首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although thebiosynthetic arrest of the F508 mutant of cystic fibrosistransmembrane conductance regulator (CFTR) can be partially reversed byphysical and chemical means, recent evidence suggests that thefunctional stability of the mutant protein after reaching the cellsurface is compromised. To understand the molecular basis for thisobservation, the current study directly measured the half-life ofF508 and wild-type CFTR at the cell surface of transfectedLLC-PK1 cells. Plasma membrane CFTR expression over timewas characterized biochemically and functionally in these polarizedepithelial cells. Surface biotinylation, streptavidin extraction, andquantitative immunoblot analysis determined the biochemical half-lifeof plasma membrane F508 CFTR to be ~4 h, whereas the plasmamembrane half-life of wild-type CFTR exceeded 48 h. Thisdifference in biochemical stability correlated with CFTR-mediatedtransport function. These findings indicate that the F508 mutationdecreases the biochemical stability of CFTR at the cell surface. Weconclude that the F508 mutation triggers more rapid internalizationof CFTR and/or its preferential sorting to a pathway of rapid degradation.

  相似文献   

2.
The most common mutation ofthe cystic fibrosis transmembrane conductance regulator(CFTR), F508, is a trafficking mutant that has prolongedassociations with molecular chaperones and is rapidly degraded, atleast in part by the ubiquitin-proteasome system. Sodium4-phenylbutyrate (4PBA) improves F508-CFTR trafficking and functionin vitro in cystic fibrosis epithelial cells and in vivo. To furtherunderstand the mechanism of action of 4PBA, we tested the hypothesisthat 4PBA modulates the targeting of F508-CFTR for ubiquitinationand degradation by reducing the expression of Hsc70 in cystic fibrosisepithelial cells. IB3-1 cells (genotype F508/W1282X) that weretreated with 0.05-5 mM 4PBA for 2 days in culture demonstrated adose-dependent reduction in Hsc70 protein immunoreactivity and mRNAlevels. Immunoprecipitation with Hsc70-specific antiserum demonstratedthat Hsc70 and CFTR associated under control conditions and thattreatment with 4PBA reduced these complexes. Levels of immunoreactiveHsp40, Hdj2, Hsp70, Hsp90, and calnexin were unaffected by 4PBAtreatment. These data suggest that 4PBA may improve F508-CFTRtrafficking by allowing a greater proportion of mutant CFTR to escapeassociation with Hsc70.

  相似文献   

3.
The variety of mitochondrial morphology in healthy and diseasedcells can be explained by regulated mitochondrial fusion. Previously, amitochondrial outer membrane fraction containing fusogenic, aluminumfluoride (AlF4)-sensitiveGTP-binding proteins (mtg) was separated from rat liver (J. D. Cortese,Exp. Cell Res. 240: 122-133,1998). Quantitative confocal microscopy now reveals that mtgtransiently increases mitochondrial membrane potential () when added to permeabilized rat hepatocytes(15%), rat fibroblasts (19%), and rabbit myocytes (10%). This largemtg-induced increment is blocked by fusogenic GTPase-specificmodulators such as guanosine 5'-O-(3-thiotriphosphate),excess GTP (>100 µM), andAlF4, suggesting a linkage between and mitochondrial fusion. Accordingly, stereometric analysisshows that decreasing or ATP synthesis with respiratory inhibitors limits mtg- andAlF4-induced mitochondrial fusion. Also, a specific G protein inhibitor(Bordetellapertussis toxin) hyperpolarizesmitochondria and leads to a loss ofAlF4-dependent mitochondrialfusion. These results place mtg-induced changes upstream ofAlF4-induced mitochondrial fusion,suggesting that GTPases exert -dependent control of the fusionprocess. Mammalian mitochondrial morphology thus can be modulated bycellular energetics.  相似文献   

4.
The F508 mutationreduces the amount of cystic fibrosis transmembrane conductanceregulator (CFTR) expressed in the plasma membrane of epithelial cells.However, a reduced temperature, butyrate compounds, and "chemicalchaperones" allow F508-CFTR to traffic to the plasma membrane andincrease Cl permeability in heterologous and nonpolarizedcells. Because trafficking is affected by the polarized state ofepithelial cells and is cell-type dependent, our goal was to determinewhether these maneuvers induce F508-CFTR trafficking to the apicalplasma membrane in polarized epithelial cells. To this end, wegenerated and characterized a line of polarized Madin-Darby caninekidney (MDCK) cells stably expressing F508-CFTR tagged with greenfluorescent protein (GFP). A reduced temperature, glycerol, butyrate,or DMSO had no effect on 8-(4-chlorophenylthio)-cAMP(CPT-cAMP)-stimulated transepithelial Cl secretion acrosspolarized monolayers. However, when the basolateral membrane waspermeabilized, butyrate, but not the other experimental maneuvers,increased the CPT-cAMP-stimulated Cl current across theapical plasma membrane. Thus butyrate increased the amount offunctional F508-CFTR in the apical plasma membrane. Butyrate failedto stimulate transepithelial Cl secretion because ofinhibitory effects on Cl uptake across the basolateralmembrane. These observations suggest that studies on heterologous andnonpolarized cells should be interpreted cautiously. The GFP tag onF508-CFTR will allow investigation of F508-CFTR trafficking inliving, polarized MDCK epithelial cells in real time.

  相似文献   

5.
Protein kinase C(PKC) regulates cystic fibrosis transmembrane conductance regulator(CFTR) channel activity but the PKC signaling mechanism is not yetknown. The goal of these studies was to identify PKC isotype(s)required for control of CFTR function. CFTR activity was measured as36Cl efflux in a Chinese hamsterovary cell line stably expressing wild-type CFTR (CHO-wtCFTR) and in aCalu-3 cell line. Chelerythrine, a PKC inhibitor, delayed increasedCFTR activity induced with phorbol 12-myristate 13-acetate or with thecAMP-generating agents ()-epinephrine or forskolin plus8-(4-chlorophenylthio)adenosine 3',5'- cyclicmonophosphate. Immunoblot analysis of Calu-3 cells revealed thatPKC-, -II, -, -, and- were expressed in confluent cell cultures. Pretreatment of cellmonolayers with Lipofectin plus antisense oligonucleotide to PKC-for 48 h prevented stimulation of CFTR with ()-epinephrine,reduced PKC- activity in unstimulated cells by 52.1%, and decreasedPKC- mass by 76.1% but did not affect hormone-activated proteinkinase A activity. Sense oligonucleotide to PKC- and antisenseoligonucleotide to PKC- and - did not alter()-epinephrine-stimulated CFTR activity. These results demonstrate the selective regulation of CFTR function by constitutively active PKC-.

  相似文献   

6.
An HEK-293 cell line stably expressing the humanrecombinant ClC-2 Cl channel was used in patch-clampstudies to study its regulation. The relative permeabilityPx/PCl calculated fromreversal potentials was I > Cl = NO3 = SCNBr. Theabsolute permeability calculated from conductance ratios wasCl = Br = NO3  SCN > I. The channel was activatedby cAMP-dependent protein kinase (PKA), reduced extracellular pH, oleicacid (C:18 cis9), elaidic acid (C:18trans9), arachidonic acid (AA; C:20cis5,8,11,14), and by inhibitors of AA metabolism,5,8,11,14-eicosatetraynoic acid (ETYA; C:20trans5,8,11,14),-methyl-4-(2-methylpropyl)benzeneacetic acid (ibuprofen), and2-phenyl-1,2-benzisoselenazol-3-[2H]-one (PZ51, ebselen). ClC-2Cl channels were activated by a combination of forskolinplus IBMX and were inhibited by the cell-permeant myristoylated PKAinhibitor (mPKI). Channel activation by reduction of bath pH wasincreased by PKA and prevented by mPKI. AA activation of the ClC-2Cl channel was not inhibited by mPKI or staurosporine andwas therefore independent of PKA or protein kinase C activation.

  相似文献   

7.
Calcium channels are composed of a pore-forming subunit,1, and at least two auxiliarysubunits, - and2-subunits. It is well knownthat -subunits regulate most of the properties of the channel. Thefunction of 2-subunit isless understood. In this study, the effects of the calcium channel2-subunit on the neuronal1E voltage-gated calciumchannel expressed in Xenopus oocyteswas investigated without and with simultaneous coexpression of eitherthe 1b- or the2a-subunit. Most aspects of1E function were affected by2. Thus2 caused a shift in thecurrent-voltage and conductance-voltage curves toward more positivepotentials and accelerated activation, deactivation, and theinstallation of the inactivation process. In addition, the efficiencywith which charge movement is coupled to pore opening assessed bydetermining ratios of limiting conductance to limiting charge movementwas decreased by 2 byfactors that ranged from 1.6 (P < 0.01) for 1E-channels to 3.0 (P < 0.005) for1E1b-channels. These results indicate that2 facilitates the expressionand the maturation of1E-channels and converts thesechannels into molecules responding more rapidly to voltage.

  相似文献   

8.
Westudied the interplay between matrix Ca2+ concentration([Ca2+]) and mitochondrial membrane potential() in regulation of the mitochondrial permeability transition(MPT) during anoxia and reoxygenation. Without Ca2+loading, anoxia caused near-synchronous dissipation,mitochondrial Ca2+ efflux, and matrix volume shrinkage whena critically low PO2 was reached, which wasrapidly reversible upon reoxygenation. These changes were related toelectron transport inhibition, not MPT. Cyclosporin A-sensitive MPT didoccur when extramitochondrial [Ca2+] was increased topromote significant Ca2+ uptake during anoxia, depending onthe Ca2+ load size and ability to maintain . However,when [Ca2+] was increased after complete dissipation, MPT did not occur until reoxygenation, at which timereactivation of electron transport led to partial regeneration.In the setting of elevated extramitochondrial Ca2+, thisenhanced matrix Ca2+ uptake while promoting MPT because ofless than full recovery of . The interplay between andmatrix [Ca2+] in accelerating or inhibiting MPT duringanoxia/reoxygenation has implications for preventing reoxygenationinjury associated with MPT.

  相似文献   

9.
Thickening of airway mucus and lungdysfunction in cystic fibrosis (CF) results, at least in part, fromabnormal secretion of Cl and HCO3across the tracheal epithelium. The mechanism of the defect in HCO3 secretion is ill defined; however, a lack ofapical Cl/HCO3 exchange may exist inCF. To test this hypothesis, we examined the expression ofCl/HCO3 exchangers in trachealepithelial cells exhibiting physiological features prototypical ofcystic fibrosis [CFT-1 cells, lacking a functional cystic fibrosistransmembrane conductance regulator (CFTR)] or normal trachea (CFT-1cells transfected with functional wild-type CFTR, termed CFT-WT). Cellswere grown on coverslips and were loaded with the pH-sensitive dye2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, andintracellular pH was monitored. Cl/HCO3exchange activity increased by ~300% in cells transfected with functional CFTR, with activities increasing from 0.034 pH/min in CFT-1cells to 0.11 in CFT-WT cells (P < 0.001, n = 8). This activity was significantly inhibited byDIDS. The mRNA expression of the ubiquitous basolateral AE-2Cl/HCO3 exchanger remained unchanged.However, mRNA encoding DRA, recently shown to be aCl/HCO3 exchanger (Melvin JE, Park K,Richardson L, Schultheis PJ, and Shull GE. J Biol Chem 274:22855-22861, 1999.) was abundantly expressed in cells expressingfunctional CFTR but not in cells that lacked CFTR or that expressedmutant CFTR. In conclusion, CFTR induces the mRNA expression of"downregulated in adenoma" (DRA) and, as a result, upregulates theapical Cl/HCO3 exchanger activity intracheal cells. We propose that the tracheal HCO3secretion defect in patients with CF is partly due to thedownregulation of the apical Cl/HCO3exchange activity mediated by DRA.

  相似文献   

10.
This study examined the ability of protein kinase C (PKC) toinduce heterologous desensitization by targeting specific G proteinsand limiting their ability to transduce signals in smooth muscle.Activation of PKC by pretreatment of intestinal smooth muscle cellswith phorbol 12-myristate 13-acetate, cholecystokinin octapeptide, orthe phosphatase 1 and phosphatase 2A inhibitor, calyculin A,selectively phosphorylated Gi-1 and Gi-2,but not Gi-3 or Go, and blockedinhibition of adenylyl cyclase mediated by somatostatin receptorscoupled to Gi-1 and opioid receptors coupled toGi-2, but not by muscarinic M2 and adenosineA1 receptors coupled to Gi-3. Phosphorylationof Gi-1 and Gi-2 and blockade of cyclaseinhibition were reversed by calphostin C and bisindolylmaleimide, andadditively by selective inhibitors of PKC and PKC. Blockade ofinhibition was prevented by downregulation of PKC. Phosphorylation ofG-subunits by PKC also affected responses mediated by-subunits. Pretreatment of muscle cells withcANP-(4-23), a selective agonist of the natriureticpeptide clearance receptor, NPR-C, which activates phospholipase C(PLC)-3 via the -subunits of Gi-1 andGi-2, inhibited the PLC- response to somatostatin and[D-Pen2,5]enkephalin. The inhibition waspartly reversed by calphostin C. Short-term activation of PKC had noeffect on receptor binding or effector enzyme (adenylyl cyclase orPLC-) activity. We conclude that selective phosphorylation ofGi-1 and Gi-2 by PKC partly accounts forheterologous desensitization of responses mediated by the - and-subunits of both G proteins. The desensitization reflects adecrease in reassociation and thus availability of heterotrimeric G proteins.

  相似文献   

11.
Current evidence points to the existence of multiple processesfor bitter taste transduction. Previous work demonstrated involvement of the polyphosphoinositide system and an -gustducin(Ggust)-mediated stimulation of phosphodiesterase inbitter taste transduction. Additionally, a taste-enriched G protein-subunit, G13, colocalizes with Ggustand mediates the denatonium-stimulated production of inositol1,4,5-trisphosphate (IP3). Using quench-flow techniques, weshow here that the bitter stimuli, denatonium and strychnine, inducerapid (50-100 ms) and transient reductions in cAMP and cGMP andincreases in IP3 in murine taste tissue. This decrease ofcyclic nucleotides is inhibited by Ggust antibodies,whereas the increase in IP3 is not affected by antibodiesto Ggust. IP3 production is inhibited byantibodies specific to phospholipase C-2(PLC-2), a PLC isoform known to be activated byG-subunits. Antibodies to PLC-3 or toPLC-4 were without effect. These data suggest atransduction mechanism for bitter taste involving the rapid andtransient metabolism of dual second messenger systems, both mediatedthrough a taste cell G protein, likely composed ofGgust//13, with both systems beingsimultaneously activated in the same bitter-sensitive taste receptor cell.

  相似文献   

12.
The assembly of the -subunit of thegastric H-K-ATPase (HK) with the -subunit of the H-K-ATPase orthe Na-K-ATPase (NaK) was characterized with two anti-HKmonoclonal antibodies (MAbs). In fixed gastric oxyntic cells, inH-K-ATPase in vitro, and in Madin-Darby canine kidney (MDCK) cellstransfected with HK, MAb 2/2E6 was observed to bind to HK onlywhen interactions between - and -subunits were disrupted byvarious denaturants. The epitope for MAb 2/2E6 was mapped to thetetrapeptide S226LHY229 of the extracellulardomain of HK. The epitope for MAb 2G11 was mapped to the eightNH2-terminal amino acids of the cytoplasmic domain ofHK. In transfected MDCK cells, MAb 2G11 could immunoprecipitate HK with -subunits of the endogenous cell surface NaK, as well as that from early in the biosynthetic pathway, whereas MAb 2/2E6 immunoprecipitated only a cohort of unassembled endoglycosidase H-sensitive HK. In HK-transfected LLC-PK1 cells,significant immunofluorescent labeling of HK at the cell surfacecould be detected without postfixation denaturation or in live cells,although a fraction of transfected HK could also becoimmunoprecipitated with NaK. Thus assembly of HK with NaKdoes not appear to be a stringent requirement for cell surface deliveryof HK in LLC-PK1 cells but may be required in MDCKcells. In addition, endogenous posttranslational regulatory mechanismsto prevent hybrid - heterodimer assembly appear to be compromisedin transfected cultured renal epithelial cells. Finally, theextracellular epitope for assembly-sensitive MAb 2/2E6 may represent aregion of HK that is associated with - interaction.

  相似文献   

13.
To evaluate the physiological functions of1-,2-, and3-adrenoceptors (ARs) in brownadipose tissue, the lipolytic and respiratory effects of variousadrenergic agonists and antagonists were studied in rat brownadipocytes. The -agonists stimulated both lipolysis and respiration(8-10 times above basal levels), with the following order ofpotency (concentration eliciting 50% of maximum response):CL-316243 (3) > BRL-37344(3) > isoproterenol (mainly1/2) > norepinephrine (NE; mainly1/2) > epinephrine (mainly1/2) dobutamine (1)  procaterol (2). Schild plot coefficients of competitive inhibition experiments using ICI-89406 (1 antagonist) revealed thatmore than one type of receptor mediates NE action. It is concluded fromour results that 1) NE, at low plasma levels (1-25 nM), stimulates lipolysis and respiration mainly through 1-ARs,2) NE, at higher levels, stimulateslipolysis and respiration via both1- and3-ARs,3)2-ARs play only a minor role,and 4)3-ARs may represent thephysiological receptors for the high NE concentrations in the synapticcleft, where the high-affinity1-ARs are presumablydesensitized. It is also suggested that lipolysis represents theflux-generating step regulating mitochondrial respiration.

  相似文献   

14.
In the estrogen-treated rat myometrium, carbachol increased thegeneration of inositol phosphates by stimulating the muscarinic receptor-Gq/G11-phospholipaseC-3 (PLC-3) cascade. Exposure to carbachol resulted in a rapidand specific (homologous) attenuation of the subsequent muscarinicresponses in terms of inositol phosphate production, PLC-3translocation to membrane, and contraction. Refractoriness wasaccompanied by a reduction of membrane muscarinic binding sites and anuncoupled state of residual receptors. Protein kinase C (PKC) alteredthe functionality of muscarinic receptors and contributed to theinitial period of desensitization. A delayed phase of the muscarinicrefractoriness was PKC independent and was associated with adownregulation ofGq/G11.Atropine failed to induce desensitization as well asGq/G11downregulation, indicating that both events involve active occupancy ofthe receptor. Prolonged exposure toAlF4 reduced subsequent AlF4 as well as carbachol-mediatedinositol phosphate responses and similarly induced downregulation ofGq/G11. Data suggest that a decrease in the level ofGq/G11is subsequent to its activation and may account forheterologous desensitization.

  相似文献   

15.
P-type ATPasesrequire both - and -subunits for functionalactivity. Although an -subunit for colonic apical membraneH-K-ATPase (HKc) has been identified and studied, its -subunithas not been identified. We cloned putative -subunit rat colonicH-K-ATPase (HKc) cDNA that encodes a 279-amino-acid protein with asingle transmembrane domain and sequence homology to other rat-subunits. Northern blot analysis demonstrates that this HKc isexpressed in several rat tissues, including distal and proximal colon,and is highly expressed in testis and lung. HKc mRNA abundance is upregulated threefold compared with normal in distal colon but notproximal colon, testis, or lung of K-depleted rats. In contrast, Na-K-ATPase 1 mRNA abundance isunaltered in distal colon of K-depleted rats. Na depletion, which alsostimulates active K absorption in distal colon, does not increaseHKc mRNA abundance. Western blot analyses using a polyclonalantibody raised to a glutathioneS-transferase-HKc fusion proteinestablished expression of a 45-kDa HKc protein in both apical andbasolateral membranes of rat distal colon, but K depletion increasedHKc protein expression only in apical membranes. Physicalassociation between HKc and HKc proteins was demonstrated byWestern blot analysis performed with HKc antibody onimmunoprecipitate of apical membranes of rat distal colon and HKcantibody. Tissue-specific upregulation of this -subunit mRNA inresponse to K depletion, localization of its protein, its upregulationby K depletion in apical membranes of distal colon, and its physicalassociation with HKc protein provide compelling evidence that HKcis the putative -subunit of colonic H-K-ATPase.  相似文献   

16.
Protons regulateelectrogenic sodium absorption in a variety of epithelia, including thecortical collecting duct, frog skin, and urinary bladder. Recently,three subunits (, , ) coding for the epithelial sodium channel(ENaC) were cloned. However, it is not known whether pH regulatesNa+ channels directly byinteracting with one of the three ENaC subunits or indirectly byinteracting with a regulatory protein. As a first step to identifyingthe molecular mechanisms of proton-mediated regulation of apicalmembrane Na+ permeability inepithelia, we examined the effect of pH on the biophysical propertiesof ENaC. To this end, we expressed various combinations of -, -,and -subunits of ENaC in Xenopusoocytes and studied ENaC currents by the two-electrode voltage-clampand patch-clamp techniques. In addition, the effect of pH on the-ENaC subunit was examined in planar lipid bilayers. We report that ,,-ENaC currents were regulated by changes in intracellular pH(pHi) but not by changes inextracellular pH (pHo).Acidification reduced and alkalization increased channel activity by avoltage-independent mechanism. Moreover, a reduction ofpHi reduced single-channel openprobability, reduced single-channel open time, and increased single-channel closed time without altering single-channel conductance. Acidification of the cytoplasmic solution also inhibited ,-ENaC, ,-ENaC, and -ENaC currents. We conclude thatpHi but notpHo regulates ENaC and that the-ENaC subunit is regulated directly bypHi.  相似文献   

17.
A role for protein kinase C (PKC)- and -isotypes in 1-adrenergicregulation of human tracheal epithelial Na-K-2Cl cotransport wasstudied with the use of isotype-specific PKC inhibitors and antisenseoligodeoxynucleotides to PKC- or - mRNA. Rottlerin, a PKC-inhibitor, blocked 72% of basolateral-to-apical, bumetanide-sensitive 36Cl flux innystatin-permeabilized cell monolayers stimulated with methoxamine, an1-adrenergic agonist, with a50% inhibitory concentration of 2.3 µM. Methoxamine increased PKCactivity in cytosol and a particulate fraction; the response wasinsensitive to PKC- and -IIisotype-specific inhibitors, but was blocked by general PKC inhibitorsand rottlerin. Rottlerin also inhibited methoxamine-induced PKCactivity in immune complexes of PKC-, but not PKC-. At the subcellular level, methoxamine selectively elevated cytosolic PKC-activity and particulate PKC- activity. Pretreatment of cellmonolayers with antisense oligodeoxynucleotide to PKC- for 48 hreduced the amount of whole cell and cytosolic PKC-, diminished whole cell and cytosolic PKC- activity, and blockedmethoxamine-stimulated Na-K-2Cl cotransport. Sense oligodeoxynucleotideto PKC- and antisense oligodeoxynucleotide to PKC- did not altermethoxamine-induced cotransport activity. These results demonstrate theselective activation of Na-K-2Cl cotransport by cytosolic PKC-.

  相似文献   

18.
The patch-clamp technique was used to investigate the effects ofthe isoflavone genistein on disease-causing mutations (G551D andF508) of the cystic fibrosis transmembrane conductance regulator (CFTR). In HeLa cells recombinantly expressing thetrafficking-competent G551D-CFTR, the forskolin-stimulated Cl currentswere small, and average open probability of G551D-CFTR wasPo = 0.047 ± 0.019. Addition of genistein activated Cl currents~10-fold, and the Po of G551D-CFTRincreased to 0.49 ± 0.12, which is aPo similar towild-type CFTR. In cystic fibrosis (CF) epithelial cells homozygous forthe trafficking-impaired F508 mutation, forskolin and genistein activated Cl currents only after 4-phenylbutyrate treatment. These datasuggested that genistein activated CFTR mutants that were present inthe cell membrane. Therefore, we tested the effects of genistein in CFpatients with the G551D mutation in nasal potential difference (PD)measurements in vivo. The perfusion of the nasal mucosa of G551D CFpatients with isoproterenol had no effect; however, genisteinstimulated Cl-dependent nasal PD by, on average, 2.4 ± 0.6 mV, which corresponds to 16.9% of the responses (to -adrenergicstimulation) found in healthy subjects.

  相似文献   

19.
The dominant routefor Cl secretion in mouse tracheal epithelium is viaCl channels different from the cystic fibrosis (CF)transmembrane conductance regulator (CFTR), the channel that isdefective in CF. It has been proposed that the use of purinergicagonists to activate these alternative channels in human airways may bebeneficial in CF. In the present study, two conditionally immortalepithelial cell lines were established from the tracheae of micepossessing the tsA58 T antigen gene, one of which [MTE18-(/)] washomozygous for a knockout of CFTR and the other [MTE7b-(+/)]heterozygous for CFTR expression. In Ussing chamber studies, amiloride(104 M) and a cocktail of cAMP-activating agents(forskolin, IBMX, and dibutyryl cAMP) resulted in small changes in theshort-circuit current (Isc) and resistance ofboth cell lines, with larger increases in Iscbeing elicited by ionomycin (106 M). Both cell linesexpressed P2Y2 receptors and responded to thepurinergic agonists ATP, UTP, and 5'-adenylylimidodiphosphate (104 M) with an increase in Isc.This response could be inhibited by DIDS and was abolished in thepresence of Cl-free Ringer solution. Reducing the mucosalCl concentration increased the response to UTP of bothcell lines, with a significantly greater increase in MTE18-(/)cells. Pretreatment of these cells with thapsigargin caused a directincrease in Isc and inhibited the response toUTP. These data suggest that both cell lines expresspurinergic-regulated Cl currents and may prove valuabletools in studying the properties of this pathway.

  相似文献   

20.
The amiloride-sensitiveepithelial sodium channel (ENaC) plays a critical role in fluid andelectrolyte homeostasis and is composed of three homologous subunits:, , and . Only heteromultimeric channels made of ENaCare efficiently expressed at the cell surface, resulting in maximallyamiloride-sensitive currents. To study the relative importance ofvarious regions of the - and -subunits for the expression offunctional ENaC channels at the cell surface, we constructedhemagglutinin (HA)-tagged --chimeric subunits composed of -and -subunit regions and coexpressed them with HA-tagged - and-subunits in Xenopus laevis oocytes. The whole cellamiloride-sensitive sodium current (Iami) andsurface expression of channels were assessed in parallel using thetwo-electrode voltage-clamp technique and a chemiluminescence assay.Because coexpression of ENaC resulted in largerIami and surface expression compared withcoexpression of ENaC, we hypothesized that the -subunit ismore important for ENaC trafficking than the -subunit. Usingchimeras, we demonstrated that channel activity is largely preservedwhen the highly conserved second cysteine rich domains (CRD2) of the- and -subunits are exchanged. In contrast, exchanging the wholeextracellular loops of the - and the -subunits largely reducedENaC currents and ENaC expression in the membrane. This indicates thatthere is limited interchangeability between molecular regions of thetwo subunits. Interestingly, our chimera studies demonstrated that theintracellular termini and the two transmembrane domains of ENaC aremore important for the expression of functional channels at the cellsurface than the corresponding regions of ENaC.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号