example, cytochromes) activation losses. Model outcomes are sensitive to key parameters for external electron transfer including cofactor electron transfer rate constant and redox cofactor area, concentration or count per cell, but formate-MIET is generally more favourable for reasonable parameter ranges. Extending the analysis to multiple cells shows that the size of the network does not strongly influence relative or absolute favourability of IET modes. Similar electron transfer rates for formate-MIET and DIET can be achieved in our case with a slight (0.7 kJ mol−1) thermodynamic advantage for DIET. This indicates that close to thermodynamic feasibility, external limitations can be compensated for by improved metabolic efficiency when using direct electron transfer.  相似文献   

13.
A scheme for the detoxification of superoxide in Pyrococcus furiosus has been previously proposed in which superoxide reductase (SOR) reduces (rather than dismutates) superoxide to hydrogen peroxide by using electrons from reduced rubredoxin (Rd). Rd is reduced with electrons from NAD(P)H by the enzyme NAD(P)H:rubredoxin oxidoreductase (NROR). The goal of the present work was to reconstitute this pathway in vitro using recombinant enzymes. While recombinant forms of SOR and Rd are available, the gene encoding P. furiosus NROR (PF1197) was found to be exceedingly toxic to Escherichia coli, and an active recombinant form (rNROR) was obtained via a fusion protein expression system, which produced an inactive form of NROR until cleavage. This allowed the complete pathway from NAD(P)H to the reduction of SOR via NROR and Rd to be reconstituted in vitro using recombinant proteins. rNROR is a 39.9-kDa protein whose sequence contains both flavin adenine dinucleotide (FAD)- and NAD(P)H-binding motifs, and it shares significant similarity with known and putative Rd-dependent oxidoreductases from several anaerobic bacteria, both mesophilic and hyperthermophilic. FAD was shown to be essential for activity in reconstitution assays and could not be replaced by flavin mononucleotide (FMN). The bound FAD has a midpoint potential of −173 mV at 23°C (−193 mV at 80°C). Like native NROR, the recombinant enzyme catalyzed the NADPH-dependent reduction of rubredoxin both at high (80°C) and low (23°C) temperatures, consistent with its proposed role in the superoxide reduction pathway. This is the first demonstration of in vitro superoxide reduction to hydrogen peroxide using NAD(P)H as the electron donor in an SOR-mediated pathway.  相似文献   

14.
The nitric oxide synthase interacting protein (NOSIP), an E3-ubiquitin ligase, is involved in various processes like neuronal development, craniofacial development, granulopoiesis, mitogenic signaling, apoptosis, and cell proliferation. The best-characterized function of NOSIP is the regulation of endothelial nitric oxide synthase activity by translocating the membrane-bound enzyme to the cytoskeleton, specifically in the G2 phase of the cell cycle. For this, NOSIP itself has to be translocated from its prominent localization, the nucleus, to the cytoplasm. Nuclear import of NOSIP was suggested to be mediated by the canonical transport receptors importin α/β. Recently, we found NOSIP in a proteomic screen as a potential importin 13 cargo. Here, we describe the nuclear shuttling characteristics of NOSIP in living cells and in vitro and show that it does not interact directly with importin α. Instead, it formed stable complexes with several importins (−β, −7, −β/7, −13, and transportin 1) and was also imported into the nucleus in digitonin-permeabilized cells by these factors. In living HeLa cells, transportin 1 seems to be the major nuclear import receptor for NOSIP. A detailed analysis of the NOSIP-transportin 1 interaction revealed a high affinity and an unusual binding mode, involving the N-terminal half of transportin 1. In contrast to nuclear import, nuclear export of NOSIP seems to occur mostly by passive diffusion. Thus, our results uncover additional layers in the larger process of endothelial nitric oxide synthase regulation.  相似文献   

15.
Marine microbes use alginate lyases to degrade and catabolize alginate, a major cell wall matrix polysaccharide of brown seaweeds. Microbes frequently contain multiple, apparently redundant alginate lyases, raising the question of whether these enzymes have complementary functions. We report here on the molecular cloning and functional characterization of three exo-type oligoalginate lyases (OalA, OalB, and OalC) from Vibrio splendidus 12B01 (12B01), a marine bacterioplankton species. OalA was most active at 16°C, had a pH optimum of 6.5, and displayed activities toward poly-β-d-mannuronate [poly(M)] and poly-α-l-guluronate [poly(G)], indicating that it is a bifunctional enzyme. OalB and OalC were most active at 30 and 35°C, had pH optima of 7.0 and 7.5, and degraded poly(M·G) and poly(M), respectively. Detailed kinetic analyses of oligoalginate lyases with poly(G), poly(M), and poly(M·G) and sodium alginate as substrates demonstrated that OalA and OalC preferred poly(M), whereas OalB preferred poly(M·G). The catalytic efficiency (kcat/Km) of OalA against poly(M) increased with decreasing size of the substrate. OalA showed kcat/Km from 2,130 mg−1 ml s−1 for the trisaccharide to 224 mg−1 ml s−1 for larger oligomers of ∼50 residues, and 50.5 mg−1 ml s−1 for high-molecular-weight alginate. Although OalA was most active on the trisaccharide, OalB and OalC preferred dimers. Taken together, our results indicate that these three Oals have complementary substrate scopes and temperature and pH adaptations.  相似文献   

16.
17.
Oscillatory behavior of mitochondrial inner membrane potential (ΔΨm) is commonly observed in cells subjected to oxidative or metabolic stress. In cardiac myocytes, the activation of inner membrane pores by reactive oxygen species (ROS) is a major factor mediating intermitochondrial coupling, and ROS-induced ROS release has been shown to underlie propagated waves of ΔΨm depolarization as well as synchronized limit cycle oscillations of ΔΨm in the network. The functional impact of ΔΨm instability on cardiac electrophysiology, Ca2+ handling, and even cell survival, is strongly affected by the extent of such intermitochondrial coupling. Here, we employ a recently developed wavelet-based analytical approach to examine how different substrates affect mitochondrial coupling in cardiac cells, and we also determine the oscillatory coupling properties of mitochondria in ventricular cells in intact perfused hearts. The results show that the frequency of ΔΨm oscillations varies inversely with the size of the oscillating mitochondrial cluster, and depends on the strength of local intermitochondrial coupling. Time-varying coupling constants could be quantitatively determined by applying a stochastic phase model based on extension of the well-known Kuramoto model for networks of coupled oscillators. Cluster size-frequency relationships varied with different substrates, as did mitochondrial coupling constants, which were significantly larger for glucose (7.78 × 10−2 ± 0.98 × 10−2 s−1) and pyruvate (7.49 × 10−2 ± 1.65 × 10−2 s−1) than lactate (4.83 × 10−2 ± 1.25 × 10−2 s−1) or β-hydroxybutyrate (4.11 × 10−2 ± 0.62 × 10−2 s−1). The findings indicate that mitochondrial spatiotemporal coupling and oscillatory behavior is influenced by substrate selection, perhaps through differing effects on ROS/redox balance. In particular, glucose-perfusion generates strong intermitochondrial coupling and temporal oscillatory stability. Pathological changes in specific catabolic pathways, which are known to occur during the progression of cardiovascular disease, could therefore contribute to altered sensitivity of the mitochondrial network to oxidative stress and emergent ΔΨm instability, ultimately scaling to produce organ level dysfunction.  相似文献   

18.
The activity of the respiratory enzyme fumarate reductase (FRD) is dependent on the covalent attachment of the redox cofactor flavin adenine dinucleotide (FAD). We demonstrate that the FAD assembly factor SdhE, which flavinylates and activates the respiratory enzyme succinate dehydrogenase (SDH), is also required for the complete activation and flavinylation of FRD. SdhE interacted with, and flavinylated, the flavoprotein subunit FrdA, whilst mutations in a conserved RGxxE motif impaired the complete flavinylation and activation of FRD. These results are of widespread relevance because SDH and FRD play an important role in cellular energetics and are required for virulence in many important bacterial pathogens.  相似文献   

19.
Nitric oxide (NO) and reactive oxygen species (ROS) play key roles in plant immunity. However, the regulatory mechanisms of the production of these radicals are not fully understood. Hypersensitive response (HR) cell death requires the simultaneous and balanced production of NO and ROS. In this study we indentified NbRibA encoding a bifunctional enzyme, guanosine triphosphate cyclohydrolase II/3,4‐dihydroxy‐2‐butanone‐4‐phosphate synthase, which participates in the biosynthesis of flavin, by screening genes related to mitogen‐activated protein kinase‐mediated cell death, using virus‐induced gene silencing. Levels of endogenous riboflavin and its derivatives, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are important prosthetic groups for several enzymes participating in redox reactions, decreased in NbRibA‐silenced Nicotiana benthamiana. Silencing NbRibA compromised not only HR cell death, but also the NO and ROS production induced by INF1 elicitin and a constitutively active form of NbMEK2 (NbMEK2DD), and also induced high susceptibility to oomycete Phytophthora infestans and ascomycete Colletotrichum orbiculare. Compromised radical production and HR cell death induced by INF1 in NbRibA‐silenced leaves were rescued by adding riboflavin, FMN or FAD. These results indicate that flavin biosynthesis participates in regulating NO and ROS production, and HR cell death.  相似文献   

20.
Staphylococcus aureus is a common hospital- and community-acquired bacterium that can cause devastating infections and is often multidrug-resistant. Iron acquisition is required by S. aureus during an infection, and iron acquisition pathways are potential targets for therapies. The gene NWMN2274 in S. aureus strain Newman is annotated as an oxidoreductase of the diverse pyridine nucleotide-disulfide oxidoreductase (PNDO) family. We show that NWMN2274 is an electron donor to IsdG and IsdI catalyzing the degradation of heme, and we have renamed this protein IruO. Recombinant IruO is a FAD-containing NADPH-dependent reductase. In the presence of NADPH and IruO, either IsdI or IsdG degraded bound heme 10-fold more rapidly than with the chemical reductant ascorbic acid. Varying IsdI-heme substrate and monitoring loss of the heme Soret band gave a Km of 15 ± 4 μm, a kcat of 5.2 ± 0.7 min−1, and a kcat/Km of 5.8 × 103 m−1 s−1. From HPLC and electronic spectra, the major heme degradation products are 5-oxo-δ-bilirubin and 15-oxo-β-bilirubin (staphylobilins), as observed with ascorbic acid. Although heme degradation by IsdI or IsdG can occur in the presence of H2O2, the addition of catalase and superoxide dismutase did not disrupt NADPH/IruO heme degradation reactions. The degree of electron coupling between IruO and IsdI or IsdG remains to be determined. Homologs of IruO were identified by sequence similarity in the genomes of Gram-positive bacteria that possess IsdG-family heme oxygenases. A phylogeny of these homologs identifies a distinct clade of pyridine nucleotide-disulfide oxidoreductases likely involved in iron uptake systems. IruO is the likely in vivo reductant required for heme degradation by S. aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号