首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several lines of evidence suggest that ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) are important for the survival and regeneration of axotomized motoneurons. To investigate the role of CNTF/LIF signaling in regenerative responses of motoneurons, we studied the expression of the three receptor components, CNTF receptor α (CNTFRα), LIF receptor β (LIFRβ), and gp130, and the activation of the STAT3 signal transduction pathway in the rat facial nucleus following peripheral nerve transection. As shown by in situ hybridization and immunoblotting, axotomy resulted in a rapid down‐regulation of CNTFRα mRNA expression within 24 h and a concomitant massive up‐regulation of LIFRβ mRNA and protein in the lesioned motoneurons. The altered mRNA levels were maintained for 3 weeks but had returned back to control levels by 6 weeks postlesion after successful regeneration. In contrast, mRNA levels remained in the lesioned state during the 6‐week period studied, when regeneration was prevented by nerve resection. Significant lesion‐induced changes in gp130 mRNA levels were not detectable. Rapid (within 24 h) and sustained (for at least 5 days) activation of STAT3 in axotomized facial motoneurons was revealed by demonstrating the phosphorylation and nuclear translocation of the protein using immunocytochemistry and immunoblotting. In agreement with previous studies showing a complementary regulation of CNTF and LIF in the lesioned facial nerve, our observations on the postlesional regulation of CNTF/LIF receptor components in the facial nucleus indicate a direct and sequential action of the two neurotrophic proteins on axotomized facial motoneurons. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 559–571, 1999  相似文献   

2.
Members of the ciliary neurotrophic factor (CNTF)/leukemia inhibitory factor (LIF)/cardiotrophin gene family are potent survival factors for embryonic and lesioned motoneurons. These factors act via receptor complexes involving gp130 and LIFR-beta and ligand binding leads to activation of various signaling pathways, including phosphorylation of Stat3. The role of Stat3 in neuronal survival was investigated in mice by Cre-mediated gene ablation in motoneurons. Cre is expressed under the neurofilament light chain (NF-L) promoter, starting around E12 when these neurons become dependent on neurotrophic support. Loss of motoneurons during the embryonic period of naturally occurring cell death is not enhanced in NF-L-Cre; Stat3(flox/KO) mice although motoneurons isolated from these mice need higher concentrations of CNTF for maximal survival in culture. In contrast, motoneuron survival is significantly reduced after facial nerve lesion in the adult. These neurons, however, can be rescued by the addition of neurotrophic factors, including CNTF. Stat3 is essential for upregulation of Reg-2 and Bcl-xl expression in lesioned motoneurons. Our data show that Stat3 activation plays an essential role for motoneuron survival after nerve lesion in postnatal life but not during embryonic development, indicating that signaling requirements for motoneuron survival change during maturation.  相似文献   

3.
4.
Ciliary neurotrophic factor (CNTF) is a neuroprotective cytokine initially identified in chick embryo. It has been evaluated for the treatment of neurodegenerative diseases. CNTF also acts on non-neuronal cells such as oligodendrocytes, astrocytes, adipocytes and skeletal muscles cells. CNTF has regulatory effects on body weight and is currently in clinical trial for the treatment of diabetes and obesity. CNTF mediates its function by activating a tripartite receptor comprising the CNTF receptor alpha chain (CNTFRalpha), the leukemia inhibitory factor receptor beta chain (LIFRbeta) and gp130. Human, rat and chicken CNTF have been expressed as recombinant proteins, and most preclinical studies in murine models have been performed using rat recombinant protein. Rat and human CNTF differ in their fine specificities: in addition to CNTFR, rat CNTF has been shown to activate the LIFR (a heterodimer of LIFRbeta and gp130), whereas human CNTF can bind and activate a tripartite receptor comprising the IL-6 receptor alpha chain (IL-6Ralpha) and LIFR. To generate tools designed for mouse models of human diseases; we cloned and expressed in E. coli both mouse CNTF and the CNTFRalpha chain. Recombinant mouse CNTF was active and showed a high level of specificity for mouse CNTFR. It shares the arginine residue with rat CNTF which prevents binding to IL-6Ralpha. It did not activate the LIFR at all concentrations tested. Recombinant mouse CNTF is therefore specific for CNTFR and as such represents a useful tool with which to study CNTF in mouse models. It appears well suited for the comparative evaluation of CNTF and the two additional recently discovered CNTFR ligands, cardiotrophin-like cytokine\cytokine-like factor-1 and neuropoietin.  相似文献   

5.
6.
The biological actions of interleukin-6 (IL-6), leukemia inhibitory factor (LIF), and ciliary neurotrophic factor (CNTF) are mediated via respective functional receptor complexes consisting of a common signal-transducing component, gp130, and other specific receptor components, IL-6 receptor alpha (IL-6R), LIF receptor beta (LIFR), and CNTF receptor alpha (CNTFR). IL-6, LIF, and CNTF are implicated in skeletal muscle regeneration. However, the cell populations that express these receptor components in regenerating muscles are unknown. Using in situ hybridization histochemistry, we examined spatiotemporal expression patterns of gp130, IL-6R, LIFR, and CNTFR mRNAs in regenerating muscles after muscle contusion. At the early stages of regeneration (from 3 hr to Day 2 post contusion), significant signals for gp130 and LIFR mRNAs were detected in myonuclei and/or nuclei of muscle precursor cells (mpcs) and in mononuclear cells located in extracellular spaces between myofibers after muscle contusion, but IL-6R mRNA was expressed only in mononuclear cells. At Day 7 post contusion, signals for gp130, LIFR, and IL-6R mRNAs were not detected in newly formed myotubes, whereas the CNTFR mRNA level was upregulated in myotubes. These findings suggest that the upregulation of receptor subunits in distinct cell populations plays an important role in the effective regeneration of both myofibers and motor neurons. (J Histochem Cytochem 48:1203-1213, 2000)  相似文献   

7.
Recent findings have implicated gp130 receptor ligands, particularly ciliary neurotrophic factor (CNTF), as potential anti-obesity therapeutics. Neuropoietin (NP) is a recently discovered cytokine in the gp130 family that shares functional and structural features with CNTF and signals via the CNTF receptor tripartite complex comprised of CNTFRalpha, LIF receptor, and gp130. NP plays a role in the development of the nervous system, but the effects of NP on adipocytes have not been previously examined. Because CNTF exerts anti-obesogenic effects in adipocytes and NP shares the same receptor complex, we investigated the effects of NP on adipocyte development and insulin action. Using cultured 3T3-L1 adipocytes, we observed that NP has the ability to block adipogenesis in a dose- and time-dependent manner. We also observed that cultured adipocytes, as well as murine adipose tissue, are highly responsive to acute NP treatment. Rodents injected with NP had a substantial increase in STAT3 tyrosine phosphorylation and ERK 1 and 2 activation. We also observed the induction of SOCS-3 mRNA in 3T3-L1 adipocytes following NP treatment. Unlike CNTF, our studies have revealed that NP also substantially attenuates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. In addition, NP blocks insulin action in adipose tissue in vivo. These observations are supported by data demonstrating that NP impairs insulin signaling via decreased activation of both IRS-1 and Akt. In summary, we have observed that both adipocytes in vitro and in vivo are highly responsive to NP, and this cytokine has the ability to affect insulin signaling in fat cells. These novel observations suggest that NP, unlike CNTF, may not be a viable obesity therapeutic.  相似文献   

8.
Cross-talk among gp130 cytokines in adipocytes   总被引:3,自引:0,他引:3  
  相似文献   

9.
Interleukin-6 (IL-6) and ciliary neurotrophic factor (CNTF) are "4-helical bundle" cytokines of the IL-6 type family of neuropoietic and hematopoietic cytokines. IL-6 signals by induction of a gp130 homodimer (e.g. IL-6), whereas CNTF and leukemia inhibitory factor (LIF) signal via a heterodimer of gp130 and LIF receptor (LIFR). Despite binding to the same receptor component (gp130) and a similar protein structure, IL-6 and CNTF share only 6% sequence identity. Using molecular modeling we defined a putative LIFR binding epitope on CNTF that consists of three distinct regions (C-terminal A-helix/N-terminal AB loop, BC loop, C-terminal CD-loop/N-terminal D-helix). A corresponding gp130-binding site on IL-6 was exchanged with this epitope. The resulting IL-6/CNTF chimera lost the capacity to signal via gp130 on cells without LIFR, but acquired the ability to signal via the gp130/LIFR heterodimer and STAT3 on responsive cells. Besides identifying a specific LIFR binding epitope on CNTF, our results suggest that receptor recognition sites of cytokines are organized as modules that are exchangeable even between cytokines with limited sequence homology.  相似文献   

10.
Ciliary neurotrophic factor (CNTF) is expressed in high quantities in Schwann cells of peripheral nerves during postnatal development of the rat. The absence of a hydrophobic leader sequence and the immunohistochemical localization of CNTF within the cytoplasm of these cells indicate that the factor might not be available to responsive neurons under physiological conditions. However, CNTF supports the survival of a variety of embryonic neurons, including spinal motoneurons in culture. Moreover we have recently demonstrated that the exogenous application of CNTF protein to the lesioned facial nerve of the newborn rat rescued these motoneurons from cell death. These results indicate that CNTF might indeed play a major role in assisting the survival of lesioned neurons in the adult peripheral nervous system. Here we demonstrate that the CNTF mRNA and protein levels and the manner in which they are regulated are compatible with such a function in lesioned peripheral neurons. In particular, immunohistochemical analysis showed significant quantities of CNTF at extracellular sites after sciatic nerve lesion. Western blots and determination of CNTF biological activity of the same nerve segments indicate that extracellular CNTF seems to be biologically active. After nerve lesion CNTF mRNA levels were reduced to less than 5% in distal regions of the sciatic nerve whereas CNTF bioactivity decreased to only one third of the original before-lesion levels. A gradual reincrease in Schwann cells occurred concomitant with regeneration.  相似文献   

11.
Abstract: Leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) share common components in their multimeric receptors. Both cytokine receptors contain gp130/interleukin-6-receptor transducer as well as gp190/low-affinity LIF receptor. For CNTF, addition of a third subunit, or α subunit, defines the high-affinity CNTF receptor. In the present study, we analyzed the binding interactions of LIF and CNTF in human cell lines and showed a mutual displacement for LIF and CNTF toward the trimeric high-affinity CNTF receptor. Similar results were obtained in the JEG cell line, which only expressed the gp130/gp190 high-affinity LIF receptor, by adding a soluble form of the αCNTF receptor to the system to reconstitute the high-affinity-type CNTF receptor. The different receptor subunits were then expressed separately in transfected cells and their binding capacities analyzed. The results showed that the heterocomplex CNTF/αCNTF receptor bound to gp130 with an affinity of 3–5 × 10−10 M , whereas LIF interacted mainly with gp190. In summary, the observed competition between LIF and CNTF does not result from the binding to a common site or receptor subunit, but rather to the interaction of the three receptor components to create a conformational site common to both LIF and CNTF.  相似文献   

12.
Ciliary neurotrophic factor (CNTF) displays neurotrophic activities on motor neurons and neural cell populations both in vivo and in vitro. On target cells lacking intrinsic expression of specific receptor alpha subunits cytokines of the IL-6 family only act in the presence of their specific agonistic soluble receptors. Here, we report the construction and expression of a CNTF/soluble CNTF-receptor (sCNTF-R) fusion protein (Hyper-CNTF) with enhanced biological activity on cells expressing gp130 and leukemia inhibitory factor receptor (LIF-R), but not membrane-bound CNTF-R. At the cDNA level, the C-terminus of the extracellular domain of human CNTF-R (amino acids 1-346) was linked via a single glycine residue to the N-terminus of human CNTF (amino acids 1-186). Recombinant Hyper-CNTF protein was expressed in COS-7 cells. Hyper-CNTF efficiently induced dose-dependent STAT3 phosphorylation and proliferation of BAF-3 cells stably transfected with gp130 and LIF-R cDNAs. While on BAF3/gp130/LIF-R cells, Hyper-CNTF and LIF exhibited similar biological responses, the activity of Hyper-CNTF on pheochromocytoma cells (PC12 cells) was quite distinct from that of LIF. In contrast to LIF, Hyper-CNTF stimulated neurite outgrowth of PC12 cells in a time- and dose-dependent manner correlating with the ability to phosphorylate MAP kinases. These data indicate that although LIF and Hyper-CNTF use the same heterodimeric receptor complex of gp130 and LIFR, only Hyper-CNTF induces neuronal differentiation. The therapeutic potential of Hyper-CNTF as a superagonistic neurotrophin is discussed.  相似文献   

13.
14.
Leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) are neurally active cytokines, or neurokines. LIF signals through a receptor consisting of gp130 and the low affinity LIF receptor (LIFR), while the CNTF receptor consists of gp130, LIFR, and the low affinity CNTF receptor (CNTFR). Ser1044 of the LIFR is phosphorylated by Erk1/2 MAP kinase. Stimulation of neural cells with growth factors which strongly activate Erk1/2 decreases LIF-mediated signal transduction due to increased degradation of the LIFR as a consequence of Erk1/2-dependent phosphorylation of the receptor at Ser1044.  相似文献   

15.
16.
The cytokines of the interleukin-6 family are multifunctional proteins that regulate cell growth, differentiation, and other cell functions in a variety of biological systems including the immune, inflammatory, hematopoietic, and nervous systems. One member of this family, ciliary neurotrophic factor (CNTF), displays biological functions more restricted to the neuromuscular axis. We have recently identified two additional ligands for the CNTF receptor complex. Both are composite cytokines formed by cardiotrophin-like cytokine (CLC) associated to either the soluble type I cytokine receptor CLF or the soluble form of CNTF receptor alpha (CNTFRalpha). The present study was aimed at analyzing the interactions between the cytokine CLC and its different receptor chains. For this purpose, we modeled CLC/receptor interactions to define the residues potentially involved in the contact sites. We then performed site-directed mutagenesis on these residues and analyzed the biological interactions between mutants and receptor chains. Importantly, we found that CLC interacts with the soluble forms of CNTFRalpha and CLF via sites 1 and 3, respectively. For site 1, the most crucial residues involved in the interaction are Trp67, Arg170, and Asp174, which interact with CNTFRalpha. Surprisingly, the residues that are important for the interaction of CLC with CLF are part of the conserved FXXK motif of site 3 known to be the interaction site of LIFRbeta. Obtained results show that the Phe151 and Lys154 residues are effectively involved in the interaction of CLC with LIFRbeta. This study establishes the molecular details of the interaction of CLC with CLF, CNTFRalpha, and LIFRbeta and helps to define the precise role of each protein in this functional receptor complex.  相似文献   

17.
Ciliary neurotrophic factor (CNTF) has a variety of actions within the nervous system. While some of the actions of leukemia inhibitory factor (LIF) on neurons resemble those of CNTF, LIF also has broad actions outside of the nervous system that in many cases mimic those of interleukin-6 (IL-6). Comparison of the tyrosine phosphorylations and gene activations induced by CNTF and LIF in neuron cell lines reveals that they are indistinguishable and also very similar to signaling events that characterize LIF and IL-6 responses in hematopoietic cells. We provide a basis for the overlapping actions of these three factors by demonstrating that the shared CNTF and LIF signaling pathways involve the IL-6 signal transducing receptor component gp130. Thus, the receptor system for CNTF is surprisingly unlike those used by the nerve growth factor family of neurotrophic factors, but is instead related to those used by a subclass of hematopoietic cytokines.  相似文献   

18.
T Matsuda  T Nakamura  K Nakao  T Arai  M Katsuki  T Heike    T Yokota 《The EMBO journal》1999,18(15):4261-4269
Embryonic stem (ES) cells can be maintained in an undifferentiated state in the presence of leukemia inhibitory factor (LIF). LIF acts through a receptor complex composed of a low affinity LIF receptor (LIFRbeta) and gp130. We reported that the intracellular domain of gp130 plays an important role in self-renewal of ES cells. In the present study, we examined the signaling pathway through which gp130 contributes to the self-renewal of ES cells. Mutational analysis of the cytoplasmic domain of gp130 revealed that the tyrosine residue of gp130 responsible for STAT3 activation is necessary for self-renewal of ES cells, while that required for SHP2 and MAP kinase activation was dispensable. Next, we constructed a fusion protein composed of the entire coding region of STAT3 and the ligand binding domain of the estrogen receptor. This construction (STAT3ER) induced expression of junB (one of the targets of STAT3) in ES cells in the presence of the synthetic ligand 4-hydroxytamoxifen (4HT), thereby indicating that STAT3ER is a conditionally active form. ES cells transfected with STAT3ER cultured in the presence of 4HT maintained an undifferentiated state. Taken together, these results strongly suggest that STAT3 activation is required and sufficient to maintain the undifferentiated state of ES cells.  相似文献   

19.
We analyzed the changes in expression of ciliary neurotrophic factor (CNTF) and its receptor, ligand-binding subunit a (CNTFRa), in the hippocampus following intraperitoneal administration of a convulsant dose of kainic acid (KA). Immunohistochemistry and immunoblotting showed that CNTF levels rose dramatically between day 1 and day 10, and that the CNTF was located in reactive astrocytes. In contrast, upregulation of CNTFRalpha mRNA, occurred in neurons as well as astrocytes. A rapid, and short-lived (3 h-2 d) increase in CNTFRalpha was also observed in the more resistant granule cells and CA2 pyramidal neurons. The increase in astrocytes was detected by day 1 and was sustained for more than 5 d. These results show that CNTF and CNTFRalpha are differentially regulated in hippocampal neurons and reactive astrocytes following KA injection, indicating that these proteins may be involved in the regulation of astrocyte and neuronal degenerative responses.  相似文献   

20.
Ciliary neurotrophic factor (CNTF) induces neuronal differentiation and promotes the survival of various neuronal cell types by binding to a receptor complex formed by CNTF receptor α (CNTFRα), gp130, and the leukemia inhibitory factor (LIF) receptor (LIFR). The CD loop-D helix region of CNTF has been suggested to be important for the cytokine interaction with LIFR. We designed a peptide, termed cintrofin, that encompasses this region. Surface plasmon resonance analysis demonstrated that cintrofin bound to LIFR and gp130, but not to CNTFRα, with apparent KD values of 35 nM and 1.1 nM, respectively. Cintrofin promoted the survival of cerebellar granule neurons (CGNs), in which cell death was induced either by potassium withdrawal or H2O2 treatment. Cintrofin induced neurite outgrowth from CGNs, and this effect was inhibited by specific antibodies against both gp130 and LIFR, indicating that these receptors are involved in the effects of cintrofin. The C-terminal part of the peptide, corresponding to the D helix region of CNTF, was shown to be essential for the neuritogenic action of the peptide. CNTF and LIF induced neurite outgrowth in CGNs plated on laminin-coated slides. On uncoated slides, CNTF and LIF had no neuritogenic effect but were able to inhibit cintrofin-induced neuronal differentiation, indicating that cintrofin and cytokines compete for the same receptors. In addition, cintrofin induced the phosphorylation of STAT3, Akt, and ERK, indicating that it exerts cell signaling properties similar to those induced by CNTF and may be a valuable survival agent with possible therapeutic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号