首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Defined numbers (1–5) of (donor) chloroplasts were transferred into (acceptor) protoplasts of plastid albino mutants by subprotoplast/protoplast microfusion. Single transferred plastids gave rise to new organelle populations in the progeny of the fusion products when suitable combinations of plastomes were used or when selective pressure for the plastome transferred was applied. This process is termed chloroplast cloning and is the first reported case of cloning a cell organelle. The plastome combination and the presence or absence of selective pressure were found to influence the frequencies with which cell lines, containing both plastomes or acceptor or donor only, were obtained, and the number of cell generations needed for complete segregation — as measured by the duration of culture before the green donor plastome could be detected. The high frequency of cell lines and regenerated shoots recovered with donor plastome only, even when only a single chloroplast was transferred, leads to the conclusion that all organelles present in the fusion product contribute to the organelle population of the progeny, i.e. organelle death or loss are not regularly occurring events during plant regeneration from protoplasts in Nicotiana tabacum.Some of the results reported here were presented at the 8th International Protoplast Symposium, Uppsala 1991  相似文献   

2.
Hypocotyl protoplasts of German winter oilseed, rape (Brassica napus) lines of double-low quality were transformed using Agrobacterium tumefaciens harbouring pGV 38501103 neo (dimer) containing chimaeric kanamycin resistance reporter genes. Transformed protoplasts were regenerated to fertile and phenotypically normal plants. Transformation was confirmed by kanamycin resistance, nopaline production, neomycinphosphotransferase II activity, and Southern blot hybridization. Seed progeny from self-pollinated transformants expressed the introduced kanamycin resistance as a Mendelian trait.Abbreviations BAP 6-benzylaminopurine - Cf ClaforanR - 2.4D 2,4-dichlorophenoxy acetic acid - Km kanamycin - MS Murashige and Skoog (1962) - NAA -naphthalene acetic acid - NPT II neomycinphosphotransferase - npt II neomycinphosphotransferase II gene - NOS nopaline synthase - nos nopaline synthase gene - ocs octopine synthase gene - IAA indole-3-acetic acid  相似文献   

3.
Summary Protoplasts of a mutant line of Nicotiana tabacum having a maternally-transmitted chlorophyll deficiency were fused with protoplasts of two alloplasmic-male-sterile Nicotiana lines by the donor-recipient technique. In both fusion experiments variegated plantlets were regenerated which were shown to contain cytoplasms of mixed chloroplast nature. This confirms that with the donor-recipient method one can obtain mixed cytoplasms of genetically different chloroplasts. We present a convenient system to assay for genetic recombination between chloroplasts by combining use of several cytoplasmic markers: vis. chlorophyll pigmentation, chloroplast DNA restriction patterns, tentoxin resistance and male sterility. Within the limits of the experiment no recombinant types were recovered.  相似文献   

4.
Summary Protoplasts of a chloroplast-defective cultivar of Nicotiana tabacum were fused with gamma-irradiated protoplasts of Petunia hybrida. Over 100 photoautotrophic plants were regenerated; of these 94 were tested for Petunia chloroplast traits and all but one had Petunia chloroplasts based on their sensitivity to the fungal toxin, tentoxin. Chloroplast DNA was analysed for 3 of the sensitive plants and was shown to be identical to Petunia chloroplast DNA. Most of the plants (about 70%) appeared to be normal N. tabacum plants, based on morphology and chromosome number. They were fully fertile with normal pollen viability, seed set, and seed viability. The remaining 30% of the plants showed varying degrees of vegetative and reproductive abnormalities.The techniques of somatic cell genetics have led to many possible nuclear-organellar combinations that may be considered as cybrids. In this paper, we use the term to include the combination of nucleus from one species and chloroplast from another species  相似文献   

5.
Summary Iodoacetate-treated Citrus protoplasts from embryogenic nucellar calli of Sour orange (C. aurantium) or from Rough lemon (C. jambhiri) were fused with -irradiated protoplasts from a related genus, Microcitrus. The fused protoplasts were cultured to obtain colonies and micro-calli. Micro-calli derived from these two fusion combinations were isolated, propagated and differentiated into embryos, which subsequently regenerated trees having the morphology of Sour orange or Rough lemon. These intergeneric fusions resulted in mitochondria with novel DNA, indicating recombination between the chondriomes of Citrus and Microcitrus. Chloroplast DNA analyses of fusion-derived embryos indicated that they contained the chloroplasts of either fusion-partner or a mix of these chloroplasts. Later plastome analyses of leaves from fully differentiated plants showed that cybrids having Rough lemon morphology had either Rough lemon or Microcitrus chloroplast DNA, indicating complete sorting out of chloroplasts. Likewise, sorting out of Microcitrus chloroplasts was detected in a cybrid plant having Sour orange morphology.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250 Israel. No. 2663-E, 1989 series  相似文献   

6.
Summary Leaf mesophyll protoplasts of Solanum pinnatisectum (2n=24) -irradiated at doses of 200 Gy and consequently unable to divide were fused with untreated protoplasts of genomic chlorophyll deficient mutant IvP 841-1 (2n=24) containing the germplasms of S. tuberosum and S. phureja. Two types of plants differing in their pigmentation characteristics were selected. The regenerants of one group were identified as true somatic hybrids by using isozyme analyses of esterase and aspartate aminotransferase. The anthocyanin marker of S. pinnatisectum was phenotypically expressed in these regenerants and could be used as an additional selection trait for hybrid screening in this species combination. The regenerants of the second group were corrected for the gene controlling chlorophyll deficiency but contained species-specific isozymes of the potato cultivar only. Restriction analysis of chloroplast DNA revealed chloroplasts of the S. pinnatisectum type in all but one of the plants tested. The fusion experiments involving -irradiated protoplasts show that this approach in potato reconstruction has the advantage of producing a wide range of genetically novel plants.Dedicated to Prof. H. F. Linskens on his 65th birthday  相似文献   

7.
Summary Cauliflower protoplasts were fused to determine the effect of protoplast source and pretreatment on organellar segregation in fusion products. Mitochondrial and chloroplast type were determined for over 250 calli from eight fusions between iodoacetate-treated or -irradiated leaf or hypocotyl protoplasts with fertile or Ogura cytoplasms. Organelles in fusion-derived calli were identified with five mitochondrial probes and one chloroplast probe. Mitochondrial and chloroplast segregation were independent but biased. Most calli had B. oleracea chloroplasts, but more calli had Ogura mitochondria than B. oleracea ones. Neither protoplast source nor pretreatment alone affected organelle segregation. However, iodoacetate treatment of hypocotyl protoplasts reduced their mitochondrial contribution to the fusion products although it did not affect chloroplast segregation. Over half of the calli had mitochondrial genomes distinct from those of either fusion partner; many of these contained the complete mitochondrial genome of one partner along with some mitochondrial DNA from the other. Out of 258 calli, 83 showed evidence of mitochondrial recombination, most commonly by formation of a novel 11-kb PstI fragment near the atp9 region.  相似文献   

8.
Green cybrids with a new nucleus-chloroplast combination cannot be selected after protoplast fusion in the intersubfamilial Nicotiana-Solanum combination. As an approach to overcome the supposed plastomegenome incompatibility, a partial plastome transfer by genetic recombination has been considered. After fusions of protoplasts of a light-sensitive Nicotiana tabacum (tobacco) plastome mutant and lethally irradiated protoplasts of wild-type Solanum tuberosum (potato), a single green colony was recovered among 2.5×104 colonies. The regenerated plants had tobacco-like (although abnormal) morphology, but were normally green, and sensitive to tentoxin, demonstrating chloroplast markers of the potato parent. Restriction enzyme analysis of the chloroplast DNA (cpDNA) revealed recombinant, nonparental patterns. A comparison with physical maps of the parental cpDNA demonstrated the presence of a considerable part of the potato plastome flanked by tobacco-specific regions. This potacco plastome proved to be stable in backcross and backfusion experiments, and normally functional in the presence solely of N. tabacum nucleus.  相似文献   

9.
W. R. Mills  K. W. Joy 《Planta》1980,148(1):75-83
A procedure is described for the rapid (<5 min) isolation of purified, physiologically active chloroplasts from Pisum sativum L. Mitochondrial and microbody contamination is substantially reduced and broken chloroplasts are excluded by washing through a layer containing a treated silica sol. On average the preparations contain 93% intact chloroplasts and show high rates of 14CO2 fixation and CO2-dependent O2 evolution (over 100 mol/mg chlorophyll(chl)/h); they are also able to carry out light-driven incorporation of leucine into protein (4 nmol/mg chl/h). The amino-acid contents of chloroplasts prepared from leaves and from leaf protoplasts have been determined. Asparagine is the most abundant amino acid in the pea chloroplast (>240 nmol/mg chl), even thought it is proportionately lower in the chloroplast relative to the rest of the cell. The chloroplasts contain about 20% of many of the amino acids of the cell, but for individual amino acids the percentage in the chloroplast ranges from 8 to 40% of the cell total. Glutamic acid, glutamine and aspartic acid are enriched in the chloroplasts, while asparagine, homoserine and -(isoxazolin-5-one-2-yl)-alanine are relatively lower. Leakage of amino acids from the chloroplast during preparation or repeated washing was ca. 20%. Some differences exist between the amino-acid composition of chloroplasts isolated from intact leaves and from protoplasts. In particular, -aminobutyric acid accumulates to high levels, while homoserine and glutamic acid decrease, during protoplast formation and breakage.  相似文献   

10.
Factors affecting the division of cells derived from leaf and cotyledon protoplasts from Brassica oleracea L. var. italica (Green Comet hybrid broccoli) were examined to optimize conditions for plant regeneration and to determine whether there was a genetic basis for improved regeneration from protoplasts derived from plants previously regenerated from tissue cultures [15]. When leaf protoplasts from different plants grown from hybrid seed were isolated and cultured simultaneously, division efficiencies of 1–95% were obtained. Cells from some plants showed high division efficiencies in consecutive experiments while cells from other plants had consistently low division rates. More plants from hybrid seed gave high division efficiencies when cotyledon protoplasts were used. However, cotyledon or leaf protoplasts from selfed progeny of regenerated plants produced more vigorous calli and more shoots than protoplasts from hybrid seed. These results suggest that there may be a genetic component to the increased totipotency of Brassica oleracea protoplasts.  相似文献   

11.
Summary Alloplasmic compatibility, namely the functional interaction between the nuclear genome of a given species with plastomes and chondriomes of alien species, is of considerable relevance in plant biology. The genus Solanum encompasses a wide spectrum of species and is therefore suitable for a study of this compatibility. We thus chose the nuclear genome of Solanum tuberosum (potato) and organelles (chloroplast and mitochondria) from 14 other Solanum species to initiate an investigation of intrageneric nucleus/organelle interactions. An assessment of the diversity of the chloroplast DNAs from these 15 species resulted in the construction of a plastome dendrogram (phylogenetic tree). In parallel we extended a previous study and performed ten additional fusion combinations by the donor-recipient protoplast fusion procedure, using potato protoplasts as recipients and protoplasts from any of ten other Solanum species as donors. We found that two fusion combinations did not yield cybrids and that the chloroplasts of S. polyadenium and the mitochondria (or mitochondrial components) from S. tarijense could not be transferred to cybrids bearing potato nuclei. In general, there is a correlation, albeit not perfect, between the cybridization data and the plastome dendrogram. These results furnish valuable information toward future transfer of plasmoneencoded breeding traits from wild Solanum species into potato. This information should also be useful for the planning of asymmetric protoplast fusion between potato and wild accessions for the improvement of pathogen and stress resistance of potato cultivars.  相似文献   

12.
Summary Green plants were repeatedly regenerated from suspension-derived protoplasts of Kentucky blue grass (Poa pratensis L.) cv. Geronimo. One suspension was capable of donating competent protoplasts during long-term culture i. e. 10–16 months after its establishment. The plating efficiency of the protoplasts from three different suspension lines varied from 0.004% in the lowest up to 1.5% in the highest responding line, using agarose-bedding in nutrition medium devoid of nurse or feeder cultures. Green plants germinated from polyembryos, which developed from 0.4–2.7% of the protoplast-derived microcolonies. A total of 127 plants were successfully transferred to soil.Abbreviations ABA abscisic acid - BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - FW fresh weight - PE plating efficiency  相似文献   

13.
Summary A protocol for obtaining regenerated fertile plants from mesophyll protoplasts of Arabidopsis thaliana is reported. Protoplasts were isolated from leaves of 21-to 28-day-old Arabidopsis plants grown in a controlled environment. Sustained divisions were achieved when protoplasts were embedded in beads formed by 1.4% sodium alginate in the presence of 50mM CaCl2 in 0.4 mannitol, which was then exchanged againts modified B5 medium. About 0.4%–0.6% of the protoplasts developed into colonies of which 80%–90% formed shoots and subsequently regenerated to fertile plants. Seeds harvested from more than 200 independently regenerated plants were sown and germination frequencies of more than 95% were obtained. Furthermore, the F1 plants did not show any evidence of somaclonal variation on visual inspection. This protocol was originally developed for Arabidopsis thaliana Columbia; however it was shown to be applicable also for the genotypes Wassilewskija, Landsberg erecta and Estland though with differing efficiencies.Abbreviations FDA fluorescein diacetate - CM culture medium - SRM shoot regeneration medium - SEM shoot elongation medium - RM rooting medium - PE plating effciency - NAA -naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid - BAP 6-benzylaminopurine - Kin kinetin - 2-iP 2-isopentenyladenine - GA3 gibberetic acid  相似文献   

14.
Summary Interspecific hybrids between Brassica napus and B. oleracea are difficult to produce, and previous attempts to transfer economic characters from one species to the other have largely been unsuccessful. In these studies, oilseed rape cv. Tower (2n38) (B. napus) was crossed with broccoli and kale (2n18) (B. oleracea), and hybrid plants were developed from embryos in culture by either organogenesis or somatic embryogenesis. In rape × broccoli, F1 plants were regenerated from hybrid embryos and the plants produced viable selfed seeds. F5 plants (2n38) homozygous for white flower colour were selected for high oil content (47%) and Line 15; a selection from these plants produced fertile hybrids with rape, broccoli and kale without embryo culture. In reciprocal crosses between oilseed rape cv. Tower and an aphid resistant diploid kale, 28 and 56 chromosome F1 hybrid plants were regenerated from somatic embryos. The 56 chromosome plants were self-fertile and it was concluded from F2 segregation ratios that a single dominant gene controls resistance to cabbage aphid in kale. The 28 chromosome F1's were self-sterile, but these and the 56 chromosome F1's could be backcrossed to rape and kale. A cross between the F1 (2n56) and a forage rape resulted in the selection of a cabbage aphid (Brevicoryne brassicae L.) resistant line (Line 3). Both Line 15 and Line 3 can serve as bridges for gene interchange between B. campestris, B. napus and B. oleracea, which has not been possible hitherto. Hybridisations between rape and tetraploid kale produced F1 plants with 37 chromosomes. One F2 plant possessed coronal scales and the inheritance was shown to be controlled by a single recessive gene unlinked to petal colour.This paper is dedicated to Mr. T. P. Palmer, a colleague and close friend who retired from the DSIR as Assistant Director of the Crop Research Division in September 1984  相似文献   

15.
Summary Quantitative variation in seven morphological characteristics (leaf length and width, leaf length/ width ratio, flower, petal and stomata length, and number of chloroplasts in guard cells) were studied in Petunia hybrida plants regenerated from anther tissue culture and belonging to four different classes of ploidy (2n, 2n–3n, 3n–2n, 4n–8n). Results showed that leaf size is not a good characteristic for discriminating between plants of different ploidy — flower and stomata characteristics being more adequate for this purpose. After applying stepwise discriminant analysis the association chloroplast number — leaf length/width ratio — petal length was verified to be more appropriate for the discrimination of ploidy classes.  相似文献   

16.
Summary Transmission of paternal chloroplasts was observed in Nicotiana, considered to inherit organelles in a strictly maternal way. Plants carrying streptomycin resistant plastids were used as pollen donors. Cell lines with paternal plastids in the offspring were selected as green (resistant) sectors on calli induced from the seedlings on streptomycin-containing media. The presence of paternal plastids in the regenerated plants was confirmed by restriction analysis. In the Nicotiana plumbaginifolia xN. plumbaginifolia Np(SR1)3 and the N. plumbaginifolia Np(gos)29 xN. tabacum SR1 crosses 2.5% and 0.07% of the offspring were found to contain paternal (tabacum) plastids, respectively. These plants, however, carried maternal mitochondria exclusively. This sexual cybridization method offers a simple way to transfer chloroplasts solely, a goal not accessible by protoplast fusion.  相似文献   

17.
Summary Hypocotyl calli-derived protoplasts of two cultivars of Brassica juncea (2n=36), a major oil-seed crop, were fused with normal as well as -irradiated mesophyll protoplasts of Eruca sativa (2n=22). The irradiation of the Eruca fusion partner increased the plating efficiency as well as the morphogenic potentiality of the fusion products over the normal fusion. Fertile plants could be regenerated from such fusion products. Analysis of 63 out of 181 plants regenerated showed that, indeed, 11 somatic hybrids (2n=58) and 10 partial somatic hybrids (chromosome number ranged between 50 and 56) had been obtained. Pollen viability (0%–82.9%) and seed set (0%–50%) of the hybrids indicated them to be useful for future studies.  相似文献   

18.
Summary Protoplasts of Nicotiana tabacum (SR1), carrying a maternally-inherited streptomycin resistance mutation, were enucleated by centrifugation through a Percoll gradient. The resulting cytoplasts containing resistant plastids, were fused with sensitive Nicotiana plumbaginifolia protoplasts. The SR1 cytoplasts, having no nuclei, were unable to form calli. All resistant clones recovered after fusion-induction were therefore supposed to be derived from interspecific cytoplast-protoplast fusion. N. plumbaginifolia plants regenerated in 17 out of the 75 resistant clones studied. Plants obtained from eight of these clones were resistant to streptomycin and inherited the resistance maternally, as expected when transferring SR1 plastids into the N. plumbaginifolia nuclear background. Plastid transfer in these plants has been confirmed by the EcoRI restriction pattern of the chloroplast DNA.In nine clones N. plumbaginifolia plants were sensitive although obtained from initially resistant clones. This phenomenon is explained by the maintenance of plastid heterogeneity on the selective streptomycin medium, and formation of plants from sensitive sectors on the non-selective regeneration medium.SR1 protoplasts, originally present as contaminants in the cytoplast preparation (2–7%) did not form colonies (or very rarely) after polyethylene glycol treatment. The nuclei from such protoplasts were recovered, however, in the interspecific somatic hybrids (56 clones), and in segregants having the SR1 nucleus but some cytoplasm from N. plumbaginifolia (2 clones). The majority (about 80%) of the recovered resistant clones therefore acquired the streptomycin resistance factor from the rare (2–7%) contaminating SR1 protoplasts. This is explained by the protoplasts being more stable during fusion induction.  相似文献   

19.
Glutaraldehyde fixation in 0.33 M sorbitol without any buffer reveals changes in the staining properties of the envelopes of chloroplasts of pea plants kept in the light or in the dark prior to fixation. After dark pretreatment the outer double membrane of the chloroplast does not adsorb heavy metals, resulting in a white unstained rim instead of the usual membrane. All other membranes of the cell, including chloroplast grana, are not affected and stain normally. Light pretreatment of the plants allows the usual staining of the outer membrane of the chloroplats. Fixation carried out in the medium usually used to isolate intact CO2 fixing chloroplasts (sorbitol+buffer+ions) reverses the above process and results in unstained envelopes of chloroplasts from preilluminated leaves, while the envelopes of chloroplasts from leaves kept in the dark stain normally. Glutaraldehyde-fixed chloroplats isolated from preilluminated leaves show a very basic isoelectric point during electrofocusing, while fixed chloroplasts from predarkened tissue exhibit an isoelectric point at about pH 7.  相似文献   

20.
This paper reports on the production of intergeneric somatic hybrid plants between two sexually incompatible legume species. Medicago sativa (alfalfa, lucerne) leaf protoplasts were inactivated by lethal doses of iodoacetamide. Onobrychis viciifolia (sainfoin) suspension-cell protoplasts were gamma-irradiated at lethal doses. Following electrofusion under optimized conditions about 50,000 viable heterokaryons were produced in each test. The fusion products were cultured with the help of alfalfa nurse protoplasts. Functional complementation permitted only the heterokaryons to survive. A total of 706 putative heterokaryon-derived plantlets were regenerated and 570 survived transplantation to soil. Experimentation was aimed at the introduction of proanthocyanidins (condensed tannins) from sainfoin, a bloat-safe plant, to alfalfa, a bloat-causing forage crop; however, no tannin-positive regenerant plants were detected. Most regenerant plants have shown morphological differences from the fusion parents, although, as expected, all resembled the recipient parent, alfalfa. Southern analysis using an improved total-genomic probing technique has shown low levels of sainfoin-specific DNA in 43 out of 158 tested regenerants. Cytogenetic analysis of these asymmetric hybrids has confirmed the existence of euploid (2n=32; 17%) as well as aneuploid (2n=30, 33–78; 83%) plants. Pollen germination tests have indicated that the majority of the hybrids were fertile, while 35% had either reduced fertility or were completely sterile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号