首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malignant (N-type) neuroblastoma continues to defy current chemotherapeutic regimens. We tested the garlic compounds diallyl sulfide (DAS) and diallyl disulfide (DADS) for induction of apoptosis in human malignant neuroblastoma SH-SY5Y cells. Viability of human primary neurons was unaffected after 24 h treatment with 50 and 100 μM DAS and 50 μM DADS but slightly affected with 100 μM DADS. Treatment with 50 and 100 μM DAS or DADS significantly decreased viability in SH-SY5Y cells. Wright staining showed morphological features of apoptosis in SH-SY5Y cells treated with 50 and 100 μM DAS or DADS for 24 h. ApopTag assay demonstrated DNA fragmentation in apoptotic cells. Apoptosis was associated with an increase in [Ca2+]i, increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c, increase in cytosolic Smac/Diablo, and down regulation of inhibitor-of-apoptosis proteins and nuclear factor kappa B (NFκB). Activation of caspase-9 and caspase-3 indicated involvement of intrinsic pathway of apoptosis. Calpain and caspase-3 activities produced 145 kD spectrin break down product (SBDP) and 120 kD SBDP, respectively. Also, caspase-3 activity cleaved inhibitor of caspase-activated DNase (ICAD). Results strongly suggested that the garlic compounds DAS and DADS suppressed anti-apoptotic factors and activated calpain and intrinsic caspase cascade for apoptosis in SH-SY5Y cells.  相似文献   

2.
Abstract: Caspase activation has been shown to be a critical step in several models of neuronal apoptosis such as staurosporine treatment of human neuroblastoma SH-SY5Y cells and potassium deprivation of rat cerebellar granule neurons. One common event is the appearance of caspase-mediated 120-kDa nonerythroid α-spectrin breakdown product (SBDP120). Second, inhibitors of the caspase family are effective blockers of such neuronal death. In this study, we report the appearance of caspase-mediated SBDP120 in excitotoxin-challenged fetal rat cerebrocortical neurons [ N -methyl- d -aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate] and rat cerebellar granule neurons (NMDA and kainate). A general caspase inhibitor, carbobenzoxy-Asp-CH2OC(O)-2,6-dichlorobenzene (Z-D-DCB), blocked the formation of SBDP120 under these conditions and attenuated the observed NMDA-induced lactate dehydrogenase (LDH) release in both cell types. Furthermore, hydrolytic activity toward a caspase-3-preferred synthetic peptide substrate, acetyl-DEVD-7-amido-4-methylcoumarin, was significantly elevated in NMDA-treated granule neurons. Lastly, oxygen-glucose deprivation (OGD)-challenged cerebrocortical cultures also showed the appearance of SBDP120. Again, Z-D-DCB blocked the SBDP120 formation as well as attenuated the LDH release from the OGD-challenged neurons. Taken together, the presence of caspase-specific SBDP120 and the neuroprotective effects of Z-D-DCB strongly suggest that caspase activation contributes at least in part to excitotoxin- and OGD-induced neuronal death.  相似文献   

3.
The type I inositol 1,4,5-trisphosphate (IP(3)) receptor is selectively down-regulated in several neurodegenerative diseases, including Alzheimer's disease, Huntington's chorea, and ischemia, all conditions in which apoptotic neuronal loss occurs. In the present study, we used a neuronal cell line, human neuroblastoma SH-SY5Y cells, to investigate whether the levels of IP(3) receptor are changed during apoptosis in these cells. Following induction of apoptosis by staurosporine, the immunoreactivity of the type I IP(3) receptor in microsome preparations from SH-SY5Y cells was reduced within 2 h, with a further reduction during subsequent hours. Immunoblot analyses, using antibodies to poly(ADP-ribose) polymerase and spectrin breakdown products, revealed proteolysis of these caspase-3 substrates within 3 h, confirming that IP(3) receptor cleavage is an early consequence of apoptosis. In vitro incubation of SH-SY5Y microsomes or immunopurified IP(3) receptor from rat cerebellum with recombinant caspase-3 led to generation of immunoreactive breakdown products similar to those observed in intact cells, suggesting that the type I IP(3) receptor is a potential substrate for caspase-3. Preincubation of the neuroblastoma cells with the caspase-3 inhibitor Z-Asp-Glu-Val-Asp-fluoromethyl ketone prevented IP(3) receptor degradation. These results show that the type I IP(3) receptor is a substrate for caspase-3 in neuronal cells and indicate that apoptotic down-regulation of IP(3) receptor levels may contribute to the pathology of neurodegenerative conditions.  相似文献   

4.
Unilateral injection of 50 nmol of N-methyl-D-aspartate (NMDA) into the left posterior striatum of 7 day-old rat pups induces massive neuronal loss in the ipsilateral hemisphere in 5 days. In this model of excitotoxicity, the form of neuronal death (necrosis vs apoptosis) has not been clearly addressed. Here we report evidence of DNA laddering in the ipsilateral hemisphere 24 h after the NMDA injection. Activation of apoptosis-linked caspase(s) was also identified, as evidenced by (i) the formation of caspase-produced 120 kDa alpha-spectrin breakdown product (SBDP120) and (ii) increase in hydrolysis of caspase-3 substrate acetyl-DEVD-7-amido-4-methylcoumarin in the homogenate from the ipsilateral hemisphere. Lastly, we note that i.p. injection (100 mg/kg) of a pan caspase inhibitor Z-D-DCB attenuates the levels of SBDP120. Our results suggest the presence of caspase-activation in this rat pup model of NMDA toxicity.  相似文献   

5.
Neuroblastoma is the most common extracranial solid tumor in infants and young children. Current treatments are not always effective and new therapies are needed. We examined efficacy of combination of the small molecule Bcl-2 inhibitor HA14-1 (HA) and the dietary isoflavonoid apigenin (APG) in human malignant neuroblastoma cells. Dose-response studies indicated that treatment with HA and APG for 24 h synergistically reduced cell viability in human malignant neuroblastoma SK-N-DZ, SH-SY5Y, and IMR32 cells. For further studies, we selected SK-N-DZ cells that showed the highest sensitivity following treatment with 2.5 μM HA, 100 μM APG, or combination (2.5 μM HA + 100 μM APG). Wright staining showed increase in morphological features of apoptosis. Cell cycle distribution and Annexin V assay showed that combination therapy caused more apoptosis than either treatment alone. Western blotting revealed that combination therapy downregulated angiogenic factors and also induced extrinsic pathway of apoptosis with activation of caspase-8 for Bid cleavage to tBid. Alterations in Bax and Bcl-2 levels resulted in an increase in Bax:Bcl-2 ratio to activate intrinsic pathway of apoptosis with mitochondrial release of cytochrome c into the cytosol and activation of proteases. Increases in calpain and caspase-3 activities generated 145 kD spectrin break down product (SBDP) and 120 kD SBDP, respectively. Results showed that combination of HA and APG could be used for downregulation of angiogenic factors and activation of extrinsic and intrinsic pathways of apoptosis in malignant neuroblastoma cells.  相似文献   

6.
Changes at the mitochondria are an early, required step in apoptosis in various cell types. We used western blot analysis to demonstrate that the proapoptotic protein Bax translocated from the cytosolic to the mitochondrial fraction in SH-SY5Y human neuroblastoma cells undergoing staurosporine- or EGTA-mediated apoptosis. Levels of mitochondrial Bax increased 15 min after staurosporine treatment. In EGTA-treated cells, increased levels of mitochondrial Bax were seen at 4 h, consistent with a slower onset of apoptosis in EGTA versus staurosporine treatments. We also demonstrate the concomitant translocation of cytochrome c from the mitochondrial to the cytosolic fractions. We correlated these translocations with changes in caspase-3-like activity. An increase in caspase-3-like activity was evident 2 h after staurosporine treatment. Inhibition of the mitochondrial permeability transition had no effect on Bax translocation or caspase-3-like activity in staurosporine-treated SH-SY5Y cells. In primary cultures of cerebellar granule neurons undergoing low K(+)-mediated apoptosis, Bax translocation to the mitochondrial fraction was evident at 3 h. Cytochrome c release into the cytosol was not significant until 8 h after treatment. These data support a model of apoptosis in which Bax acts directly at the mitochondria to allow the release of cytochrome c.  相似文献   

7.
Spectrins line the intracellular surface of plasmalemma and play a critical role in supporting cytoskeletal stability and flexibility. Spectrins can be proteolytically degraded by calpains and caspases, yielding breakdown products (SBDPs) of various molecular sizes, with SBDP120 being largely derived from caspase-3 cleavage. SBDPs are putative biomarkers for traumatic brain injury. The levels of SBDPs also elevate in the brain during aging and perhaps in Alzheimer's disease (AD), although the cellular basis for this change is currently unclear. Here we examined age-related SBDP120 alteration in forebrain neurons in rats and in the triple transgenic model of AD (3×Tg-AD) relative to non-transgenic controls. SBDP120 immunoreactivity (IR) was found in cortical neuronal somata in aged rats, and was prominent in the proximal dendrites of the olfactory bulb mitral cells. Western blot and densitometric analyses in wild-type mice revealed an age-related elevation of intraneuronal SBDP120 in the forebrain which was more robust in their 3×Tg-AD counterparts. The intraneuronal SBDP120 occurrence was not spatiotemporally correlated with transgenic amyloid precursor protein (APP) expression, β-amyloid plaque development, or phosphorylated tau expression over various forebrain regions or lamina. No microscopically detectable in situ activated caspase-3 was found in the nuclei of SBDP120-containing neurons. The present study demonstrates the age-dependent intraneuronal presence of an αII-spectrin cleavage fragment in mammalian forebrain which is exacerbated in a transgenic model of AD. This novel neuronal alteration indicates that impairments in membrane protein metabolism, possibly due to neuronal calcium mishandling and/or enhancement of calcium sensitive proteolysis, occur during aging and in transgenic AD mice.  相似文献   

8.
Neuronal cell death after traumatic brain injury, Alzheimer’s disease and ischemic stroke may in part be mediated through endoplasmic reticulum (ER) stress and unfolded protein response (UPR). UPR results in induction of molecular chaperone GRP78 and the ER-resident caspase-12, whose activation has been proposed to be mediated by calpain and caspase processing, although their relative contribution remains unclear. In this study we induced ER stress with thapsigargin (TG), and determined the activation profile of calpain-2, caspase-3, caspase-7, and caspase-12 by analyses of protein levels, corresponding substrates and breakdown products (BDP). Specific calpain and caspase activity was assessed by analysis of αII-spectrin BDP of 145 kDa (SBDP145), BDP of 150 kDa (SBDP150) and BDP of 120 kDa (SBDP120). Decrease in pro-calpain-2 protein and increased SBDP145 levels by 3 h after TG treatment indicated early calpain activity. Active caspase-7 (p20) increase occurred after 8 h, followed by concomitant up-regulation of active caspase-3 and SBDP120 after 24 h. In vitro digestion experiments supported that SBDP120 was exclusively generated by active caspase-3 and validated that kinectin and co-chaperone p23 were calpain and caspase-7 substrates, respectively. Pro-caspase-12 protein processing by the specific action of calpain and caspase-3/7 was observed in a time-dependent manner. N-terminal pro-domain processing of pro-caspase-12 by calpain generated a 38 kDa fragment, while caspase-3/7 generated a 35 kDa fragment. Antibody developed specifically against the caspase-3/7 C-terminal cleavage site D341 detected the presence of large subunit (p20) containing 23 kDa fragment that increased after 24 h of TG treatment. Significant caspase-12 enzyme activity was only detected after 24 h of TG treatment and was completely inhibited by caspase 3/7 inhibitor DEVD-fmk and partially by calpain inhibitor SNJ-1945. ER-stress-induced cell death pathway in TG-treated PC12 cells was characterized by up-regulation of GRP-78 and processing and activation of caspase-12 by the orchestrated proteolytic activity of calpain-2 and caspase-3/7.  相似文献   

9.
The hematopoietic cell kinase (Hck) is a member of the Src family protein kinases which regulates many signal transduction pathways including cell growth, proliferation, differentiation, migration, and apoptosis. However, the expression and function of Hck after intracerebral hemorrhage (ICH) are unknown. Western blot, immunohistochemistry, and immunofluorescence showed that Hck was obviously up-regulation in neurons adjacent to the hematoma after ICH. In addition, the temporary raise of Hck expression was paralleled with the expression of p53, Bax, and active caspase-3, suggesting that Hck was involved in neuronal apoptosis. Hck siRNA dramatically decrease hemin-induced expression of p53, Bax, and active caspase-3 as well as the amount of apoptotic SH-SY5Y cells in vitro. Furthermore, Hck interacted with p53. Hence, Hck might promote neuronal apoptosis via p53 signaling pathway after ICH.  相似文献   

10.
Previous reports in various cells and species have shown that apoptotic cells are specifically and strongly labeled by certain c-Jun/N-terminal antibodies, such as c-Jun/sc45. This kind of immunoreactivity is confined to the cytoplasm. It is not due to c-Jun but appears to be related to c-Jun-like neoepitopes generated during apoptosis. This study was planned to gain further information about c-Jun-like immunostaining during apoptosis and to evaluate these antibodies as possible tools for characterizing cell death. Most of the experiments were performed in chick embryo spinal cord. When the apoptotic c-Jun-like immunoreactivity and caspase-3 immunostaining patterns were compared, we found that both antibodies immunostained the same dying cells in a similar pattern. In contrast to TUNEL staining, which reveals a positive reaction in both apoptotic and necrotic dying cells, active caspase-3 and c-Jun/sc45 antibodies are more selective because they stained only apoptotic cells. When cytosolic extracts from normal tissues were digested in vitro with caspase-3, c-Jun/sc45 immunoreactivity was strongly induced in several proteins, as demonstrated by Western blotting. Similar results were found when normal tissue sections were treated with caspase-3. Our results show that c-Jun/sc45 antibodies react with neoepitopes generated from cell proteins cleaved by activated caspases during apoptosis. We conclude that c-Jun/sc45 antibodies may be useful for detecting apoptosis. They can even be used in archival paraffin-embedded tissue samples.  相似文献   

11.
Oxidative stress generated by dopamine (DA) oxidation could be one of the factors underlying the selective vulnerability of nigral dopaminergic neurons in Parkinson's diseases. Here we show that DA induces apoptosis in SH-SY5Y neuroblastoma cells demonstrated by activation of caspase-9 and caspase-3, cleavage of poly(ADP-ribose) polymerase as well as nuclear condensation. We also show that p38 mitogen-activated protein kinase is activated within 10 min of DA treatment, which precedes the onset of apoptosis because the potent p38 kinase inhibitor SB203580 protects against DA-induced cell death as well as against caspase-9 and caspase-3 activation. In addition, the antioxidant N-acetyl-L-cysteine (NAC) effectively blocks DA-induced p38 kinase activation, caspase-9 and caspase-3 cleavage and subsequent apoptosis, indicating that DA triggers apoptosis via a signaling pathway that is initiated by the generation of reactive oxygen species (ROS). Dopamine exerts its toxicity principally intracellularly as the DA uptake inhibitor, nomifensine significantly reduces DA-induced cell death as well as activation of p38 kinase and caspase-3. Furthermore, DA induces mitochondrial cytochrome c release, which is dependent on p38 kinase activation and precedes the cleavage of caspases. These observations indicate that DA induces apoptosis primarily by generating ROS, p38 kinase activation, cytochrome c release followed by caspase-9 and caspase-3 activation.  相似文献   

12.
Bupivacain, a common local anesthetic, can cause neurotoxicity and permanent neurological disorders. Paeoniflorin has been widely reported as a potential neuroprotective agent in neural injury models. However, the roles and molecular basis of paeoniflorin in bupivacaine-induced neurotoxicity are still undefined. In the current study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect cell viability. Apoptotic rate was measured through double-staining of Annexin V-FITC and propidium iodide on a flow cytometer. Western blot assay was carried out to examine the protein levels of p38 mitogen-activated protein kinase (p38 MAPK), phosphorylated-p38 MAPK (p-p38 MAPK), Bcl-2, and Bax. caspase-3 activity was determined using a caspase-3 activity assay kit. We found that paeoniflorin dose-dependently attenuated bupivacaine-induced viability inhibition and apoptosis in SH-SY5Y cells. Moreover, paeoniflorin inhibited bupivacaine-induced activation of p38 MAPK pathway in SH-SY5Y cells. Paeoniflorin alone showed no significant effect on cell viability, apoptosis and p38 MAPK signaling in SH-SY5Y cells. Inhibition of p38 MAPK signaling by SB203580 or small interfering RNA targeting p38 (si-p38) abated bupivacaine-induced viability inhibition and apoptosis in SH-SY5Y cells. In conclusion, paeoniflorin alleviated bupivacaine-induced neurotoxicity in SH-SY5Y cells via suppression of the p38 MAPK pathway, highlighting the potential values of paeoniflorin in relieving bupivacaine-induced neurotoxicity.  相似文献   

13.
Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-3β activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy.  相似文献   

14.
Koo U  Nam KW  Ham A  Lyu D  Kim B  Lee SJ  Kim KH  Oh KB  Mar W  Shin J 《Neurochemical research》2011,36(11):1991-2001
Dopamine (DA), as a neurotoxin, can elicit severe Parkinson’s disease-like syndrome by elevating intracellular reactive oxygen species (ROS) levels and apoptotic activity. We examined the inhibitory effects of 3α-acetoxyeudesma-1,4(15),11(13)-trien-12,6α-olide (AETO), purified from the leaves of Laurus nobilis L., on DA-induced apoptosis and α-synuclein (α-syn) formation in dopaminergic SH-SY5Y cells. AETO decreased the active form of caspase-3 and the levels of p53, which were accompanied by increased levels of Bcl-2 in a dose-dependent manner. Flow cytometric and Western blot analysis showed that AETO significantly inhibited DA-induced apoptosis along with suppression of intracellular tyrosinase activity, ROS generation, quinoprotein, and α-syn formation (P < 0.01). These results indicate that AETO inhibited DA-induced apoptosis, which is closely related to the suppression of intracellular tyrosinase activity and the formation of α-syn, ROS, and quinoprotein in SH-SY5Y cells.  相似文献   

15.
During apoptotic and excitotoxic neuron death, challenged mitochondria release the pro-apoptotic factor cytochrome c. In the cytosol, cytochrome c is capable of binding to the apoptotic protease-activating factor-1 (APAF-1). This complex activates procaspase-9 in the presence of dATP, resulting in caspase-mediated execution of apoptotic neuron death. Many forms of Ca(2+)-mediated neuron death, however, do not lead to prominent activation of the caspase cascade despite significant release of cytochrome c from mitochondria. We demonstrate that elevation of cytosolic Ca(2+) induced prominent degradation of APAF-1 in human SH-SY5Y neuroblastoma cells and in a neuronal cell-free apoptosis system. Loss of APAF-1 correlated with a reduced ability of cytochrome c to activate caspase-3-like proteases. Ca(2+) induced the activation of calpains, monitored by the cleavage of full-length alpha-spectrin into a calpain-specific 150-kDa breakdown product. However, pharmacological inhibition of calpain activity indicated that APAF-1 degradation also occurred via calpain-independent pathways. Our data suggest that Ca(2+) inhibits caspase activation during Ca(2+)-mediated neuron death by triggering the degradation of the cytochrome c-binding protein APAF-1.  相似文献   

16.
Ceramide induces neuronal apoptosis through the caspase-9/caspase-3 pathway   总被引:9,自引:0,他引:9  
C(2)-ceramide, a cell-permeable analog of ceramide, caused cell death in cultured rat cortical neuronal cells. C(2)-ceramide-induced neuronal loss was accompanied by upregulation of caspase-3 activity, measured by cleavage of its fluorogenic substrate Ac-DEVD-AMC. Similar results were obtained when cortical neuronal cultures were treated with sphingomyelinase, an enzyme responsible for ceramide formation in the cell. Morphological evaluation of C(2)-ceramide-treated cortical neurons showed nuclear condensation and fragmentation as visualized by Hoechst 33258 staining. Co-administration of the selective caspase-3 inhibitor z-DEVD-fmk or caspase-9 inhibitor z-LEHD-fmk significantly reduced C(2)-ceramide-induced cell death, while co-application of the caspase-8, inhibitor z-IETD-fmk, was without effect. Immunoblot analysis of protein extracts from C(2)-ceramide-treated cortical neuronal cultures revealed upregulation of active caspase-9 and caspase-3 protein levels, whereas presence of active caspase-8 immunoreactivity was undetectable in this system. Administration of C(2)-ceramide to SH-SY5Y human neuroblastoma cells also caused apoptotic cell death. Moreover, ceramide-induced cell death was significantly decreased in caspase-9 dominant-negative SH-SY5Y cells, while both caspase-8 dominant-negative cultures and mock-transfected cells showed equally high levels of cell death following C(2)-ceramide treatment. Taken together, these data suggest that neuronal death induced by ceramide may be linked to the caspase-9/caspase-3 regulated intrinsic pathway of cellular apoptosis.  相似文献   

17.
Activation of calpain results in the breakdown of alpha II spectrin (alpha-fodrin), a neuronal cytoskeleton protein, which has previously been detected in various in vitro and in vivo neuronal injury models. In this study, a 150 kDa spectrin breakdown product (SBDP150) was found to be released into the cell-conditioned media from SH-SY5Y cells treated with the calcium channel opener maitotoxin (MTX). SBDP150 release can be readily quantified on immunoblot using an SBDP150-specific polyclonal antibody. Increase of SBDP150 also correlated with cell death in a time-dependent manner. MDL28170, a selective calpain inhibitor, was the only protease inhibitor tested that significantly reduced MTX-induced SBDP150 release. The cell-conditioned media of cerebellar granule neurons challenged with excitotoxins (NMDA and kainate) also exhibited a significant increase of SBDP150 that was attenuated by pretreatment with an NMDA receptor antagonist, R(-)-3-(2-carbopiperazine-4-yl)-propyl-1-phosphonic acid (CPP), and MDL28170. In addition, hypoxic/hypoglycemic challenge of cerebrocortical cultures also resulted in SBDP150 liberation into the media. These results support the theory that an antibody-based detection of SBDP150 in the cell-conditioned media can be utilized to quantify injury to neural cells. Furthermore, SBDP150 may potentially be used as a surrogate biomarker for acute neuronal injury in clinical settings.  相似文献   

18.
The effects of insulin-like growth factor-1 (IGF-1) on the cytotoxicity and apoptosis induced by okadaic acid (OA) in SH-SY5Y cells were investigated. Cell viability was measured using the MTT (3-(4,5-dimethylthiazolyl-2)-2,-5-diphenyltetrazolium bromide) assay. Early and late apoptosis/necrosis were analyzed by flow cytometry using Annexin V and propidium iodide (PI) double-staining. Caspase-3 activation was detected by Western blot analysis. Preincubation with IGF-1 for 24 h prevented cytotoxicity induced by 40 nM OA given for 24 h, and the MTT value significantly increased. Incubation with 20 nM OA for 24 h caused a marked increase in the percentage of early apoptotic and late apoptotic/necrotic cells, which was not dependent on the activation of caspase-3. OA-induced apoptosis was significantly decreased by pretreatment with 10 ng/ml of IGF-1 for 24 h. The results supported the hypothesis that IGF-1 may be useful in the treatment of Alzheimer's disease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号