首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two vesicle pools, readily releasable (RRP) and reserve (RP) pools, are present at Drosophila neuromuscular junctions. Using a temperature-sensitive mutant, shibire(ts), we studied pool sizes and vesicle mobilization rates. In shibire(ts), due to lack of endocytosis at nonpermissive temperatures, synaptic currents continuously declined during tetanic stimulation until they ceased as the result of vesicle depletion. By then, approximately 84,000 quanta were released. Vesicles were mobilized from RP at a rate 1/7-1/10 of RRP. Cytochalasin D inhibited mobilization of vesicles from RP, allowing us to estimate the size of RRP as 14%-19% of all vesicles. Vesicle recycling supports synaptic transmission during prolonged tetanic stimulation and the maximum recycling rate was 1000 vesicles/s.  相似文献   

2.
Ultrastructural observations made in the study of the frog neuromuscular junction (NMJ) almost three decades ago showed that synaptic vesicle cycling functions through a slow pathway, requiring the use of clathrin-coated vesicles and an endosomal compartment. Simultaneously, a conceptually simpler model emerged, postulating rapid retrieval of vesicle membrane through a mechanism similar to a reversal of vesicle fusion. With the advent of fluorescence imaging which allows the investigator to monitor recycling in living nerve-muscle preparations, new data appeared which reconcile at least in part the two models, indicating that both may be important at this synapse. Two different synaptic vesicle pools can be defined, a readily releasable pool (RRP), consisting of quanta that are immediately available for release, and a reserve pool (RP) that is exocytosed only after prolonged stimulation. Vesicles in the RRP recycle through a fast endocytic pathway, which does not rely on an endosomal compartment, while vesicles in the RP cycle more slowly through formation of infoldings and endosomes and their subsequent severance into vesicles. The two pools mix slowly, and their recycling may be regulated by different mechanisms.  相似文献   

3.
Continuous neurotransmitter release is subjected to synaptic vesicle availability, which in turn depends on vesicle recycling and the traffic of vesicles between pools. We studied the role of Synaptotagmin-7 (Syt-7) in synaptic vesicle accessibility for release in hippocampal neurons in culture. Synaptic boutons from Syt-7 knockout (KO) mice displayed normal basal secretion with no alteration in the RRP size or the probability of release. However, stronger stimuli revealed an increase in the size of the reserve and resting vesicle pools in Syt-7 KO boutons compared with WT. These data suggest that Syt-7 plays a significant role in the vesicle pool homeostasis and, consequently, in the availability of vesicles for synaptic transmission during strong stimulation, probably, by facilitating advancing synaptic vesicles to the readily releasable pool.  相似文献   

4.
Synaptic vesicles belong to two distinct pools, a recycling pool responsible for the evoked release of neurotransmitter and a resting pool unresponsive to stimulation. The uniform appearance of synaptic vesicles has suggested that differences in location or cytoskeletal association account for these differences in function. We now find that the v-SNARE tetanus toxin-insensitive vesicle-associated membrane protein (VAMP7) differs from other synaptic vesicle proteins in its distribution to the two pools, providing evidence that they differ in molecular composition. We also find that both resting and recycling pools undergo spontaneous release, and when activated by deletion of the longin domain, VAMP7 influences the properties of release. Further, the endocytosis that follows evoked and spontaneous release differs in mechanism, and specific sequences confer targeting to the different vesicle pools. The results suggest that different endocytic mechanisms generate synaptic vesicles with different proteins that can endow the vesicles with distinct properties.  相似文献   

5.
Kuromi H  Kidokoro Y 《Neuron》2000,27(1):133-143
At Drosophila neuromuscular junctions, there are two synaptic vesicle pools, namely the exo/endo cycling pool (ECP) and the reserve pool (RP). We studied the recruitment process from RP using a fluorescent dye, FMI-43. During high-frequency nerve stimulation, vesicles in RP were recruited for release, and endocytosed vesicles were incorporated into both pools, whereas with low-frequency stimulation, vesicles were incorporated into and released from ECP. Release of vesicles from RP was detected electrophysiologically after emptying vesicles in the ECP of transmitter by a H+ pump inhibitor. Recruitment from RP was depressed by inhibitors of steps in the cAMP/PKA cascade and enhanced by their activators. In rutabaga (rut) with low cAMP levels, mobilization of vesicles from RP during tetanic stimulation was depressed, while it was enhanced in dunce (dnc) with high cAMP levels.  相似文献   

6.
Readily releasable and reserve pools of synaptic vesicles play different roles in neurotransmission, and it is important to understand their recycling and interchange in mature central synapses. Using adult rat cerebrocortical synaptosomes, we have shown that 100 mosm hypertonic sucrose caused complete exocytosis of only the readily releasable pool (RRP) of synaptic vesicles containing glutamate or gamma-aminobutyric acid. Repetitive hypertonic stimulations revealed that this pool recycled (and reloaded the neurotransmitter from the cytosol) fully in <30 s and did so independently of the reserve pool. Multiple rounds of exocytosis could occur in the constant absence of extracellular Ca(2+). However, although each vesicle cycle includes a Ca(2+)-independent exocytotic step, some other stage(s) critically require an elevation of cytosolic [Ca(2+)], and this is supplied by intracellular stores. Repetitive recycling also requires energy, but not the activity of phosphatidylinositol 4-kinase, which maintains the normal level of phosphoinositides. By varying the length of hypertonic stimulations, we found that approximately 70% of the RRP vesicles fused completely with the plasmalemma during exocytosis and could then enter silent pools, probably outside active zones. The rest of the RRP vesicles underwent very fast local recycling (possibly by kiss-and-run) and did not leave active zones. Forcing the fully fused RRP vesicles into the silent pool enabled us to measure the transfer of reserve vesicles to the RRP and to show that this process requires intact phosphatidylinositol 4-kinase and actin microfilaments. Our findings also demonstrate that respective vesicle pools have similar characteristics and requirements in excitatory and inhibitory nerve terminals.  相似文献   

7.
突触囊泡的立即释放囊泡池(RRP)概念已被广泛用于突触传递的分析. 基于这些囊泡池中囊泡性质是均匀的假设,通过外推成串刺激累积诱发的突触后兴奋性电流,已经开发了几种确定RRP大小的方法. 然而,使用不同刺激频率确定这些成串刺激得到的RRP大小结果不同. 这种频率依赖性显示了这些估算方法的不完备性,与RRP的定义相矛盾. 因此,我们提出了基于成串刺激计算RRP大小的改进算法. 假设RRP的填充率正比于RRP释放的部分,并且矫正RRP的未使用部分,给出RRP释放过程的完整数学描述,得到具体的解析结果. 与已知的两种常用方法做比较,该方法很好地描述了RRP的释放和填充过程,得到了比较良好的RRP大小和囊泡释放概率大小的评估. 该方法不受刺激频率的条件限制,可以很好地适用于不能给予高频刺激的细胞.  相似文献   

8.
Rapid reuse of readily releasable pool vesicles at hippocampal synapses   总被引:20,自引:0,他引:20  
Functional presynaptic vesicles have been subdivided into readily releasable (RRP) and reserve (RP) pools. We studied recycling properties of RRP vesicles through differential retention of FM1-43 and FM2-10 and by varying the time window for FM dye uptake. Both approaches indicated that vesicles residing in the RRP underwent rapid endocytosis (tau approximately 1s), whereas newly recruited RP vesicles were recycled slowly (tau approximately 30 s). With repeated challenges (hypertonic or electrical stimuli), the ability to release neurotransmitter recovered 10-fold more rapidly than restoration of FM2-10 destaining. Finding neurotransmission in the absence of destaining implied that rapidly endocytosed RRP vesicles were capable of reuse, a process distinct from repopulation from the RP. Reuse would greatly expand the functional capabilities of a limited number of vesicles in CNS terminals, particularly during intermittent bursts of activity.  相似文献   

9.
The effects that active phorbol esters, staurosporine, and changes in actin dynamics, might have on Ca2+ -dependent exocytosis of [3H]-labelled noradrenaline, induced by either membrane-depolarizing agents or a Ca2+ ionophore, have been examined in isolated nerve terminals in vitro. Depolarization-induced openings of voltage-dependent Ca2+ channels with 30 mM KCl or 1 mM 4-aminopyridine induced limited exocytosis of [3H]noradrenaline, presumably from a readily releasable vesicle pool. Application of the Ca2+ ionophore calcimycin (10 microM) induced more extensive [3H]noradrenaline release, presumably from intracellular reserve vesicles. Stimulation of protein kinase C with phorbol 12-myristate,13-acetate increased release evoked by all secretagogues. Staurosporine (1 microM) had no effect on depolarization-induced release, but decreased ionophore-induced release and reversed all effects of the phorbol ester. When release was induced by depolarization, internalization of the actin-destabilizing agent DNAase I into the synaptosomes gave a slight increase in [3H]NA release and strongly increased the potentiating effect of the phorbol ester. In contrast, when release was induced by the Ca2+ ionophore, DNAase I had no effect, either in the absence or presence of phorbol ester. The results indicate that depolarization of noradrenergic rat synaptosomes induces Ca2+ -dependent release from a releasable pool of staurosporine-insensitive vesicles. Activation of protein kinase C increases this release by staurosporine-sensitive mechanisms, and destabilization of the actin cytoskeleton further increases this effect of protein kinase C. In contrast, ionophore-induced noradrenaline release originates from a pool of staurosporine-sensitive vesicles, and although activation of protein kinase C increases release from this pool, DNAase I has no effect and also does not change the effect of protein kinase C. The results support the existence of two functionally distinct pools of secretory vesicles in noradrenergic CNS nerve terminals, which are regulated in distinct ways by protein kinase C and the actin cytoskeleton.  相似文献   

10.
We have labeled recycling synaptic vesicles at the somatic Bufo marinus neuromuscular junction with the styryl dye FM2-10 and provide direct evidence for refractoriness of exocytosis associated with a muscle activity-dependent form of long-term depression (LTD) at this synapse. FM2-10 dye unloading experiments demonstrated that the rate of vesicle exocytosis from the release ready pool (RRP) of vesicles was more than halved in the LTD (induced by 20 min of low frequency stimulation). Recovery from LTD, observed as a partial recovery of nerve-evoked muscle twitch amplitude, was accompanied by partial recovery of the refractoriness of RRP exocytosis. Unexpectedly, paired pulse plasticity, another routinely used indicator of presynaptic forms of synaptic plasticity, was unchanged in the LTD. We conclude that the LTD induces refractoriness of the neuromuscular vesicle release machinery downstream of presynaptic calcium entry.  相似文献   

11.
Synaptic vesicles are organized in clusters, and synapsin maintains vesicle organization and abundance in nerve terminals. At the functional level, vesicles can be subdivided into three pools: the releasable pool, the recycling pool, and the reserve pool, and synapsin mediates transitions between these pools. Synapsin directs vesicles into the reserve pool, and synapsin II isoform has a primary role in this function. In addition, synapsin actively delivers vesicles to active zones. Finally, synapsin I isoform mediates coupling release events to action potentials at the latest stages of exocytosis. Thus, synapsin is involved in multiple stages of the vesicle cycle, including vesicle clustering, maintaining the reserve pool, vesicle delivery to active zones, and synchronizing release events. These processes are regulated via a dynamic synapsin phosphorylation/dephosphorylation cycle which involves multiple phosphorylation sites and several pathways. Different synapsin isoforms have unique and non-redundant roles in the multifaceted synapsin function.  相似文献   

12.
Vesicular catecholamine release has been measured amperometrically from undifferentiated rat PC12 cells using carbon fiber microelectrodes. During superfusion with high K(+) saline, vesicular release was detected from approximately 50% of 200 cells investigated. On repeated stimulation the releasable pool of vesicles is rapidly depleted, while vesicle contents remains constant. Vesicular catecholamine release is not restored within 1 h after depletion of the releasable pool. Although the distribution of the cube root of vesicle contents of many cells is apparently Gaussian, maximum likelihood analysis of single cell data demonstrates double Gaussian distributions with median vesicle contents of 141 and 293 zeptomole. It is concluded that the releasable pool of vesicles in PC12 cells is heterogeneous. In the presence of l-DOPA mean vesicle contents increases, but cessation of release cannot be prevented, indicating that the number of releasable vesicles in PC12 cells is limited by a slow rate of vesicle cycling.  相似文献   

13.
Glucose and other secretagogues are thought to activate a variety of protein kinases. This study was designed to unravel the sites of action of protein kinase A (PKA) and protein kinase C (PKC) in modulating insulin secretion. By using high time resolution measurements of membrane capacitance and flash photolysis of caged Ca(2+), we characterize three kinetically different pools of vesicles in rat pancreatic beta-cells, namely, a highly calcium-sensitive pool (HCSP), a readily releasable pool (RRP), and a reserve pool. The size of the HCSP is approximately 20 fF under resting conditions, but is dramatically increased by application of either phorbol esters or forskolin. Phorbol esters and forskolin also increase the size of RRP to a lesser extent. The augmenting effect of phorbol esters or forskolin is blocked by various PKC or PKA inhibitors, indicating the involvement of these kinases. The effects of PKC and PKA on the size of the HCSP are not additive, suggesting a convergent mechanism. Using a protocol where membrane depolarization is combined with photorelease of Ca(2+), we find that the HCSP is a distinct population of vesicles from those colocalized with Ca(2+) channels. We propose that PKA and PKC promote insulin secretion by increasing the number of vesicles that are highly sensitive to Ca(2+).  相似文献   

14.
Peptidergic neurotransmission is slow compared to that mediated by classical neurotransmitters. We have studied exocytotic membrane fusion and cargo release by simultaneous capacitance measurements and confocal imaging of single secretory vesicles in neuroendocrine cells. Depletion of the readily releasable pool (RRP) correlated with exocytosis of 10%-20% of the docked vesicles. Some remaining vesicles became releasable after recovery of RRP. Expansion of the fusion pore, seen as an increase in luminal pH, occurred after approximately 0.3 s, and peptide release was delayed by another 1-10 s. We conclude that (1) RRP refilling involves chemical modification of vesicles already in place, (2) the release of large neuropeptides via the fusion pore is negligible and only proceeds after complete fusion, and (3) sluggish peptidergic transmission reflects the time course of vesicle emptying.  相似文献   

15.
By using the shibire mutation to block endocytosis in a temperature-dependent fashion, we have manipulated the number of synaptic vesicles in a nerve terminal and have observed a remarkable proportionality of the number of quanta released to the size of the total vesicle pool. In the experiments described below we determine that approximately 0.3% of the vesicle pool is released per stimulus. The data suggest that the pool of readily releasable docked vesicles does not represent the saturation of a limiting number of release sites, but instead represents a subset of vesicles that is in equilibrium with the larger pool of vesicles. Before presenting this data and the significance of the finding for the regulation of neurotransmission, we will briefly review the use of Drosophila genetics as a tool for dissecting synaptic transmission.  相似文献   

16.
Calcium-triggered exocytosis at the synapse is suppressed by addition of calcium chelators, but the effects of endogenous Ca(2+) buffers have not been tested. We find that 80% of Ca(2+) binding sites in the synaptic terminal of retinal bipolar cells were associated with mobile molecules that suppressed activation of Ca(2+)-sensitive K(+) channels with an efficiency equivalent to approximately 1.2 mM BAPTA. Removing these buffers caused a 30-fold increase in the number of vesicles released by Ca(2+) tail currents lasting approximately 0.5 ms and a 2-fold increase in the rapidly releasable pool of vesicles (RRP). The effects of BAPTA and EGTA indicate that vesicles comprising the RRP were docked at variable distances from Ca(2+) channels. We propose that endogenous Ca(2+) buffers regulate the size of the RRP by suppressing the release of vesicles toward the periphery of the active zone.  相似文献   

17.
Monoaminergic nerves are characterized by the presence of a population of small synaptic vesicles (40-60 nm in diameter) containing a few large vesicles (80-90 nm in diameter). Thus, although both types of vesicles contain monoamines, the small vesicles must be considered as the organoid responsible for the storage and release of the neurotransmitter, whereas the large ones possibly are involved in the modulation of the process. The small vesicles are electron-lucent or have an osmiophilic electron-dense core that is always linked to the vesicle membrane. Considering morphological and histochemical evidence under different experimental conditions, we proposed the existence of two compartments in the small vesicles: the core and the matrix, corresponding respectively to the electron-dense core and the electron-lucent space between the core and the vesicle membrane in osmium tetroxide fixations. The sizes of both compartments are inversely related, i.e., the smaller the core, the larger the matrix and vice versa. The core even disappears, giving way to a small electron-lucent vesicle made exclusively by the matrix. Thus, the matrix is a constant component of the vesicle, whereas the core is a transient one. Each compartment has a different pool of amine: a loosely bound, easily releasable pool in the matrix and a tightly bound, more resistant pool in the core. These two pools subserve, respectively, a tonic or phasic release of the neurotransmitter, correlated with a tonic or phasic stimulation of the receptor. The core may be considered as a storage or reserve pool. Experimental evidence from our laboratory supports the concept that different mechanisms are operative in both compartments in the release of the neurotransmitter. For instance, a Ca2(+)-independent release would be primarily concerned with the neurotransmitter contained in the matrix, and a Ca2(+)-dependent efflux would be primarily related with the neurotransmitter stored in the core. However, it still must be established that a simple relationship exists between each kind of stimulus and each vesicle compartment, rather than both compartments being integrated in a dynamic functional unit.  相似文献   

18.
The impact of syntaxin and SNAP-25 cleavage on [3H]noradrenaline ([3H]NA) and [3H]dopamine ([3H]DA) exocytotic release evoked by different stimuli was studied in superfused rat synaptosomes. The external Ca2+-dependent K+-induced [3H]catecholamine overflows were almost totally abolished by botulinum toxin C1 (BoNT/C1), which hydrolyses syntaxin and SNAP-25, or by botulinum toxin E (BoNT/E), selective for SNAP-25. BoNT/C1 cleaved 25% of total syntaxin and 40% of SNAP-25; BoNT/E cleaved 40% of SNAP-25 but left syntaxin intact. The GABA uptake-induced releases of [3H]NA and [3H]DA were differentially affected: both toxins blocked the former, dependent on external Ca2+, but not the latter, internal Ca2+-dependent. BoNT/C1 or BoNT/E only slightly reduced the ionomycin-evoked [3H]catecholamine release. More precisely, [3H]NA exocytosis induced by ionomycin was sensitive to toxins in the early phase of release but not later. The Ca2+-independent [3H]NA exocytosis evoked by hypertonic sucrose, thought to release from the readily releasable pool (RRP) of vesicles, was significantly reduced by BoNT/C1. Pre-treating synaptosomes with phorbol-12-myristate-13-acetate, to increase the RRP, enhanced the sensitivity to BoNT/C1 of [3H]NA release elicited by sucrose or ionomycin. Accordingly, cleavage of syntaxin was augmented by the phorbol-ester. To conclude, our results suggest that clostridial toxins selectively target exocytosis involving vesicles set into the RRP.  相似文献   

19.
Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca2+ dependence, but also upstream steps depend on Ca2+. After deletion of the Ca2+ sensor for fast release – synaptotagmin-1 – slower Ca2+-dependent release components persist. These findings have provoked working models involving parallel releasable vesicle pools (Parallel Pool Models, PPM) driven by alternative Ca2+ sensors for release, but no slow release sensor acting on a parallel vesicle pool has been identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca2+-dependent action: a Ca2+-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1, the origins of slow release differ. In the SPM the slow release component is attributed to the Ca2+-dependent refilling of the RRP from a Non-Releasable upstream Pool (NRP), whereas the PPM attributes slow release to a separate slowly-releasable vesicle pool. Using numerical integration we compared model predictions to data from mouse chromaffin cells. Like the PPM, the SPM explains biphasic release, Ca2+-dependence and pool sizes in mouse chromaffin cells. In addition, the SPM accounts for the rapid recovery of the fast component after strong stimulation, where the PPM fails. The SPM also predicts the simultaneous changes in release rate and amplitude seen when mutating the SNARE-complex. Finally, it can account for the loss of fast- and the persistence of slow release in the synaptotagmin-1 knockout by assuming that the RRP is depleted, leading to slow and Ca2+-dependent fusion from the NRP. We conclude that the elusive ‘alternative Ca2+ sensor’ for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca2+-dependent properties of secretion without assuming parallel pools or sensors.  相似文献   

20.
Sara Y  Virmani T  Deák F  Liu X  Kavalali ET 《Neuron》2005,45(4):563-573
Spontaneous synaptic vesicle fusion is a common property of all synapses. To trace the origin of spontaneously fused vesicles in hippocampal synapses, we tagged vesicles with fluorescent styryl dyes, antibodies against synaptotagmin-1, or horseradish peroxidase. We could show that synaptic vesicles recycle at rest, and after spontaneous exo-endocytosis, they populate a reluctantly releasable pool of limited size. Interestingly, vesicles in this spontaneously labeled pool were more likely to re-fuse spontaneously compared to vesicles labeled with activity. We found that blocking vesicle refilling at rest selectively depleted neurotransmitter from spontaneously fusing vesicles without significantly altering evoked transmission. Furthermore, in the absence of the vesicle SNARE protein synaptobrevin (VAMP), activity-dependent and spontaneously recycling vesicles could mix, suggesting a role for synaptobrevin in the separation of the two pools. Taken together these results suggest that spontaneously recycling vesicles and activity-dependent recycling vesicles originate from distinct pools with limited cross-talk with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号