首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrating theory of clutch size and body size evolution for parasitoids   总被引:2,自引:0,他引:2  
  相似文献   

2.
The lack of correlation between genome size and organismal complexity has long been a topic of great interest. Over the last decade it has become clear that transposable elements play a dominant role in genome size growth, and that most of the observed genome size variation in plants can be ascribed to differential accumulation of transposable elements, particularly long terminal repeat retrotransposons, which often massively proliferate over exceptionally short evolutionary time-scales. In the absence of one or more counterbalancing forces, Bennetzen and Kellogg previously suggested that growth via transposable element accumulation would create a “one-way ticket to genomic obesity”. Phylogenetic evidence, however, indicates that lineages may experience genomic downsizing, notwithstanding the relative paucity of experimental evidence on mechanisms capable of eliminating massive amounts of DNA. Thus, genome size evolution in plants may involve both feast and famine. Here we review recent insights into the molecular mechanisms and evolutionary dynamics of genome size evolution in plants. These include mechanisms that contribute to genome size expansion, i.e. polyploidy and transposable element proliferation, in addition to the counteracting forces that act to remove DNA, particularly intra-strand homologous recombination and illegitimate recombination. We argue that extant genome sizes reflect myriad competing forces of genomic expansion and contraction, but that current evidence pertaining to rates and amounts of DNA loss prove insufficient to overcome transposable element proliferation in most lineages. Accordingly, the directionality of plant genome size evolution in most cases is biased toward growth, with mechanisms of DNA loss acting to attenuate (but not reverse) the march toward obesity.  相似文献   

3.
4.
Nuptial gifts and the evolution of male body size   总被引:4,自引:0,他引:4  
In many insect systems, males donate nuptial gifts to insure an effective copulation or as a form of paternal investment. However, if gift magnitude is both body size-limited and positively related to fitness, then the opportunity exists for the gift to promote the evolution of large male size. In the striped ground cricket, Allonemobius socius, males transfer a body size-limited, somatic nuptial gift that is comprised primarily of hemolymph. To address the implications of this gift on male size evolution, we quantified the intensity and direction of natural (fecundity) and sexual (mating success) selection over multiple generations. We found that male size was under strong positive sexual selection throughout the breeding season. This pattern of selection was similar in successive generations spanning multiple years. Male size was also under strong natural selection, with the largest males siring the most offspring. However, multivariate selection gradients indicated that gift size, and not male size, was the best predictor of female fecundity. In other words, direct fecundity selection for larger gifts placed indirect positive selection on male body size, supporting the hypothesis that nuptial gifts can influence the evolution of male body size in this system. Although female size was also under strong selection due to a size related fecundity advantage, it did not exceed selection on male size. The implications of these results with regard to the maintenance of the female-biased size dimorphic system are discussed.  相似文献   

5.
Understanding the relationship between ecological constraints and life-history properties constitutes a central problem in evolutionary ecology. Directionality theory, a model of the evolutionary process based on demographic entropy, a measure of the uncertainty in the age of the mother of a randomly chosen newborn, provides an analytical framework for addressing this problem. The theory predicts that in populations that spend the greater part of their evolutionary history in the stationary growth phase (equilibrium species), entropy will increase. Equilibrium species will be characterized by high iteroparity and strong demographic stability. In populations that spend the greater part of their evolutionary history in the exponential growth phase (opportunistic species), entropy will decrease when population size is large, and will undergo random variation when population size is small. Opportunistic species will be characterized by weak iteroparity and weak demographic stability when population size is large, and random variations in these attributes when population size is small. This paper assesses the validity of these predictions by employing a demographic dataset of 66 species of perennial plants. This empirical analysis is consistent with directionality theory and provides support for its significance as an explanatory and predictive model of life-history evolution.  相似文献   

6.
Feeding ecology and the evolution of body size of baboons   总被引:4,自引:0,他引:4  
  相似文献   

7.
8.
Insects are small relative to vertebrates, possibly owing to limitations or costs associated with their blind-ended tracheal respiratory system. The giant insects of the late Palaeozoic occurred when atmospheric PO2 (aPO2) was hyperoxic, supporting a role for oxygen in the evolution of insect body size. The paucity of the insect fossil record and the complex interactions between atmospheric oxygen level, organisms and their communities makes it impossible to definitively accept or reject the historical oxygen-size link, and multiple alternative hypotheses exist. However, a variety of recent empirical findings support a link between oxygen and insect size, including: (i) most insects develop smaller body sizes in hypoxia, and some develop and evolve larger sizes in hyperoxia; (ii) insects developmentally and evolutionarily reduce their proportional investment in the tracheal system when living in higher aPO2, suggesting that there are significant costs associated with tracheal system structure and function; and (iii) larger insects invest more of their body in the tracheal system, potentially leading to greater effects of aPO2 on larger insects. Together, these provide a wealth of plausible mechanisms by which tracheal oxygen delivery may be centrally involved in setting the relatively small size of insects and for hyperoxia-enabled Palaeozoic gigantism.  相似文献   

9.
The evolution of haemagglutinin (HA), an important influenza virus antigen, has been the subject of intensive research for more than two decades. Many characteristics of HA's sequence evolution are captured by standard Markov chain substitution models. Such models assign equal fitness to all accessible amino acids at a site. We show, however, that such models strongly underestimate the number of homoplastic amino acid substitutions during the course of HA's evolution, i.e. substitutions that repeatedly give rise to the same amino acid at a site. We develop statistics to detect individual homoplastic events and find that they preferentially occur at positively selected epitopic sites. Our results suggest that the evolution of the influenza A HA, including evolution by positive selection, is strongly affected by the long-term site-specific preferences for individual amino acids.  相似文献   

10.
On the role of body size for life-history evolution   总被引:7,自引:0,他引:7  
1. Body size is a central element in current theories of life-history evolution. Models for optimal age at maturity are based on the assumptions that there is a trade-off between development time and adult size and that larger size provides a reproductive advantage.
2. The results of large, replicated experiments with the water strider Gerris buenoi (Heteroptera: Gerridae) contradict both these assumptions. Individual rearings under field conditions showed that there is a negative, not a positive, correlation between development time and adult size. The physiological basis of growth, with stretch-induced moulting, may provide a partial explanation for this correlation.
3. This study examined a number of fitness components for their correlations with female size: lifetime fecundity, reproductive life span, average volume per egg, total volume of eggs laid, and the proportion of eggs hatched. None of these traits was correlated with female size.
4. The data on water striders suggest an alternative scenario for life-history evolution, in which size is not an adaptive trait, but evolves as a correlated response to selection on other traits. This expands the range of possible models, and opens life-history theory to the debate about adaptation and optimality.  相似文献   

11.
This study examines the evolution of size differences among papionin primates by measuring hormones that regulate size growth during ontogeny and influence ultimate adult size (insulin‐like growth factor‐I (IGF‐I), insulin‐like growth factor binding protein‐3 (IGFBP‐3), growth hormone binding protein (GHBP), dehydroepiandrosterone sulfate (DHEAS), testosterone, estradiol). The analyses assess longstanding ideas about circulating hormone levels and body size. Importantly, because the consensus papionin molecular phylogeny implies at least two episodes of size increase, this study offers opportunities to determine whether or not similar hormone profiles regulate this apparent evolutionary convergence (i.e., do larger‐bodied papionins have higher levels of growth‐related hormones than smaller‐bodied papionins?). Five hundred and sixty serum samples (from 161 individuals) from 11 papionin species were analyzed using a two‐level approach to address this issue. One used mixed longitudinal samples from two papionin species to test whether, during growth, large‐ and small‐bodied species have higher and lower hormone levels, respectively. The second compared multiple papionin species to assess whether or not hormone levels covary with size in adult animals. Result show that size and hormone levels do not covary consistently across papionins, either during growth or in adulthood. Specifically, some smaller‐bodied papionin species have higher absolute hormone levels than larger‐bodied species. Differences in some hormone levels appear to track phylogeny more closely than body size. In contrast to studies based on single species, we demonstrate that, while the hormones analyzed affect growth, absolute circulating hormone levels either during growth or adulthood may be decoupled from interspecific differences in body size. Am J Phys Anthropol, 2007. © 2006 Wiley‐Liss, Inc.  相似文献   

12.
Summary I compare the relationship between bill size (depth) and body size among different taxa of seed-eating finches to test the hypothesis (Schluter, 1988a) that in habitats where seed-eating finches are vulnerable to predators, finches have larger bodies relative to their bill size. In support of this hypothesis, ground-foraging finches on continents (Emberizidae, Passeridae, Fringillidae), where predators are more common, have larger bodies relative to their bill sizes than do ground-foraging finches on islands (Emberizidae, Fringillidae). Ground-feeding finches on continents may also be more vulnerable to predators than tree- and shrub-foraging finches. As predicted, in North America, ground-feeding finches (Emberizinae) have larger bodies relative to their bill size than do tree- and shrub-foraging finches (Carduelinae). As a consequence of increased body size relative to bill size, both the range of possible bill sizes and potential seed sizes that can be eaten are reduced. Moreover, increased metabolic demands caused by larger body size may lessen the ability to specialize on a few seed types. These two factors reduce the potential for seed size partitioning. Consequently, vulnerability to predators may limit, and is inversely correlated with, seed size partitioning in seed-eating finch communities. The extent to which predation has influenced other bird communities may be considerable, and the patterns found by Schluter (1988a) and in this study indicate that future ecomorphological studies, especially on species that spend much of the day foraging, might profit by considering predator vulnerability as well as foraging behaviour.  相似文献   

13.
We studied the joint evolution of predator body size and prey-size preference based on dynamic energy budget theory. The predators’ demography and their functional response are based on general eco-physiological principles involving the size of both predator and prey. While our model can account for qualitatively different predator types by adjusting parameter values, we mainly focused on ‘true’ predators that kill their prey. The resulting model explains various empirical observations, such as the triangular distribution of predator–prey size combinations, the island rule, and the difference in predator–prey size ratios between filter feeders and raptorial feeders. The model also reveals key factors for the evolution of predator–prey size ratios. Capture mechanisms turned out to have a large effect on this ratio, while prey-size availability and competition for resources only help explain variation in predator size, not variation in predator–prey size ratio. Predation among predators is identified as an important factor for deviations from the optimal predator–prey size ratio.  相似文献   

14.
The largest known dinosaurs weighed at least 20 million times as much as the smallest, indicating exceptional phenotypic divergence. Previous studies have focused on extreme giant sizes, tests of Cope's rule, and miniaturization on the line leading to birds. We use non‐uniform macroevolutionary models based on Ornstein–Uhlenbeck and trend processes to unify these observations, asking: what patterns of evolutionary rates, directionality and constraint explain the diversification of dinosaur body mass? We find that dinosaur evolution is constrained by attraction to discrete body size optima that undergo rare, but abrupt, evolutionary shifts. This model explains both the rarity of multi‐lineage directional trends, and the occurrence of abrupt directional excursions during the origins of groups such as tiny pygostylian birds and giant sauropods. Most expansion of trait space results from rare, constraint‐breaking innovations in just a small number of lineages. These lineages shifted rapidly into novel regions of trait space, occasionally to small sizes, but most often to large or giant sizes. As with Cenozoic mammals, intermediate body sizes were typically attained only transiently by lineages on a trajectory from small to large size. This demonstrates that bimodality in the macroevolutionary adaptive landscape for land vertebrates has existed for more than 200 million years.  相似文献   

15.
Body size and development time of Manduca sexta are both determined by the same set of three developmental–physiological factors. These define a parameter space within which it is possible to analyse and explain how phenotypic change is associated with changes in the underlying factors. Body size and development time are determined by the identical set of underlying factors, so they are not independent, but because the mechanisms by which these factors produce each phenotype are different, the two phenotypes are only weakly correlated, and the correlation is context dependent. We use a mathematical model of this mechanism to explore the association between body size and development time and show that the correlation between these two life-history traits can be positive, zero or negative, depending entirely on where in parameter space a population is located, and on which of the underlying factors has a greater variation. The gradient within this parameter space predicts the unconstrained evolutionary trajectory under directional selection on each trait. Calculations of the gradients for body size and development time revealed that these are nearly orthogonal through much of the parameter space. Therefore, simultaneous directional selection on body size and development time can be neither synergistic nor antagonistic but leads to conflicting selection on the underlying developmental parameters.  相似文献   

16.
This analysis investigates the ontogeny of body size dimorphism in apes. The processes that lead to adult body size dimorphism are illustrated and described. Potential covariation between ontogenetic processes and socioecological variables is evaluated. Mixed-longitudinal growth data from 395 captive individuals (representing Hylobates lar [gibbon], Hylobates syndactylus [siamang], Pongo pygmaeus [orangutan], Gorilla gorilla [gorilla], Pan paniscus [pygmy chimpanzee], and Pan troglodytes [“common” chimpanzee]) form the basis of this study. Results illustrate heterogeneity in the growth processes that produce ape dimorphism. Hylobatids show no sexual differentiation in body weight growth. Adult body size dimorphism in Pongo can be largely attributed to indeterminate male growth. Dimorphism in African apes is produced by two different ontogenetic processes. Both pygmy chimpanzees (Pan paniscus) and gorillas (Gorilla gorilla) become dimorphic primarily through bimaturism (sex differences in duration of growth). In contrast, sex differences in rate of growth account for the majority of dimorphism in common chimpanzees (Pan troglodytes). Diversity in the ontogenetic pathways that produce adult body size dimorphism may be related to multiple evolutionary causes of dimorphism. The lack of sex differences in hylobatid growth is consistent with a monogamous social organization. Adult dimorphism in Pongo can be attributed to sexual selection for indeterminate male growth. Interpretation of dimorphism in African apes is complicated because factors that influence female ontogeny have a substantial effect on the resultant adult dimorphism. Sexual selection for prolonged male growth in gorillas may also increase bimaturism relative to common chimpanzees. Variation in female growth is hypothesized to covary with foraging adaptations and with differences in female competition that result from these foraging adaptations. Variation in male growth probably corresponds to variation in level of sexual selection. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Trait evolution in predator–prey systems can feed back to the dynamics of interacting species as well as cascade to impact the dynamics of indirectly linked species (eco-evolutionary trophic cascades; EETCs). A key mediator of trophic cascades is body mass, as it both strongly influences and evolves in response to predator–prey interactions. Here, we use Gillespie eco-evolutionary models to explore EETCs resulting from top predator loss and mediated by body mass evolution. Our four-trophic-level food chain model uses allometric scaling to link body mass to different functions (ecological pleiotropy) and is realistically parameterized from the FORAGE database to mimic the parameter space of a typical freshwater system. To track real-time changes in selective pressures, we also calculated fitness gradients for each trophic level. As predicted, top predator loss generated alternating shifts in abundance across trophic levels, and, depending on the nature and strength in changes to fitness gradients, also altered trajectories of body mass evolution. Although more distantly linked, changes in the abundance of top predators still affected the eco-evolutionary dynamics of the basal producers, in part because of their relatively short generation times. Overall, our results suggest that impacts on top predators can set off transient EETCs with the potential for widespread indirect impacts on food webs.  相似文献   

18.
The molecular evolution theories of Eigen and Kimura are compared and their difference is explained. In terms of Eigen's theory for the evolution of macromolecules, the selection of genotypes occurs directly. The physical meaning of the neutral theory is the degeneracy of the correlation between a phenotype and a genotype at the molecular level. A model theory of evolution on a fitness landscape is proposed. The theory shows that the constraints of selection determined by the structure and dynamics of previous evolution stages increases its rate strongly.  相似文献   

19.
The size of the vertebrate brain is shaped by a variety of selective forces. Although larger brains (correcting for body size) are thought to confer fitness advantages, energetic limitations of this costly organ may lead to trade-offs, for example as recently suggested between sexual traits and neural tissue. Here, we examine the patterns of selection on male and female brain size in pinnipeds, a group where the strength of sexual selection differs markedly among species and between the sexes. Relative brain size was negatively associated with the intensity of sexual selection in males but not females. However, analyses of the rates of body and brain size evolution showed that this apparent trade-off between sexual selection and brain mass is driven by selection for increasing body mass rather than by an actual reduction in male brain size. Our results suggest that sexual selection has important effects on the allometric relationships of neural development.  相似文献   

20.
Local adaptation is a key process in the evolution of biological diversity but relatively few studies have identified the selective forces that drive trait divergence at low taxonomic levels, particularly amongst mammals. Variation in body size across taxa is fundamental as shown by allometric relationships with numerous physiological, morphological and life-history traits. Differences in adult size across cohorts within populations of temperate ungulates are determined by variation in trophic resource availability during growth, suggesting that natural selection might promote the evolution of size divergence across sister taxa through local adaptation to variation in habitat productivity. We tested this hypothesis in the hartebeest ( Alcelaphu s sp.), an antelope lineage including eight extant (or recently extinct) allopatric subspecies that evolved within the last million years and colonized all the African savannahs. We predicted that body size across the subspecies should correlate positively with habitat productivity across taxon ranges. Mean body size of all the hartebeest taxa was quantified using skull length from museum specimens, and climatic variables were used as surrogates of habitat productivity. Body size across subspecies was positively correlated with rainfall, suggesting that variation in habitat primary production may drive morphological evolution between taxa. Focusing at a low taxonomic level has allowed us to identify a critical selective force that may shape divergence in body size, without the confounding effect of variation in trophic niche. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 431–440.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号