首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mechanism of Excitation of Aplysia Neurons by Carbon Dioxide   总被引:2,自引:1,他引:1  
The abdominal ganglion of Aplysia californica was perfused with artificial seawater equilibrated at different PCOCO2's and pH's for 5 min or less. 5% CO2 dropped perfusate pH from 8.0 to 6.5 and produced depolarization and increased discharge rate in visceromotor neurons. Half the giant cells studied had a similar response, whereas the other half were hyperpolarized. Pacemaker neurons showed little, if any, response to such changes in pH or CO2. Membrane conductance of responsive cells was always increased. The effect of CO2 occurred even when synaptic transmission was blocked by low calcium and high magnesium, and therefore must have been a direct result of CO2 or the concomitant fall in pH. When extracellular pH was lowered to 6.5 using HCl or H2SO4 and no CO2, the same effects were observed. Also, local application of HCl or H2SO4 to the external surface of the cell soma elicited depolarization and spike discharge. When extracellular pH was held constant by continual titration, 5–50% CO2 had no effect. Intracellular pH was probably decreased at least one pH unit under these circumstances. Thus CO2 per se, decreased intracellular pH, and increased bicarbonate ion were without effect. It is concluded that CO2 acts solely through a decrease in extracellular pH.  相似文献   

2.
Sphagnum peat extracts or hydrolysates have been obtained and used as a culture medium for the production of Candida utilis biomass as single cell proteins. Acid hydrolysis of ground peat (4–60 mesh) in an autoclave operated under a set of conditions for acid strength (0.3-1.5 (v/v) H2SO4), holding time (1–4 hr), temperature (100–165°C), and weight ratio of dry peat to solution (3.3–16.7 g dry peat/100 g solution) yielded carbohydrate-rich extracts of different concentrations (1–34g/liter). The best yield (mg total carbohydrate/g dry peat) was obtained for a holding time of I hr and a temperature of 152°C. Low peat concentratio (4.1 g dry peat/100 g solution)resulted in high yield(280mg total carbohydrate/gdry peat) with a corresponding low carbohydrate content in hydrolysate (13 g/liter), while a lower yield with a higher carbohydrate content (34 g/liter)in hydrolysate were found when increasing peat concentration (16.7 g dry peat/100 g solution). Shake-fladk experiments using peat hydrolysates as the culture medium together with NH4OH (~4.8 g/liter) and K2HPO4(5 g/liter) as nitrogen and phosphate supplement, respectively, gave a maximum biomass concentration of 7.5 g/liter after 60 hr at 30°C and 200rpm. Batch cultivation in a fermentor under controlled conditions for aeration (4.2 liter/min), agitation (500rpm), temperature (30°C), and pH (5.0) produced a maximum biomass of 10 g/liter after 20 hr with a specific growth rate of 0.13 hr?1. For the continuous cultivation, a maximal biomass productivity of 1.24 g/gliter-he was obtained at a dilution rate of 0.125 hr ?1. Monod's equation's equation has been used for the estimation of the coefficients μMax, Ks, and Y. It was found that the yield coefficient Y is not constant during the progress of batch cultivation.  相似文献   

3.
The physical parameters of cellulose such as surface area and porosity are important in the development of cellulose composites which may contain valuable additives which bind to cellulose. In this area, the use of acid hydrolyzed nano-dimensional cellulose nanowhiskers (CNWs) has attracted significant interest, yet the surface area and porosity of these materials have not been explored experimentally. The objective of this work was to characterize the surface area and porosity of CNWs from different origins (plant cotton/bacterium Gluconacetobacter xylinus) and different acid treatments (H2SO4/HCl) by N2 adsorption; as well as to compare surface area and porosity of bacterial cellulose synthesized by static and agitated cultures. Our results showed that CNWs produced from H2SO4/HCl exhibited significantly increased surface area and porosity relative to starting material cotton fiber CF11. Micropores were generated in HCl hydrolyzed CNWs but not in H2SO4 hydrolyzed CNWs. Bacterial CNWs exhibited larger surface area and porosity compared to plant CNWs. Cellulose synthesized by G. xylinus ATCC 700178 from agitated cultures also exhibited less surface area and porosity than those from static cultures.  相似文献   

4.
The emission of methane (1.3 mmol of CH4 m−2 day−1), precursors of methanogenesis, and the methanogenic microorganisms of acidic bog peat (pH 4.4) from a moderately reduced forest site were investigated by in situ measurements, microcosm incubations, and cultivation methods, respectively. Bog peat produced CH4 (0.4 to 1.7 μmol g [dry wt] of soil−1 day−1) under anoxic conditions. At in situ pH, supplemental H2-CO2, ethanol, and 1-propanol all increased CH4 production rates while formate, acetate, propionate, and butyrate inhibited the production of CH4; methanol had no effect. H2-dependent acetogenesis occurred in H2-CO2-supplemented bog peat only after extended incubation periods. Nonsupplemented bog peat initially produced small amounts of H2 that were subsequently consumed. The accumulation of H2 was stimulated by ethanol and 1-propanol or by inhibiting methanogenesis with bromoethanesulfonate, and the consumption of ethanol was inhibited by large amounts of H2; these results collectively indicated that ethanol- or 1-propanol-utilizing bacteria were trophically associated with H2-utilizing methanogens. A total of 109 anaerobes and 107 hydrogenotrophic methanogens per g (dry weight) of bog peat were enumerated by cultivation techniques. A stable methanogenic enrichment was obtained with an acidic, H2-CO2-supplemented, fatty acid-enriched defined medium. CH4 production rates by the enrichment were similar at pH 4.5 and 6.5, and acetate inhibited methanogenesis at pH 4.5 but not at pH 6.5. A total of 27 different archaeal 16S rRNA gene sequences indicative of Methanobacteriaceae, Methanomicrobiales, and Methanosarcinaceae were retrieved from the highest CH4-positive serial dilutions of bog peat and methanogenic enrichments. A total of 10 bacterial 16S rRNA gene sequences were also retrieved from the same dilutions and enrichments and were indicative of bacteria that might be responsible for the production of H2 that could be used by hydrogenotrophic methanogens. These results indicated that in this acidic bog peat, (i) H2 is an important substrate for acid-tolerant methanogens, (ii) interspecies hydrogen transfer is involved in the degradation of organic carbon, (iii) the accumulation of protonated volatile fatty acids inhibits methanogenesis, and (iv) methanogenesis might be due to the activities of methanogens that are phylogenetic members of the Methanobacteriaceae, Methanomicrobiales, and Methanosarcinaceae.  相似文献   

5.
Cassava pulp was hydrolyzed with acids or enzymes. A high glucose concentration (>100 g/L) was obtained from the hydrolysis with 1 N HCl at 121 °C, 15 min or with cellulase and amylases. While a high glucose yield (>0.85 g/g dry pulp) was obtained from the hydrolysis with HCl, enzymatic hydrolysis yielded only 0.4 g glucose/g dry pulp. These hydrolysates were used as the carbon source in fermentation by Rhizopus oryzae NRRL395. R. oryzae could not grow in media containing the hydrolysates treated with 1.5 N H2SO4 or 2 N H3PO4, but no significant growth inhibition was found with the hydrolysates from HCl (1 N) and enzyme treatments. Higher ethanol yield and productivity were observed from fermentation with the hydrolysates when compared with those from fermentation with glucose in which lactic acid was the main product. This was because the extra organic nitrogen in the hydrolysates promoted cell growth and ethanol production.  相似文献   

6.
Summary Application of CaCO3 and a lime-solubilizing agent (viz H2SO4, HCl, and Al2(SO4)3) to a saline-alkali soil caused a significant increase in the dry matter yield of dhaincha (Sesbania aculeata Pers). The extent of yield enhancement by these amendments was in the decreasing order: HCl, H2SO4 and Al2(SO4)3. Calcium content in the plant increased significantly with the application of these amendments and it was in the decreasing order: H2SO4, Al2(SO4)3 and HCl. The uptake of Ca from native CaCO3 was much less than that from the added Ca45CO3. Phosphorus content in the plant increased with the HCl and H2SO4 treatments and decreased with the Al2(SO4)3 treatments. Nitrogen and Na contents decreased with the addition of these amendments. re]19730521  相似文献   

7.
A newly isolated autotrophic bacterium, Thiobacillus thioparus DW44, which is capable of degrading sulfur-containing gases, was inoculated into a pilot-scale peat biofilter to treat the exhaust gas from a night soil treatment plant. Hydrogen sulfide (H2S), methanethiol (MT), dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) in the exhaust gas were efficiently removed for six months. Average removal ratios were 99.8% for H2S, 99.0% for MT, 89.5% for DMS and 98.1% for DMDS at a space velocity of 46 h−1 during the period of operation. No acclimation period was needed to reach such a high efficiency in the removal of the gases, indicating that the ability of this bacterium to remove these gases was occurred immediately after its inoculation to the peat. Ammonia (NH3) in the exhaust gas was neutralized with SO42−, which is the final product of the oxidation of H2S, MT, DMS and DMDS by the bacterium. No remarkable decline of pH, which often causes a deterioration in bacterial activity, was observed, mainly because of the reaction of SO42− with NH3. This study is the first report on the application of an isolated microorganism to a practical deodorizing system. The inoculation of T. thioparus DW44 into the pilot-scale peat biofilter could overcome such disadvantages of the conventional peat biofilter as a long acclimation period to reach a constant gas removability and the low removability of DMS, and resulted in enhanced removal efficiency of malodorous gases.  相似文献   

8.
Peat Hydrolysate Medium Optimization for Pullulan Production   总被引:2,自引:1,他引:1       下载免费PDF全文
Peat hydrolysate, a diluted acid-autoclaved extract of peat, was used as a substrate for the production of the extracellular polysaccharide pullulan by three strains of Aureobasidium pullulans, 140B, 142, and 2552. It was found that the addition of (NH4)2SO4 and K2HPO4 as sources of nitrogen and phosphate, respectively, is not necessary for the polysaccharide production. The economically optimized culture medium for large-scale production of pullulan contains peat hydrolysate, 0.05% NaCl, 0.02% MgSO4, and 0.01% antifoam FG-10. The initial pH of peat hydrolysate medium is adjusted to its optimum value of 6.0 with Ca(OH)2. The total ingredient cost for the production of each kilogram of pullulan with optimized medium is only 1/10 of that with the nonoptimized medium. In this study, a zero cost for peat hydrolysate was assumed, since it is an effluent of the peat and peat processing industries.  相似文献   

9.
The bioconversion of waste paper to single-cell protein at pH <1 by Scytalidium acidophilum is described. Waste paper pretreated with 72% H2SO4 at 4°C was diluted with water to a pH of <0.1 and hydrolyzed. This yielded an adequate sugar-containing substrate for the growth of the fungus. A total of 97% of the sugars (glucose, galactose, mannose, xylose, arabinose) in the hydrolysates were converted to cell biomass. Microbial contamination was not observed. Based on the sugars consumed, S. acidophilum produced higher yields in shake cultures than many other Fungi Imperfecti. In aerated cultures, productivity increased, and yields of 43 to 46% containing 44 to 47% crude protein were obtained. This compares favorably with Candida utilis, a yeast used commercially to produce single-cell protein. The chemical constituents and the essential amino acids of the fungal cells were similar to those of other fungi. The nucleic acid content was characteristic of microbes containing low levels of nucleic acid. The advantages of using S. acidophilum for single-cell protein production are discussed.  相似文献   

10.
Uptake of label from solutions containing 35SO2, H35SO3 and 35SO32− into mesophyll protoplasts, vacuoles, and chloroplasts isolated from young barley leaves was measured at different pH values. Uptake was fast at low pH, when the concentration of SO2 was high, and low at high pH, when the concentration of SO2 was low. When the resistance (R) of plasmalemma, tonoplast, and chloroplast envelope to the penetration of SO2 was calculated from rates of uptake of label, comparable values were obtained for the different biomembranes at low pH values. R was close to 8000 seconds per meter and permeability coefficients were close to 1.25 × 10−4 meters per second. Under these conditions R may describe resistance to SO2 diffusion across a lipid bilayer. At higher pH values, R decreased. As R was calculated on the assumption that SO2 is the only penetrating molecular species, the data suggest that carrier-mediated anion transport contributes to the uptake of sulfur at physiological pH values thereby decreasing apparent RSO2. The contribution of anion transport appeared to be smaller for transfer across the plasmalemma than for transfer across the tonoplast. It was large for transfer across the chloroplast envelope. The phosphate translocator of the chloroplast envelope catalyzed uptake of SO32− into chloroplasts at neutral pH. Uptake was decreased in the presence of high levels of phosphate or sulfate and by pyridoxal phosphate. SO2 transfer into cells leads to the intracellular liberation of one or two protons, depending on pH and oxidizing conditions. When the divalent sulfite anion is exchanged across the chloroplast envelope, bisulfite formation results in proton uptake in the chloroplast stroma, whereas SO2 uptake into chloroplasts lowers the stroma pH.  相似文献   

11.
The HOCl in chlorine-water oxidizes DPF to cis-DBE in parallel to the HOCl concentration. The addition of H2O2 produces singlet molecular oxygen, and a bimol collision above pH 6.0, but not in the pH region 3.0 to 4.0. The DPF conversion to cis-DBE is initiated by a 1,2-position attack of OH? and Cl+, followed by the HCl elimination. The oxidation potency of HOCl is much greater than the singlet molecular oxygen generated in chlorine-water/H2O2 solution, on the pH range 6.0 to 8.0 where both HOCl and OCl? are present.  相似文献   

12.
Chiou  Charng-Jyi  Boyd  Claude E. 《Hydrobiologia》1974,45(4):345-355

Muds from 12 types of soils were used as the only source of phosphorus in cultures of Scenedesmus dimorphus. Some muds supported as much algal growth as was obtained with 0.075 to 0.5 mg/1 of phosphorus, while little or no growth occurred in cultures which contained other muds as a source of phosphorus. Algal growth was correlated with the fractions of soil phosphorus which were extracted with the following solutions; I — the phosphorus — free nutrient solution, II — 0.05N HCl plus 0.025N H2SO4, III — 0.002N H2SO4 plus 3 g/l of K2SO4, and IV — 0.1N HCl plus 0.03N/NH4F. Additions of phosphorus to the soils prior to their use as muds increased the suitability of some as sources of phosphorus, but for others the added phosphorus was so tightly bound to the soil that little or none was available to S. dimorphus. The findings indicate that the type of soil in a pond will likely have a large influence on the efficiency of fertilization with phosphate fertilizers.

  相似文献   

13.
In pH 8.4 Tris–HCl buffer solutions, alcohol dehydrogenase catalyzed the reaction between ethanol and nicotinamide adenine dinucleotide to produce acetaldehyde. In the medium of HCl, acetaldehyde reduced HAuCl4 to form gold particles that exhibited a strong resonance scattering (RS) peak at 600 nm. The RS peak increased with ethanol concentration. The increased RS intensity at 600 nm (ΔI 600 nm) was proportional to the ethanol concentration (C) from 0.068 to 10.2 mmol/L, with a regression equation of ΔI 600 nm?=?35.59?C?+?16.1, and a detection limit (3σ) of 3.2 μmol/L. This proposed method was applied to detect ethanol in saliva and plant cell culture medium samples, with satisfactory results.  相似文献   

14.
Methane production and archaeal community composition were studied in samples from an acidic peat bog incubated at different temperatures and pH values. H2-dependent methanogenesis increased strongly at the lowest pH, 3.8, and Methanobacteriaceae became important except for Methanomicrobiaceae and Methanosarcinaceae. An acidophilic and psychrotolerant Methanobacterium sp. was isolated using H2-plus-CO2-supplemented medium at pH 4.5.  相似文献   

15.
Methane Production in Minnesota Peatlands   总被引:25,自引:10,他引:15       下载免费PDF全文
Rates of methane production in Minnesota peats were studied. Surface (10- to 25-cm) peats produced an average of 228 nmol of CH4 per g (dry weight) per h at 25°C and ambient pH. Methanogenesis rates generally decreased with depth in ombrotrophic peats, but on occasion were observed to rise within deeper layers of certain fen peats. Methane production was temperature dependent, increasing with increasing temperature (4 to 30°C), except in peats from deeper layers. Maximal methanogenesis from these deeper regions occurred at 12°C. Methane production rates were also pH dependent. Two peats with pHs of 3.8 and 4.3 had an optimum rate of methane production at pH 6.0. The addition to peat of glucose and H2-CO2 stimulated methanogenesis, whereas the addition of acetate inhibited methanogenesis. Cysteine-sulfide, nitrogen-phosphorus-trace metals, and vitamins-yeast extract affected methane production very little. Various gases were found to be trapped or dissolved (or both) within peatland waters. Dissolved methane increased linearly to a depth of 210 cm. The accumulation of metabolic end products produced within peat bogs appears to be an important mechanism limiting carbon turnover in peatland environments.  相似文献   

16.
Bacteria associated with H2S oxidization were isolated from a peat biofilter to which various concentrations of H2S gas were supplied. After acclimation of the peat, a facultative autotrophic bacterium, Thiobacillus itnermedius, was primarily responsible for H2S oxidation. The cell number isolates increased at above pH 3, but decreased when pH fell below 3, in which range breakthrough of H2S was finally observed. When pH was controlled at around 3, constant removal of H2S continued without a decline of the cell number. The specific H2S uptake rate of the autotrophic bacterium was determined as 1.4 × 10−13 g-H2S-S/h/cells. The cell number of the bacteria during steady state H2S removal was proportional to the inlet H2S concentration, verifying the kinetic equation derived previously.  相似文献   

17.
Semisolid fermentation of ryegrass straw   总被引:4,自引:3,他引:1       下载免费PDF全文
Candida utilis, Aureobasidium pullulans, and Trichoderma viride were grown on pretreated ryegrass straw. The pretreatment consisted of hydrolysis of straw with 0.5 N H2SO4 (water-substrate, 3:1) at 121 C, 100 C, and room temperature and adjustment of the hydrolysate to pH 4.5 to 5.0 with 5 N NH4OH. The 121 C pretreatment yielded a material containing 30% sugar and 2.3% N. The fermentation was carried on semisolid substrate (moisture level, 75%) in rotating jars for 2 to 3 days at room temperature. The organisms grew rapidly during the period from 18 to 42 h of incubation. During this period the number of microbial cells increased by 20- to 200-fold, and the level of NH3-N decreased from 1.3 to 0.9%. The fermentation resulted in a fourfold increase in protein, fivefold increase in crude fat, and 40% increase in the digestibility of straw. The best result in terms of increasing protein and digestibility of straw was obtained when C. utilis was grown on straw preheated at 121 C.  相似文献   

18.
The brown algae Desmarestia ligulata var. ligulata (Lightf.) Lamour., and D. viridis (Mull.) Lamour., accumulate H2SO4 until their average internal pH is 0.5 to 0.8. A related species, D. aculeata (L.) Lamour., does not accumulate acid. The H2SO4 accumulation is accompanied by a reduction in the K+ and Cl content, presumedly to maintain osmotic balance. Measurements of the membrane potential and H+ and SO42− concentrations indicate that both ions are accumulated in the vacuole against their electrochemical potential gradients.

The internal pH remains constant in all three species over the growing season, despite striking changes in the algal morphology. The pH is not affected by periods of darkness of up to 34 hours. Sulfate accumulated in the vacuoles appears to be trapped there since incubation of D. ligulata for up to 10 days in sulfate-free medium resulted in little loss of either vacuolar sulfate or H+. Although the uptake of H2SO4 into the vacuole must require energy, the maintenance of the vacuolar H2SO4 may be due to the impermeability of the tonoplast, with little necessity for continued expenditure of energy.

  相似文献   

19.
1. When we plot the values of osmotic pressure, swelling, and viscosity of gelatin solutions as ordinates over the pH as abscissæ, practically identical curves are obtained for the effect of monobasic acids (HCl, HBr, HNO3, and acetic acid) on these properties. 2. The curves obtained for the effect of H2SO4 on gelatin are much lower than those obtained for the effect of monobasic acids, the ratio of maximal osmotic pressures of a 1 per cent solution of gelatin sulfate and gelatin bromide being about 3:8. The same ratio had been found for the ratio of maximal osmotic pressures of calcium and sodium gelatinate. 3. The curves representing the influence of other dibasic and tribasic acids, viz. oxalic, tartaric, succinic, citric, and phosphoric, upon gelatin are almost identical with those representing the effect of monobasic acids. 4. The facts mentioned under (2) and (3) permit us to decide between a purely chemical and a colloidal explanation of the influence of acids on the physical properties of gelatin. In the former case we should be able to prove, first, that twice as many molecules of HBr as of H2SO4 combine with a given mass of gelatin; and, second, that the same number of molecules of phosphoric, citric, oxalic, tartaric, and succinic acids as of HNO3 or HCl combine with the same mass of gelatin. It is shown in the present paper that this is actually the case. 5. It is shown that gelatin sulfate and gelatin bromide solutions of the same pH have practically the same conductivity. This disproves the assumption of colloid chemists that the difference in the effect of bromides and sulfates on the physical properties of gelatin is due to a different ionizing and hydratating effect of the two acids upon the protein molecule.  相似文献   

20.
Summary Phosphorus in soils from plantation of red pine (Pinus resinosa Ait.) was determined using six extractants: 0.002N H2SO4 (pH 3.0); 0.025N HCl+ +0.03N NH4F; 0.5N NaHCO3 (pH 8.5);N NH4OAc (pH 4.8); anion exchange resin (Dower –2, Cl-form); H2O. Correlations of extractable P with Al- and Al-+Fe-P indicated that these fractions are the dominant forms of inorganic P in most of the soils.Uptake of P by corn and Monterey pine seedlings grown in greenhouse culture was correlated with soil P extracted by the different methods. The most successful of the extractants for predicting P uptake was resin extractable P; the simple correlation coefficients were 0.811 and 0.609 for pine and corn respectively. P uptake by pine correlated significantly with 0.002N H2SO4 P (r=0.679),N NH4OAc P (r=0.443), H2O P (r=0.549) and Al-+Fe-P (r=0.532) while P uptake by corn correlated with 0.002N H2SO4 P (r=0.579), H2O P (r=0.477) and organic P (r=0.460). Per cent P in pine seedling tops correlated significantly with 0.002N H2SO4, resin andN NH4 OAc extractable P. Multiple regressions which included silt+clay and organic P improved correlations of some soil tests with P uptake in corn and pine seedlings respectively.Research supported by the School of Natural Resources, College of Agricultural and Life Sciences, Univ. of Wisconsin, Madison, the Wisconsin Department of Natural Resources and FAO Fellowship to the senior author.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号