首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In five healthy males sustained isometric torques during elbow flexion, knee extension, and plantar flexion correlated positively with intramuscular tissue pressure (MTP) in the range 0-80% of the maximal voluntary contraction (MVC). During passive compression of the muscle at rest 133-Xenon muscle clearance stopped when MTP reached diastolic arterial pressure (DAP) indicating that the muscle vascular bed was occluded. However, during sustained contraction this relation between DAP, flow and MTP was not seen. In two cases 133-Xenon clearance from M. soleus did not stop in spite of an 80% maximal contraction and MTP stayed below DAP. In other cases MTP would reach as high as 240 mm Hg before clearance was zero. In the deeper parts of the muscles MTP during contraction was increased in relation to the more superficial parts. The means values for the % MVC that would stop MBF varied between 50 and 64% MVC for the investigated muscles. Mean rectified EMG (MEMG) showed a high correlation to MTP during sustained exhaustive contractions: When MEMG was kept constant MTP also remained constant while the exerted force decreased; when force was kept constant both MEMG and MTP increased in parallel. This demonstrated that muscle tissue compliance is decreasing during fatigue. Muscle ischemia occurring during sustained isometric contractions is partly due to the developed MTP, where especially the MTP around the veins in the deeper parts of the muscle can be considered of importance. However, ischemia is also affected by muscle fiber texture and anatomical distorsion of tissues.  相似文献   

2.
Agonist and depolarization-induced vascular smooth muscle contractions involve the activation of Rho-kinase pathway. However, there are no reports addressing the question whether this pathway is involved in NaF-induced vascular contractions. We hypothesized that Rho-kinase plays a role in vascular contraction evoked by sodium fluoride in rat aortae. In both physiological salt solution and calcium-free solution with 2 mM EGTA, cumulative addition of NaF increased vascular tension in concentration-dependent manners. Effects of Rho-kinase inhibitor (Y27632) on phosphorylation of myosin light chain (MLC20) and myosin targeting subunit (MYPT1(Thr696)) of myosin light chain phosphatase as well as NaF-induced contractions were determined using isolated tissue and the Western blot experiments. Y27632 inhibited NaF-induced contractions in a concentration-dependent manner. NaF increased phosphorylation of MLC20 and MYPT1(Thr696), which were also inhibited by Y27632. However, MLCK inhibitor (ML-7) or PKC inhibitor (Ro31-8220) did not inhibit the NaF-induced contraction. These results indicate that activation of Rho-kinase and the subsequent phosphorylation of MYPT1(Thr696) play important roles in NaF-induced contraction of rat aortae.  相似文献   

3.
The elevated intramuscular pressure (IMP) associated with sustained muscle contraction can affect blood flow, and could influence the long-term viability of functional skeletal muscle grafts. We therefore examined the relationship between force, peak IMP and blood flow in the tibialis anterior muscle of the anaesthetized rabbit. During isometric contractions, IMP was related linearly to force, and only the slope of the relationship varied between animals. During isotonic contractions, however, the highest values of IMP were found at the lowest force levels, and IMP appeared to be related to the amount and speed of shortening. During repeated isometric contractions, the ratio of IMP to force varied with time, stimulation pattern and subject. Mean blood flow did not differ appreciably between␣repetitive isometric contractions at duty cycles of 10–40%, and was unrelated to integrated pressure, integrated force, or depth from the surface. We conclude: (1) that IMP is unlikely to affect mean blood flow during cyclic activity that has a duty cycle less than 40%; and (2) that the clinical use of IMP as a predictor of muscle force appears to be justified only for single isometric contractions, and needs to be interpreted cautiously when contractions involve shortening or fatigue. Accepted: 17 November 1997  相似文献   

4.
The effect of synthetic leukotriene D4 (LTD4) was evaluated on isolated gastric longitudinal or circular smooth muscle and distal colon of the rat. The concentrations of LTD4, 2.5 X 10(-10)M to 5 X 10(-7)M, evoked minimal to maximal contractile responses. In addition, selected prostaglandins were used to identify the mediator of LTD4-induced contraction of gastric smooth muscle. FPL 55712 inhibited LTD4-induced contractions of gastric longitudinal or circular muscle. Indomethacin inhibited only LTD4-induced contractions of the longitudinal muscle. A combination of FPL 55712 and indomethacin produced greater inhibition of LTD4-induced contractions of longitudinal muscle than either agent alone. However, the same combination of inhibitors showed no greater effect than FPL 55712 alone on LTD4-induced contractions of circular smooth muscle. Unlike PGI2, PGF2, PGA2, or PGD2, PGE2 evoked contraction of the longitudinal muscle and relaxation of the circular muscle of the stomach. The dissimilar effect of PGE2 in the two smooth muscle layers of the rat stomach may signify that PGE2 is the prostaglandin released by LTD4 from the longitudinal and circular gastric muscle. However, the opposing pharmacologic effects following LTD4-induced release of prostaglandins in the circular muscle of the stomach would preclude the appearance of an inhibitory effect of indomethacin in this tissue. In contrast, PGE2 and other prostaglandins contract gastric longitudinal muscle in response to LTD4. Thus, these studies clearly suggest that LTD4 has both a direct and indirect effect on gastric smooth muscle of the rat. Unlike the stomach, LTD4-induced contraction of the distal colon was not inhibited by indomethacin while FPL 55712 antagonized contractions. Thus, these findings indicate a differential mechanism of stimulation of rat gastrointestinal tissue by LTD4.  相似文献   

5.
Two atrial natriuretic peptides, containing 25 amino acid residues, ANF IV, and 21 amino acid residues, ANF V, were synthesized by a solid phase method and oxidized with K3Fe(CN)6 to form a disulfide bridge. Synthetic ANF IV exhibited a natriuretic activity with an ED50 70 times higher than that of synthetic ANF V, whereas the longer peptide was only 2.5 times more potent in chick rectal smooth muscle relaxant activity. Both peptides inhibited norepinephrine-induced contraction of rabbit aorta. The shorter peptide, ANF V, was 300 times less efficient than the longer peptide, ANF IV. It is proposed that the carboxy-terminal of ANF IV seems to have a modulating effect on receptor affinity in kidney and vascular tissue.  相似文献   

6.
Control of contraction and relaxation by membrane potential was investigated in voltage-clamped guinea pig ventricular myocytes at 37 degrees C. Depolarization initiated phasic contractions, followed by sustained contractions that relaxed with repolarization. Corresponding Ca(2+) transients were observed with fura 2. Sustained responses were ryanodine sensitive and exhibited sigmoidal activation and deactivation relations, with half-maximal voltages near -46 mV, which is characteristic of the voltage-sensitive release mechanism (VSRM) for sarcoplasmic reticulum Ca(2+). Inactivation was not detected. Sustained responses were insensitive to inactivation or block of L-type Ca(2+) current (I(Ca-L)). The voltage dependence of sustained responses was not affected by changes in intracellular or extracellular Na(+) concentration. Furthermore, sustained responses were not inhibited by 2 mM Ni(2+). Thus it is improbable that I(Ca-L) or Na(+)/Ca(2+) exchange generated these sustained responses. However, rapid application of 200 microM tetracaine, which blocks the VSRM, strongly inhibited sustained contractions. Our study indicates that the VSRM includes both a phasic inactivating and a sustained noninactivating component. The sustained component contributes both to initiation and relaxation of contraction.  相似文献   

7.
Blood pressure and heart rate changes during sustained isometric exercise were studied in 11 healthy male volunteers. The responses were measured during voluntary and involuntary contractions of the biceps brachii at 30% of maximal voluntary contraction (MVC), and the triceps surae at 30% and 50% MVC. Involuntary contractions were evoked by percutaneous electrical stimulation of the muscle. Measurements of the time to peak tension of maximal twitch showed the biceps brachii (67.0 +/- 7.9 ms) muscle to be rapidly contracting, and the triceps surae (118.0 +/- 10.5 ms) to be slow contracting. The systolic and diastolic blood pressures increased linearly throughout the contractions, and systolic blood pressure increased more rapidly than diastolic. There was no significant difference in response to stimulated or voluntary contractions, nor was there any significant difference between the responses to contractions of the calf or arm muscles at the same relative tension. In contrast the heart rate rose to a higher level (P less than 0.01) in the biceps brachii than the triceps surae at given % MVC, and during voluntary compared with the electrically evoked contractions in the two muscle groups. It was concluded that the arterial blood pressure response to isometric contractions, unlike heart rate, is primarily due to a reflex arising within the active muscles (cf. Hultman and Sj?holm 1982) which is associated with relative tension but independent of contraction time and muscle mass.  相似文献   

8.
The effect of isometric exercise on blood flow, blood pressure, intramuscular pressure as well as lactate and potassium efflux from exercising muscle was examined. The contractions performed were continuous or intermittent (5 s on, 5 s off) and varied between 5% and 50% maximal voluntary contraction (MVC). A knee-extensor and a hand-grip protocol were used. Evidence is presented that blood flow through the muscle is sufficient during low-level sustained contractions (less than 10% MVC). Despite this muscle fatigue occurs during prolonged contractions. One mechanism for this fatigue may be the disturbance of the potassium homeostasis. Such changes may also play a role in the development of fatigue during intermittent isometric contractions and even more so in the recovery from such exercise. In addition the role of impaired transport of substances within the muscle, due to long-lasting daily oedema formation, is discussed in relation to fatigue in highly repetitive, monotonous jobs.  相似文献   

9.
Endothelin is a potent vasoconstrictor peptide which has recently been localized in the gastrointestinal tract. We have investigated the transmembrane signaling properties of endothelin in isolated smooth muscle cells of the rabbit rectosigmoid. Endothelin induced a dose dependent contraction of smooth muscle cells in a range of 10−10 to 10−6M. In normal buffer, contraction peaked at 30 sec and was sustained for up to 8 min. Incubation in 0Ca/2mM EGTA abolished the sustained contraction induced by endothelin, but had no effect on the initial transient contraction. Preincubation of saponin treated cells with G protein antisera had no effect on control cell length. Preincubation of saponin treated isolated smooth muscle cells with specific G protein antisera (rabbit antisera) for Go or Gs for 60 minutes did not inhibit contraction induced by endothelin. Preincubation with an antiserum to Gi3 inhibited the initial transient contraction induced by endothelin and preincubation with an antiserum to Gi1−2 inhibited the sustained phase of the endothelin induced contraction. Our data indicate that: 1) Endothelin induces a direct sustained contraction of smooth cells from the rectosigmoid; 2) The transmembrane signalling of endothelin is through two specific GTP binding components that are Gi, one for the initial transient contraction, and the other for the sustained phase of the contraction.  相似文献   

10.
To test the hypothesis that muscle sound amplitudes would remain constant during sustained submaximal isometric contractions, we recorded acoustic myograms from the abductor digiti minimi muscle in 12 subjects at 15, 25, 50, and 75% of a maximum voluntary contraction (MVC). Muscle sounds were detected with an omni-directional electret microphone encased in closed-cell foam and attached to the skin over the muscle. Acoustic amplitudes from the middle and end of the sustained contractions were compared with the amplitudes from the beginning of contractions to determine whether acoustic amplitudes varied in magnitude as force remained constant. Physiological tremor was eliminated from the acoustic signal by use of a Fourier truncation at 14 Hz. The amplitudes of the acoustic signal at a contraction intensity of 75% MVC remained constant, reflecting force production over time. At 50% MVC, the root-mean-square amplitude decreased from the beginning to the end of the contraction (P less than 0.05). Acoustic amplitudes increased over time at 15 and 25% MVC and were significantly higher at the end of the contractions than at the beginning (P less than 0.05). Alterations in the acoustic amplitude, which reflect changes in the lateral vibrations of the muscle, may be indicative of the different recruitment strategies used to maintain force during sustained isometric contractions.  相似文献   

11.
Although skeletal muscle perfusion is fundamental to proper muscle function, in vivo measurements are typically limited to those of limb or arterial blood flow, rather than flow within the muscle bed itself. We present a noninvasive functional MRI (fMRI) technique for measuring perfusion-related signal intensity (SI) changes in human skeletal muscle during and after contractions and demonstrate its application to the question of occlusion during a range of contraction intensities. Eight healthy men (aged 20-31 yr) performed a series of isometric ankle dorsiflexor contractions from 10 to 100% maximal voluntary contraction. Axial gradient-echo echo-planar images (repetition time = 500 ms, echo time = 18.6 ms) were acquired continuously before, during, and following each 10-s contraction, with 4.5-min rest between contractions. Average SI in the dorsiflexor muscles was calculated for all 240 images in each contraction series. Postcontraction hyperemia for each force level was determined as peak change in SI after contraction, which was then scaled to that obtained following a 5-min cuff occlusion of the thigh (i.e., maximal hyperemia). A subset of subjects (n = 4) performed parallel studies using venous occlusion plethysmography to measure limb blood flow. Hyperemia measured by fMRI and plethysmography demonstrated good agreement. Postcontraction hyperemia measured by fMRI scaled with contraction intensity up to approximately 60% maximal voluntary contraction. fMRI provides a noninvasive means of quantifying perfusion-related changes during and following skeletal muscle contractions in humans. Temporal changes in perfusion can be observed, as can the heterogeneity of perfusion across the muscle bed.  相似文献   

12.
Functional CCK-A and Y2 receptors in guinea pig esophagus   总被引:3,自引:0,他引:3  
Effects of cholecystokinin octapeptide (CCK-8), peptide YY (PPY), neuropeptide Y (NPY) and their analogs on muscle contractions of esophageal strips were investigated. CCK-8 induced a tetrodotoxin and atropine-sensitive contraction. The relative potencies for CCK related peptides to induce contractions were CCK-8 > desulfated CCK-8 > gastrin-17-I. The CCK-A receptor antagonist L-364,718 was 300-fold more potent than the CCK-B receptor antagonist L-365,260 at inhibiting CCK-8-induced contraction. These indicate that neural CCK-A receptors mediate this contraction. PYY or NPY did not cause muscle contraction or inhibit muscle contraction induced by carbachol, endothelin-1 or KCl. However, both PYY and NPY concentration-dependently inhibited contraction induced by CCK-8. This inhibition was not affected by nitric oxide (NO) synthase inhibitors L-NMMA or L-NAME. The relative potencies of PYY related peptides to inhibit CCK-8 induced contraction were PYY > NPY > NPY13-36 > [Leu(31), Pro(34)]NPY > pancreatic polypeptide (PP). We conclude that CCK interacts with neural CCK-A receptors to cause esophageal muscle contraction. PYY and NPY interact with Y2 receptors to inhibit this CCK-induced muscle contraction by an effect not related to NO.  相似文献   

13.
The present investigation was designed to determine if atrial natriuretic factor relaxes non-vascular smooth muscle. Rather than cause a relaxation, atrial natriuretic factor induced a two-to-four fold enhancement in the amplitude of the spontaneous phasic contractions of duodenal longitudinal muscle. Dose-response curves revealed that ANF enhanced these contractions over a concentration range of 10 picomoles to 100 nanomoles with the ED50 at 1 nanomolar. The increased amplitude of contraction began within 30 seconds and was calcium-dependent. The increased force of contraction was associated with a three-fold increase in cyclic GMP levels and activation of particulate guanylate cyclase [E.C.4.5.1.2.]. Atrial natriuretic factor had its half-maximal [ED50] activation of guanylate cyclase at its 1 nM concentration while maximal enhancement was at its 100 nM concentration in duodenum, jejunum, and ileum. Atrial natriuretic factor did not stimulate adenylate cyclase [E.C.4.6.1.1.]. Thus, atrial natriuretic factor increases the force of the spontaneous phasic contractions of the small intestine which are calcium-dependent and associated with activation of the guanylate cyclase-cyclic GMP system.  相似文献   

14.
Force responses to transcranial magnetic stimulation of motor cortex (TMS) during exercise provide information about voluntary activation and contractile properties of the muscle. Here, TMS-generated twitches and muscle relaxation during the TMS-evoked silent period were measured in fresh, heated, and fatigued muscle. Subjects performed isometric contractions of elbow flexors in two studies. Torque and EMG were recorded from elbow flexor and extensor muscles. One study (n = 6) measured muscle contraction times and relaxation rates during brief maximal and submaximal contractions in fresh and fatigued muscle. Another study (n = 7) aimed to 1) assess the reproducibility of muscle contractile properties during brief voluntary contractions in fresh muscle, 2) validate the technique for contractile properties in passively heated muscle, and 3) apply the technique to study contractile properties during sustained maximal voluntary contractions. In both studies, muscle contractile properties during voluntary contractions were compared with the resting twitch evoked by motor nerve stimulation. Measurement of muscle contractile properties during voluntary contractions is reproducible in fresh muscle and reveals faster and slower muscle relaxation rates in heated and fatigued muscle, respectively. The technique is more sensitive to altered muscle state than the traditional motor nerve resting twitch. Use of TMS during sustained maximal contractions reveals slowing of muscle contraction and relaxation with different time courses and a decline in voluntary activation. Voluntary output from the motor cortex becomes insufficient to maintain complete activation of muscle, although slowing of muscle contraction and relaxation indicates that lower motor unit firing rates are required for fusion of force.  相似文献   

15.
We tested the hypothesis that vasoregulatory mechanisms exist in humans that can rapidly adjust muscle blood flow to repeated increases and decreases in exercise intensity. Six men and seven women (age, 24.4+/-1.3 yr) performed continuous dynamic forearm handgrip contractions (1- to 2-s contraction-to-relaxation duty cycle) during repeated step increases and decreases in contraction intensity. Three step change oscillation protocols were examined: Slow (7 contractions per contraction intensityx10 steps); Fast (2 contractions per contraction intensityx15 steps); and Very Fast (1 contraction per contraction intensityx15 steps). Forearm blood flow (FBF; Doppler and echo ultrasonography), heart rate (ECG), and mean arterial pressure (arterial tonometry) were examined for the equivalent of a cardiac cycle during each relaxation phase (FBFrelax). Mean arterial pressure and heart rate did not change during repeated step changes (P=0.352 and P=0.190). For both Slow and Fast conditions, relaxation phase FBFrelax adjusted immediately and repeatedly to both increases and decreases in contraction intensity, and the magnitude and time course of FBFrelax changes were virtually identical. For the Very Fast condition, FBFrelax increased with the first contraction and thereafter slowly increased over the course of repeated contraction intensity oscillations. We conclude that vasoregulatory mechanisms exist in human skeletal muscle that are capable of rapidly and repeatedly adjusting muscle blood flow with ongoing step changes in contraction intensity. Importantly, they demonstrate symmetry in response magnitude and time course with increasing versus decreasing contraction intensity but cannot adjust to very fast exercise intensity oscillations.  相似文献   

16.
The effects of indomethacin and meclofenamate on active hyperemia following sustained, maximal isometric contractions were studied in free-flowing dog gracilis muscles. Muscles were stimulated to contract in situ for 1, 4, 7, and 10 s durations in the absence and presence of indomethacin (62.5 micrograms/ml blood), meclofenamate (50 micrograms/ml blood), or appropriate vehicles. Drugs were administered by continuous intra-arterial infusion into the muscle. Cyclo-oxygenase inhibition was verified by intra-arterial injection of arachidonic acid. Resting vascular conductance decreased by 28% with meclofenamate but not with indomethacin. Meclofenamate and indomethacin increased active hyperemia excess flows by 49% and 101%, respectively, following 10 s of contraction. These results differ markedly from previous studies. We suggest that non-specific actions of both drugs, unrelated to their effect on prostaglandin synthesis, result in potentiation of normal vasodilator responses to muscle contraction.  相似文献   

17.
Muscle activity was recorded from the flexor carpi radialis muscle during static and dynamic-concentric wrist flexion in six subjects, who had exhibited large differences in histochemically identified muscle fibre composition. Motor unit recruitment patterns were identified by sampling 310 motor units and counting firing rates in pulses per second (pps). During concentric wrist flexion at 30% of maximal exercise intensity the mean firing rate was 27 (SD 13) pps. This was around twice the value of 12 (SD 5) pps recorded during sustained static contraction at 30% of maximal voluntary contraction, despite a larger absolute force level during the static contraction. A similar pattern of higher firing rates during dynamic exercise was seen when concentric wrist flexion at 60% of maximal exercise intensity [30 (SD 14) pps] was compared with sustained static contraction at 60% of maximal voluntary contraction [19 (SD 8) pps]. The increase in dynamic exercise intensity was accomplished by recruitment of additional motor units rather than by increasing the firing rate as during static contractions. No difference in mean firing rates was found among subjects with different muscle fibre composition, who had previously exhibited marked differences in metabolic response during corresponding dynamic contractions. It was concluded that during submaximal dynamic contractions motor unit firing rate cannot be deduced from observations during static contractions and that muscle fibre composition may play a minor role. Accepted: 5 May 1998  相似文献   

18.
The effect of increases in diaphragmatic muscle contractile activity on diaphragm blood flow remains unclear. The present study examined the effect of electrically induced isometric diaphragmatic muscle contractions on diaphragmatic blood flow. Studies were performed on diaphragmatic muscle strips prepared in anesthetized mechanically ventilated dogs. Diaphragmatic contractile activity was quantitated as the tension-time index (TTI) (i.e., the product of tension magnitude and duration). Blood flow to the strip (Qdi) was measured from the volume of the phrenic venous effluent using a drop counter. The separate effects on Qdi of 30-s periods of continuous and rhythmic contractions were examined. Qdi increased with increases in TTI and peaked at a TTI of 20-30% of maximum after which Qdi fell progressively with further increases in TTI. At levels of TTI greater than 30%, the pattern of muscle contraction significantly affected blood flow. Qdi was significantly lower during activity and the postcontraction hyperemia significantly greater at a given TTI when contractions were continuous than when contractions were intermittent. Above a TTI of 30%, Qdi during contraction decreased linearly with increases in duty cycle and curvilinearly with increases in tension. We conclude that during isometric diaphragmatic contractions, diaphragmatic blood flow may become mechanically impeded, and the magnitude of the impediment in blood flow depends on the pattern of diaphragmatic contractions. With increases in contractile activity above a critical level, changes in duty cycle exert progressively greater effects on diaphragmatic blood flow than changes in muscle tension.  相似文献   

19.
Agonist and depolarization-induced vascular smooth muscle contractions include the activation of rho/rho kinase pathway. However, there are no reports addressing the question whether this pathway is involved in ouabain-induced vascular smooth muscle contractions. Therefore, in this study, the possible participation of the rho/rho kinase pathway in ouabain-induced contractions was evaluated in rat renal arteries. Effects of rho kinase inhibitors (fasudil and Y-27632) on ouabain-induced contractions, and phosphorylation of myosin binding subunits (MYPT/MBS85) of myosin phosphatase were determined using isolated tissue and Western blot experiments, respectively. Fasudil and Y-27632 inhibited ouabain-induced contractions in a concentration-dependent manner. The phosphorylation of MYPT was not altered by ouabain. However, ouabain significantly increased MBS85 phosphorylation of myosin phosphatase. The phosphorylation of both subunits of myosin phosphatase was inhibited by Y-27632. These results indicate that activation of rho kinase and the subsequent phosphorylation of MBS85 are involved in ouabain-induced contraction of rat renal arteries. This mechanism may be important in essential hypertension with elevated endogenous ouabain levels.  相似文献   

20.
Alternate muscle activity between synergist muscles has been demonstrated during low-level sustained contractions [< or =5% of maximal voluntary contraction (MVC) force]. To determine the functional significance of the alternate muscle activity, the association between the frequency of alternate muscle activity during a low-level sustained knee extension and the reduction in knee extension MVC force was studied. Forty-one healthy subjects performed a sustained knee extension at 2.5% MVC force for 1 h. Before and after the sustained knee extension, MVC force was measured. The surface electromyogram was recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles. The frequency of alternate muscle activity for RF-VL, RF-VM, and VL-VM pairs was determined during the sustained contraction. The frequency of alternate muscle activity ranged from 4 to 11 times/h for RF-VL (7.0 +/- 2.0 times/h) and RF-VM (7.0 +/- 1.9 times/h) pairs, but it was only 0 to 2 times/h for the VL-VM pair (0.5 +/- 0.7 times/h). MVC force after the sustained contraction decreased by 14% (P < 0.01) from 573.6 +/- 145.2 N to 483.3 +/- 130.5 N. The amount of reduction in MVC force was negatively correlated with the frequency of alternate muscle activity for the RF-VL and RF-VM pairs (P < 0.001 and r = 0.65 for both) but not for the VL-VM pair. The results demonstrate that subjects with more frequent alternate muscle activity experience less muscle fatigue. We conclude that the alternate muscle activity between synergist muscles attenuates muscle fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号